Machine Learning

A. Supervised Learning: Linear Models \& Fundamentals A.4. High-Dimensional Data

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science
University of Hildesheim, Germany

Syllabus

Fri. 25.10.
(1) 0 . Introduction
A. Supervised Learning: Linear Models \& Fundamentals

Fri. 1.11. (2) A. 1 Linear Regression
Fri. 8.11.
(3) A. 2 Linear Classification

Fri. 15.11.
(4) A. 3 Regularization

Fri. 22.11.
(5) A. 4 High-dimensional Data
B. Supervised Learning: Nonlinear Models

Fri. 29.11. (6) B. 1 Nearest-Neighbor Models
Fri. 6.12. (7) B. 2 Neural Networks
Fri. 13.12. (8) B. 3 Decision Trees
Fri. 20.12. (9) B. 4 Support Vector Machines

- Christmas Break -

Fri. 10.1. (10) B. 5 A First Look at Bayesian and Markov Networks
C. Unsupervised Learning

Fri. 17.1. (11) C. 1 Clustering
Fri. 24.1. (12) C. 2 Dimensionality Reduction
Fri. 31.1. (13) C. 3 Frequent Pattern Mining
Fri. 7.2. (14) Q\&A

Outline

1. Variable Interactions and Polynomial Models
2. Parameter Variance
3. Variable Selection via Forward and Backward Search
4. Minimizing a Function via Coordinate Descent
5. L1 Regularization / The Lasso

High-Dimensional Data

High-dimensional data occurs in different situations:

1. Data that comes naturally with many predictors.

- e.g., text classification
(\# predictors = \# words in the bag-of-words representation, e.g., 30.000)

2. Models that extract many predictor variables from objects to classify.

- variable interactions
- derived variables
- complex objects such as graphs, texts, etc.
- Situation 1 often really is a special case of this one.

3. Data with few examples compared to the number of variables ("small n, large p").

- gene expression / microarray data

Outline

1. Variable Interactions and Polynomial Models

2. Parameter Variance
3. Variable Selection via Forward and Backward Search
4. Minimizing a Function via Coordinate Descent
5. L1 Regularization / The Lasso

Need for higher orders

Assume a target variable does not depend linearly on a predictor variable, but say quadratic.

Example: way length vs. duration of a moving object with constant acceleration a.

$$
s(t)=\frac{1}{2} a t^{2}+\epsilon
$$

Can we catch such a dependency?
Can we catch it with a linear
 model?

Need for general transformations

To describe many phenomena, even more complex functions of the input variables are needed.

Example: the number of cells n vs. duration of growth t :

$$
n=\beta e^{\alpha t}+\epsilon
$$

n does not depend on t directly, but on $e^{\alpha t}$ (with a known α).

Need for variable interactions

In a linear model with two predictors

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\epsilon
$$

Y depends on both, X_{1} and X_{2}.
But changes in X_{1} will affect Y the same way, regardless of X_{2}.
There are problems where X_{2} mediates or influences the way X_{1} affects Y, e.g. : the way length s of a moving object vs. its constant velocity v and duration t :

$$
s=v t+\epsilon
$$

Then an additional $1 s$ duration will increase the way length not in a uniform way (regardless of the velocity), but a little for small velocities and a lot for large velocities.
v and t are said to interact: y does not depend only on each predictor separately, but also on their product.

Derived variables

All these cases can be handled by looking at derived variables, i.e., instead of

$$
\begin{aligned}
& Y=\beta_{0}+\beta_{1} X_{1}^{2}+\epsilon \\
& Y=\beta_{0}+\beta_{1} e^{\alpha X_{1}}+\epsilon \\
& Y=\beta_{0}+\beta_{1} X_{1} \cdot X_{2}+\epsilon
\end{aligned}
$$

one looks at

$$
Y=\beta_{0}+\beta_{1} X_{1}^{\prime}+\epsilon
$$

with

$$
\begin{aligned}
& X_{1}^{\prime}:=X_{1}^{2} \\
& X_{1}^{\prime}:=e^{\alpha X_{1}} \\
& X_{1}^{\prime}:=X_{1} \cdot X_{2}
\end{aligned}
$$

Derived variables are computed before the fitting process and taken into account either additional to the original variables or instead of.

Polynomial Models

Polynomial models of degree d take into account systematically all interactions of d different variables (including powers up to degree d):

$$
\hat{y}(x):=\hat{\theta}_{0}+\sum_{m=1}^{M} \hat{\theta}_{m} x_{m}
$$

degree 1

Polynomial Models

Polynomial models of degree d take into account systematically all interactions of d different variables (including powers up to degree d):

$$
\begin{aligned}
& \hat{y}(x):=\hat{\theta}_{0}+\sum_{m=1}^{M} \hat{\theta}_{m} x_{m} \\
& \hat{y}(x):=\hat{\theta}_{0}+\sum_{m=1}^{M} \hat{\theta}_{m} x_{m}+\sum_{m=1}^{M} \sum_{l=m}^{M} \hat{\theta}_{m, I} x_{m} x_{I}
\end{aligned}
$$

degree 1

Polynomial Models

Polynomial models of degree d take into account systematically all interactions of d different variables (including powers up to degree d):

$$
\begin{aligned}
\hat{y}(x):=\hat{\theta}_{0}+\sum_{m=1}^{M} \hat{\theta}_{m} x_{m} & \text { degree } 1 \\
\hat{y}(x):=\hat{\theta}_{0}+\sum_{m=1}^{M} \hat{\theta}_{m} x_{m}+\sum_{m=1}^{M} \sum_{l=m}^{M} \hat{\theta}_{m, I} x_{m} x_{l} & \text { degree } 2 \\
\hat{y}(x):=\hat{\theta}_{0}+\sum_{m=1}^{M} \hat{\theta}_{m} x_{m}+\sum_{m=1}^{M} \sum_{l=m}^{M} \hat{\theta}_{m, I} x_{m} x_{I}+\cdots & \\
& +\sum_{m_{1}=1}^{M} \sum_{m_{2}=m_{1}}^{M} \cdots \sum_{m_{d}=m_{d-1}}^{M} \hat{\theta}_{m_{1}, m_{2}, \ldots, m_{d} x_{m_{1}} x_{m_{2}} \cdots x_{m_{d}}} \text { degree d }
\end{aligned}
$$

High Polynomial Degress, High Model Complexity

If a model does not well explain the data, e.g., if the true model is quadratic, but we try to fit a linear model, one says, the model underfits.

High Polynomial Degress, High Model Complexity

High Polynomial Degress, High Model Complexity

If to data

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)
$$

consisting of N points we fit

$$
\begin{aligned}
X & =\beta_{0}+\beta_{1} X+\beta_{2} X^{2}+\cdots+\beta_{N-1} X^{N-1} \\
& =\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\beta_{N-1} X_{N-1}, \quad X_{i}:=X^{i}
\end{aligned}
$$

i.e., a polynomial with degree $N-1$,
then this results in an interpolation of the data points (if there are no repeated measurements, i.e., points with the same X.)

As the polynomial

$$
\hat{y}(X)=\sum_{n=1}^{N} y_{n} \prod_{m \neq n} \frac{X-x_{m}}{x_{n}-x_{m}}
$$

is of this type, and has minimal $\mathrm{RSS}=0$.

Variable Types and Coding

The most common variable types:
numerical / interval-scaled / quantitative

- differences and quotients etc. are meaningful,
- usually with domain $\mathcal{X}:=\mathbb{R}$,
- e.g., temperature, size, weight.

nominal / discrete / categorical / qualitative / factor

- differences and quotients are not defined,
- usually with a finite, enumerated domain,
- e.g., $\mathcal{X}:=\{$ red, green, blue $\}$ or $\mathcal{X}:=\{a, b, c, \ldots, y, z\}$.
ordinal / ordered categorical
- levels are ordered, but differences and quotients are not defined,
- usually with a finite, enumerated domain,

Variable Types and Coding

Nominals are usually encoded as a set of binary dummy variables (aka indicator variables, one hot encoding):

$$
\delta_{x_{0}}(X):= \begin{cases}1, & \text { if } X=x_{0} \\ 0, & \text { else }\end{cases}
$$

one for each $x_{0} \in \mathcal{X}$ (but one).
Example: $\mathcal{X}:=\{$ red, green, blue $\}$ one variable X with 3 levels: red, green, blue
\downarrow replace by
two variables $\delta_{\text {red }}(X)$ and $\delta_{\text {green }}(X)$ with 2 levels each: 0,1

X	$\delta_{\text {red }}(X)$	$\delta_{\text {green }}(X)$
red	1	0
green	0	1
blue	0	0
-	1	1

Outline

1. Variable Interactions and Polynomial Models

2. Parameter Variance
3. Variable Selection via Forward and Backward Search
4. Minimizing a Function via Coordinate Descent
5. L1 Regularization / The Lasso

The Normal Distribution (also Gaysssian)

written as:

$$
X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

with parameters:
μ mean,
σ standard deviance.
probability density function (pdf):

$$
\phi(x):=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

cumulative distribution function (cdf):

$$
\Phi(x):=\int_{-\infty}^{x} \phi(t) d t
$$

Φ^{-1} is called quantile function.

The t Distribution

written as:

$$
X \sim t_{p}
$$

with parameter:
p degrees of freedom.

probability density function (pdf):

$$
\begin{aligned}
p(x):= & \frac{\Gamma\left(\frac{p+1}{2}\right)}{\sqrt{p \pi} \Gamma\left(\frac{p}{2}\right)}\left(1+\frac{x^{2}}{p}\right)^{-\frac{p+1}{2}} \\
& t_{p} \xrightarrow{p \rightarrow \infty} \mathcal{N}(0,1)
\end{aligned}
$$

The χ^{2} Distribution

written as:

$$
x \sim \chi_{p}^{2}
$$

with parameter:
p degrees of freedom.

probability density function (pdf):

$$
p(x):=\frac{1}{\Gamma(p / 2) 2^{p / 2}} x^{\frac{p}{2}-1} e^{-\frac{x}{2}}, \quad x \geq 0
$$

If $X_{1}, \ldots, X_{p} \sim \mathcal{N}(0,1)$, then

$$
Y:=\sum_{i=1}^{p} X_{i}^{2} \sim \chi_{p}^{2}
$$

Parameter Variance for Linear Regression

$\hat{\beta}=\left(X^{\top} X\right)^{-1} X^{\top} y$ is an unbiased estimator for β (i.e., $\mathbb{E}(\hat{\beta})=\beta$).
Its variance is

$$
\mathbb{V}(\hat{\beta})=\left(X^{\top} X\right)^{-1} \sigma^{2}
$$

proof: assume ground truth $Y=X \beta+\epsilon, \mathbb{E}(\epsilon)=0, \mathbb{V}(\epsilon)=\sigma^{2} I$:

$$
\begin{aligned}
\hat{\beta} & =\left(X^{\top} X\right)^{-1} X^{\top} y=\left(X^{\top} X\right)^{-1} X^{\top}(X \beta+\epsilon)=\beta+\left(X^{\top} X\right)^{-1} X^{\top} \epsilon \\
\rightsquigarrow \quad \mathbb{E}(\hat{\beta}) & =\beta+\left(X^{\top} X\right)^{-1} X^{\top} \mathbb{E}(\epsilon)=\beta \\
\mathbb{V}(\hat{\beta}) & =\mathbb{E}\left((\hat{\beta}-\mathbb{E}(\hat{\beta}))(\hat{\beta}-\mathbb{E}(\hat{\beta}))^{T}\right) \\
& =\mathbb{E}\left(\left(X^{\top} X\right)^{-1} X^{\top} \epsilon \epsilon^{\top} X\left(X^{\top} X\right)^{-1}\right) \\
& =\left(X^{\top} X\right)^{-1} X^{\top} \mathbb{E}\left(\epsilon \epsilon^{T}\right) X\left(X^{\top} X\right)^{-1} \\
& =\left(X^{\top} X\right)^{-1} \sigma^{2}
\end{aligned}
$$

Parameter Variance for Linear Regression

An unbiased estimator for σ^{2} is

$$
\hat{\sigma}^{2}=\frac{1}{N-M} \sum_{n=1}^{N} \hat{\epsilon}_{n}^{2}=\frac{1}{N-M} \sum_{n=1}^{N}\left(y_{n}-\hat{y}_{n}\right)^{2}
$$

For Gaussian errors $\epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$:

$$
\hat{\beta} \sim \mathcal{N}\left(\beta,\left(X^{\top} X\right)^{-1} \sigma^{2}\right)
$$

and

$$
(N-M) \hat{\sigma}^{2} \sim \sigma^{2} \chi_{N-M}^{2}
$$

Parameter Variance / Standardized coefficient

 standardized coefficient ("z-score"):$$
z_{n}:=\frac{\hat{\beta}_{n}}{\widehat{\operatorname{se}(}\left(\hat{\beta}_{n}\right)}, \quad \text { with } \widehat{\operatorname{se}}^{2}\left(\hat{\beta}_{n}\right) \text { the } n \text {-th diagonal element of }\left(X^{T} X\right)^{-1} \hat{\sigma}^{2}
$$

z_{n} would be $z_{n} \sim \mathcal{N}(0,1)$ if σ is known (under $H_{0}: \beta_{n}=0$).
With estimated $\hat{\sigma}$ it is $z_{n} \sim t_{N-M}$.

The Wald test for $H_{0}: \beta_{n}=0$ with size α is:

$$
\text { reject } H_{0} \text { if }\left|z_{n}\right|=\left|\frac{\hat{\beta}_{n}}{\widehat{\operatorname{se}}\left(\hat{\beta}_{n}\right)}\right|>F_{t_{N-M}}^{-1}\left(1-\frac{\alpha}{2}\right)
$$

i.e., its p-value is

$$
p \text {-value }\left(H_{0}: \beta_{n}=0\right)=2\left(1-F_{t_{N-M}}\left(\left|z_{n}\right|\right)\right)=2\left(1-F_{t_{N-M}}\left(\left|\frac{\hat{\beta}_{N}}{\widehat{\operatorname{se}}\left(\hat{\beta}_{N}\right)}\right|\right)\right)
$$

and small p-values such as 0.01 and 0.05 are good.

Confidence interval

The $1-\alpha$ confidence interval for β_{n} :

$$
\beta_{n} \pm F_{t_{N-M}}^{-1}\left(1-\frac{\alpha}{2}\right) \widehat{\operatorname{se}}\left(\hat{\beta}_{n}\right)
$$

For large $N, F_{t_{N-M}}$ converges to the standard normal cdf Φ.

As $\Phi^{-1}\left(1-\frac{0.05}{2}\right) \approx 1.95996 \approx 2$, the rule-of-thumb for a 5% confidence interval is

$$
\beta_{n} \pm 2 \widehat{\operatorname{se}}\left(\hat{\beta}_{n}\right)
$$

Example

We have already fitted

$$
\begin{aligned}
\hat{y} & =\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\hat{\beta}_{2} x_{2} \\
& =5.583+0.779 x_{1}-1.699 x_{2}
\end{aligned}
$$

to the data:

x_{1}	x_{2}	y	\hat{y}	$\hat{\epsilon}^{2}=(y-\hat{y})^{2}$
1	2	3	2.965	0.00122
2	3	2	2.045	0.00207
4	1	7	7.003	0.0000122
5	5	1	0.986	0.000196
RSS				0.00350

$$
\begin{aligned}
& \hat{\sigma}^{2}=\frac{1}{N-P} \sum_{n=1}^{N} \hat{\epsilon}_{n}^{2}=\frac{1}{4-3} 0.00350=0.00350 \\
& \left(X^{T} X\right)^{-1} \hat{\sigma}^{2}=\left(\begin{array}{rrr}
0.00520 & -0.00075 & -0.00076 \\
-0.00075 & 0.00043 & -0.00020 \\
-0.00076 & -0.00020 & 0.00049
\end{array}\right) \\
&
\end{aligned}
$$

Example 2

Example: sociographic data of the 50 US states in 1977.
state dataset:

- income (per capita, 1974),
- illiteracy (percent of population, 1970),
- life expectancy (in years, 1969-71),
- percent high-school graduates (1970).
- population (July 1, 1975)
- murder rate per 100,000 population (1976)
- mean number of days with minimum temperature below freezing (1931-1960) in capital or large city
- land area in square miles

Example 2

$$
\begin{aligned}
\text { Murder }= & \beta_{0}+\beta_{1} \text { Population }+\beta_{2} \text { Income }+\beta_{3} \text { Illiteracy } \\
& +\beta_{4} \text { LifeExp }+\beta_{5} \text { HSGrad }+\beta_{6} \text { Frost }+\beta_{7} \text { Area }
\end{aligned}
$$

$N=50$ states, $M=8$ parameters, $N-M=42$ degrees of freedom.
Least squares estimators:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$	
(Intercept)	$1.222 \mathrm{e}+02$	$1.789 \mathrm{e}+01$	6.831	$2.54 \mathrm{e}-08$	$* * *$
Population	$1.880 \mathrm{e}-04$	$6.474 \mathrm{e}-05$	2.905	0.00584	$* *$
Income	$-1.592 \mathrm{e}-04$	$5.725 \mathrm{e}-04$	-0.278	0.78232	
Illiteracy	$1.373 \mathrm{e}+00$	$8.322 \mathrm{e}-01$	1.650	0.10641	
'Life Exp'	$-1.655 \mathrm{e}+00$	$2.562 \mathrm{e}-01$	-6.459	$8.68 \mathrm{e}-08$	$* *$
'HS Grad'	$3.234 \mathrm{e}-02$	$5.725 \mathrm{e}-02$	0.565	0.57519	
Frost	$-1.288 \mathrm{e}-02$	$7.392 \mathrm{e}-03$	-1.743	0.08867	
Area	$5.967 \mathrm{e}-06$	$3.801 \mathrm{e}-06$	1.570	0.12391	

Outline

1. Variable Interactions and Polynomial Models

2. Parameter Variance
3. Variable Selection via Forward and Backward Search
4. Minimizing a Function via Coordinate Descent
5. L1 Regularization / The Lasso

The Variable Selection Problem

Given a data set $\mathcal{D}^{\text {train }} \subseteq \mathbb{R}^{M} \times \mathcal{Y}$,
an error measure err,
a model class with a learning algorithm \mathcal{A},
find the subset $V \subseteq\{1,2, \ldots, M\}$ of (relevant) variables s.t. the model

$$
\hat{y}:=\mathcal{A}\left(\pi_{V}\left(\mathcal{D}^{\text {train }}\right)\right)
$$

learned on this subset V is best, i.e., for new test data $\mathcal{D}^{\text {test }}$ its test error

$$
\operatorname{err}\left(\hat{y}, \mathcal{D}^{\text {test }}\right)
$$

is minimal.

Projection onto predictors V :

$$
\pi v(x, y):=\left(x_{m_{1}}, x_{m_{2}}, \ldots, x_{m_{\tilde{M}}}, y\right), \quad \text { for } V:=\left\{m_{1}, m_{2}, \ldots, m_{\tilde{M}}\right\}
$$

Greedy Search

- All 2^{M} subsets are too many to test (for larger M).
- Use a simple greedy search.
- forward search:
- start with no variables.
- test adding one more variable not yet in the model.
- add the one leading to lowest validation error.
- backward search:
- start with all variables.
- test removing one more variable still in the model.
- remove the one leading to lowest validation error.
- Does not guarantee to find the best variables subset. (But usually finds a useful one.)

Forward Search

selectvars-forward $\left(\mathcal{D}^{\text {train } \prime} \subseteq \mathbb{R}^{M} \times \mathcal{Y}, \operatorname{err}, \mathcal{A}\right)$:
$\left(\mathcal{D}^{\text {train }}, \mathcal{D}^{\text {val }}\right):=\operatorname{split}\left(\mathcal{D}^{\text {train }}\right)$
$V:=\emptyset$
$e_{\text {allbest }}:=\operatorname{err}\left(\mathcal{A}\left(\pi_{V}\left(\mathcal{D}^{\text {train }}\right)\right), \pi_{V}\left(\mathcal{D}^{\text {val }}\right)\right)$
$v_{\text {best }}:=1$
while $v_{\text {best }} \neq 0$:
$v_{\text {best }}:=0$
$e_{\text {best }}:=e_{\text {allbest }}$
for $v \in\{1,2, \ldots, M\} \backslash V$:
$V^{\prime}:=V \cup\{v\}$
$\hat{y}:=\mathcal{A}\left(\pi_{V^{\prime}}\left(\mathcal{D}^{\text {train }}\right)\right)$
$e:=\operatorname{err}\left(\hat{y}, \pi_{V^{\prime}}\left(\mathcal{D}^{\text {val }}\right)\right)$
if $e<e_{\text {best }}$:
$v_{\text {best }}:=v$
$e_{\text {best }}:=e$
if $e_{\text {best }}<e_{\text {allbest }}$:
$V:=V \cup\left\{v_{\text {best }}\right\}$
$e_{\text {allbest }}:=e_{\text {best }}$
return V

Backward Search

selectvars-backward $\left(\mathcal{D}^{\text {train }} \subseteq \mathbb{R}^{M} \times \mathcal{Y}, \operatorname{err}, \mathcal{A}\right)$:

$$
\begin{aligned}
& \left(\mathcal{D}^{\text {train }}, \mathcal{D}^{\text {val }}\right):=\operatorname{split}\left(\mathcal{D}^{\text {train }}\right) \\
& V:=\{1,2, \ldots, M\} \\
& e_{\text {allbest }}:=\operatorname{err}\left(\mathcal{A}\left(\pi_{V}\left(\mathcal{D}^{\text {train }}\right)\right), \pi_{V}\left(\mathcal{D}^{\text {val }}\right)\right)
\end{aligned}
$$

$$
v_{\text {best }}:=1
$$

$$
\text { while } v_{\text {best }} \neq 0
$$

$$
v_{\text {best }}:=0
$$

$$
e_{\text {best }}:=e_{\text {allbest }}
$$

$$
\text { for } v \in V \text { : }
$$

$$
V^{\prime}:=V \backslash\{v\}
$$

$$
\hat{y}:=\mathcal{A}\left(\pi_{V^{\prime}}\left(\mathcal{D}^{\text {train }}\right)\right)
$$

$$
e:=\operatorname{err}\left(\hat{y}, \pi_{V^{\prime}}\left(\mathcal{D}^{\text {val }}\right)\right)
$$

$$
\text { if } e<e_{\text {best }} \text { : }
$$

$$
v_{\text {best }}:=v
$$

$$
e_{\text {best }}:=e
$$

$$
\text { if } e_{\text {best }}<e_{\text {allbest }}:
$$

$$
V:=V \backslash\left\{v_{\text {best }}\right\}
$$

$$
e_{\text {allbest }}:=e_{\text {best }}
$$

return V

Sequential Search with Variable Importance Heuristics

- Forward and backward search has to learn many models.
- forward search: $1,2,3, \ldots$
- backward search: $\mathrm{M}, \mathrm{M}-1, \mathrm{M}-2, \ldots$
- Further simplification: use a sequential search.
- Use a heuristics to assess variable importance once (without context)
- e.g., the error of the single-variable model:

$$
\operatorname{imp}(m):=\operatorname{err}\left(\mathcal{A}\left(\pi_{\{m\}}\left(\mathcal{D}^{\text {train }}\right)\right), \mathcal{D}^{\text {val }}\right)
$$

- Add variables in order of increasing heuristics.
- Usually a full sequential sweep through all variables is done.
- No difference between Forward and Backward Search.
- Faster, but even less reliable than forward/backward search.

Sequential Search

```
selectvars-seq \(\left(\mathcal{D}^{\text {train } /} \subseteq \mathbb{R}^{M} \times \mathcal{Y}\right.\), err, \(\left.\mathcal{A}, \mathrm{imp}\right):\)
\(\left(\mathcal{D}^{\text {train }}, \mathcal{D}^{\text {val }}\right):=\operatorname{split}\left(\mathcal{D}^{\text {train } \prime}\right)\)
\(\mathcal{V}:=\operatorname{sort-increasing}(\{1,2, \ldots, M\}\), imp \()\)
\(V:=\emptyset\)
\(e_{\text {best }}:=\operatorname{err}\left(\mathcal{A}\left(\pi_{V}\left(\mathcal{D}^{\text {train }}\right)\right), \pi_{V}\left(\mathcal{D}^{\text {val }}\right)\right)\)
\(m_{\text {best }}:=1\)
for \(m=1, \ldots, M\) :
        \(v:=\mathcal{V}_{m}\)
        \(V:=V \cup\{v\}\)
        \(\hat{y}:=\mathcal{A}\left(\pi_{V}\left(\mathcal{D}^{\text {train }}\right)\right)\)
        \(e:=\operatorname{err}\left(\hat{y}, \pi v\left(\mathcal{D}^{\text {val }}\right)\right)\)
        if \(e<e_{\text {best }}\) :
            \(m_{\text {best }}:=m\)
            \(e_{\text {best }}:=e\)
\(V:=\left\{\mathcal{V}_{1}, \mathcal{V}_{2}, \ldots, \mathcal{V}_{m_{\text {best }}}\right\}\)
return \(V\)
```


Outline

1. Variable Interactions and Polynomial Models

2. Parameter Variance
3. Variable Selection via Forward and Backward Search
4. Minimizing a Function via Coordinate Descent
5. L1 Regularization / The Lasso

Minimizing a Function via Coordinate Descent (CD)

Given a function $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$, find x with minimal $f(x)$.

- Use the coordinate axes as descent direction
- first x_{1}-axis, then x_{2}-axis, etc. (cyclic)
- one-dimensional subproblems:

$$
g_{n}(x):=\underset{x_{n} \in \mathbb{R}}{\arg \min } f\left(x_{n} ; x_{n}\right):=\underset{x^{\prime} \in \mathbb{R}}{\arg \min } f\left(x_{1}, x_{2}, \ldots, x_{n-1}, x^{\prime}, x_{n+1}, \ldots, x_{N}\right)
$$

- Coordinate Descent can be fast if solving the one-dimensional subproblems can be done analytically.
- For smooth f, one needs to solve

$$
\frac{\partial f\left(x_{n} ; x_{-n}\right)}{\partial x_{n}} \stackrel{!}{=} 0
$$

- Then also no step length is required !

Note: $x_{-n}:=\left(x_{1}, \ldots, x_{2}, \ldots, x_{n-1}, x_{n+1}, \ldots, x_{N}\right)$ is the vector without element n for a vector $x \in \mathbb{R}^{N}$.

Coordinate Descent

```
\(\operatorname{minimize}-\mathbf{C D}\left(f: \mathbb{R}^{N} \rightarrow \mathbb{R}, g, x^{(0)} \in \mathbb{R}^{N}, i_{\max } \in \mathbb{N}, \epsilon \in \mathbb{R}^{+}\right):\)
    for \(i:=1, \ldots, i_{\max }\) :
        \(x^{(i)}:=x^{(i-1)}\)
        for \(n:=1, \ldots, N\) :
        \(x_{n}^{(i)}:=g_{n}\left(x_{-n}^{(i)}\right)\)
        if \(f\left(x^{(i-1)}\right)-f\left(x^{(i)}\right)<\epsilon\) :
        return \(x^{(i)}\)
    raise exception "not converged in \(i_{\text {max }}\) iterations"
```

with
g : solvers g_{n} for the n-th one-dimensional subproblem
$g_{n}\left(x_{1}, x_{2}, \ldots, x_{n-1}, x_{n+1}, \ldots, x_{N}\right):=\arg \min f\left(x_{1}, \ldots, x_{n-1}, x^{\prime}, x_{n+1}, \ldots, x_{N}\right)$ $x^{\prime} \in \mathbb{R}$

Example: Simple Quadratic Function

Minimize

$$
f\left(x_{1}, x_{2}\right):=x_{1}^{2}+x_{2}^{2}+x_{1} x_{2}
$$

One dimensional problem for x_{1} :

$$
\begin{gathered}
f\left(x_{1} ; x_{2}\right)=x_{1}^{2}+x_{2}^{2}+x_{1} x_{2} \\
\frac{\partial f}{\partial x_{1}}\left(x_{1} ; x_{2}\right)=2 x_{1}+x_{2} \stackrel{!}{=} 0 \\
\rightsquigarrow x_{1}=-\frac{1}{2} x_{2} \\
\text { i.e., } g_{1}\left(x_{2}\right):=-\frac{1}{2} x_{2}
\end{gathered}
$$

and analogous for x_{2} :

$$
g_{2}\left(x_{1}\right):=-\frac{1}{2} x_{1}
$$

Example: Simple Quadratic Function

Minimize

$$
\begin{array}{lllll}
& f\left(x_{1}, x_{2}\right):=x_{1}^{2}+x_{2}^{2}+x_{1} x_{2}, & x^{(0)}:=(1,1) \\
& g_{1}\left(x_{2}\right):=-\frac{1}{2} x_{2}, & g_{2}\left(x_{1}\right):=-\frac{1}{2} x_{1} \\
& & & \\
& & & \\
i & x^{(i)} \text { before } & n & g_{n}\left(x^{(i)}\right) & x^{(i)} \text { after } \\
\hline 1 & (1,1) & 1 & -1 / 2 & (-1 / 2,1) \\
& (-1 / 2,1) & 2 & 1 / 4 & (-1 / 2,1 / 4) \\
\hline 2 & (-1 / 2,1 / 4) & 1 & -1 / 8 & (-1 / 8,1 / 4) \\
& (-1 / 8,1 / 4) & 2 & 1 / 16 & (-1 / 8,1 / 16) \\
\hline
\end{array}
$$

Note: Minimize $f\left(x_{1}, x_{2}\right):=x_{1}^{2}+x_{2}^{2}$ via CD yourself. What is different? Why?

Learn Linear Regression via CD

Minimize

$$
\begin{aligned}
& f(\hat{\beta}):=\|y-X \hat{\beta}\|^{2} \propto \hat{\beta}^{\top} X^{\top} X \hat{\beta}-2 y^{\top} X \hat{\beta} \\
& f\left(\hat{\beta}_{m} ; \hat{\beta}_{-m}\right)= x_{m}^{T} x_{m} \hat{\beta}_{m}^{2}+2 \hat{\beta}_{-m}^{T} X_{-m}^{T} x_{m} \hat{\beta}_{m}+\hat{\beta}_{-m}^{T} X_{-m}^{T} X_{-m} \hat{\beta}_{-m} \\
&-2 y^{\top} x_{m} \hat{\beta}_{m}-2 y^{\top} X_{-m} \hat{\beta}_{-m} \\
& \propto x_{m}^{T} x_{m} \hat{\beta}_{m}^{2}-2\left(y-X_{-m} \hat{\beta}_{-m}\right)^{T} x_{m} \hat{\beta}_{m} \\
& \frac{\partial f\left(\hat{\beta}_{m} ; \hat{\beta}_{-m}\right)}{\partial \hat{\beta}_{m}} \stackrel{1}{=} 0 \rightsquigarrow \hat{\beta}_{m}=\frac{\left(y-X_{-m} \hat{\beta}_{-m}\right)^{T} x_{m}}{x_{m}^{T} x_{m}}
\end{aligned}
$$

Note: $x_{m}:=X_{\text {., } m}$ denotes the m-th column of X, X_{-m} denotes the matrix X without column m.

Learn Linear Regression via CD

learn-linreg-CD $\left(\mathcal{D}^{\text {train }}:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}, i_{\max } \in \mathbb{N}, \epsilon \in \mathbb{R}^{+}\right)$:
$2 \quad X:=\left(x_{1}, x_{2}, \ldots, x_{N}\right)^{T}$
$3 \quad y:=\left(y_{1}, y_{2}, \ldots, y_{N}\right)^{T}$
$4 \quad \hat{\beta}_{0}:=(0, \ldots, 0)$
$\hat{\beta}:=\operatorname{minimize}-\operatorname{CD}\left(f(\hat{\beta}):=(y-X \hat{\beta})^{T}(y-X \hat{\beta})\right.$,
$g\left(\hat{\beta}_{m} ; \hat{\beta}_{-m}\right):=\frac{\left(y-X_{-m} \hat{\beta}_{-m}\right)^{\top} x_{m}}{x_{m}^{T} x_{m}}$
$\left.\hat{\beta}_{0}, \alpha, i_{\text {max }}, \epsilon\right)$
$6 \quad$ return $\hat{\beta}$

Note: $x_{m}:=X_{\text {., } m}$ denotes the m-th column of X, X_{-m} denotes the matrix X without column m.

Outline

1. Variable Interactions and Polynomial Models

2. Parameter Variance
3. Variable Selection via Forward and Backward Search
4. Minimizing a Function via Coordinate Descent

5. L1 Regularization / The Lasso

L1 Regularization

Let X the predictor matrix and y the target vector,
$\hat{\theta}$ the model parameters,
\hat{y} the model predictions and
ℓ the loss/error.

L2 regularization:

$$
f(\hat{\theta}):=\ell(y, \hat{y}(\hat{\theta}, x))+\lambda\|\hat{\theta}\|_{2}^{2}=\ldots+\lambda \sum_{p=1}^{P} \hat{\theta}_{p}^{2}
$$

L1 regularization:

$$
f(\hat{\theta}):=\ell(y, \hat{y}(\hat{\theta}, X))+\lambda\|\hat{\theta}\|_{1}=\ldots+\lambda \sum_{p=1}^{P}\left|\hat{\theta}_{p}\right|
$$

Why L1 Regularization?

$\min . f(\hat{\theta}):=\ell(y, \hat{y}(\hat{\theta}, X))+\lambda\|\hat{\theta}\|_{1}$

$$
\hat{\theta} \in \mathbb{R}^{P}
$$

is equivalent to

$$
\min . f(\hat{\theta}):=\ell(y, \hat{y}(\hat{\theta}, X))
$$

$$
\begin{aligned}
& \|\hat{\theta}\|_{1} \leq B \\
& \hat{\theta} \in \mathbb{R}^{P}
\end{aligned}
$$

with

$$
B:=\left\|\hat{\theta}^{*}\right\|_{1}
$$

Note: $\hat{\theta}^{*}$ denotes the optimal parameters. Thus this equivalence provides insight, but cannot (yet) be used to solve the problem.

Why L1 Regularization?

$\min . f(\hat{\theta}):=\ell(y, \hat{y}(\hat{\theta}, X))+\lambda\|\hat{\theta}\|_{1}$

$$
\hat{\theta} \in \mathbb{R}^{P}
$$

is equivalent to

$$
\min . f(\hat{\theta}):=\ell(y, \hat{y}(\hat{\theta}, X))
$$

$$
\begin{aligned}
& \|\hat{\theta}\|_{1} \leq B \\
& \hat{\theta} \in \mathbb{R}^{P}
\end{aligned}
$$

with

$$
B:=\left\|\hat{\theta}^{*}\right\|_{1}
$$

$\min . f(\hat{\theta}):=\ell(y, \hat{y}(\hat{\theta}, X))+\lambda\|\hat{\theta}\|_{2}^{2}$

$$
\hat{\theta} \in \mathbb{R}^{P}
$$

is equivalent to

$$
\begin{gathered}
\min . f(\hat{\theta}):=\ell(y, \hat{y}(\hat{\theta}, X)) \\
\|\hat{\theta}\|_{2}^{2} \leq B \\
\hat{\theta} \in \mathbb{R}^{P}
\end{gathered}
$$

with

$$
B:=\left\|\hat{\theta}^{*}\right\|_{2}^{2}
$$

Note: $\hat{\theta}^{*}$ denotes the optimal parameters. Thus this equivalence provides insight, but cannot (yet) be used to solve the problem.

Why L1 Regularization?

source: [Hastie et al., 200

Regularized Linear Regression

Let X the predictor matrix and y the target vector,
$\hat{\beta}$ the linear regression model parameters,
$\hat{y}:=X \hat{\beta}$ the linear regression model predictions and $\ell(y, \hat{y}):=\|y-\hat{y}\|_{2}^{2}$ the RSS loss/error.

L2 Regularized Linear Regression (Ridge Regression):

$$
\begin{aligned}
f(\hat{\beta}) & :=\ell(y, \hat{y}(\hat{\beta}, X))+\lambda\|\hat{\beta}\|_{2}^{2} \\
& \propto \hat{\beta}^{T} X^{T} X \hat{\beta}-2 y^{T} X \hat{\beta}+\lambda \hat{\beta}^{T} \hat{\beta} \\
& =\hat{\beta}^{T}\left(X^{T} X+\lambda I\right) \hat{\beta}-2 y^{T} X \hat{\beta}
\end{aligned}
$$

- L2 regularized problem has same structure as unregularized one.
- All learning algorithms work seamlessly.

Regularized Linear Regression

Let X the predictor matrix and y the target vector, $\hat{\beta}$ the linear regression model parameters, $\hat{y}:=X \hat{\beta}$ the linear regression model predictions and $\ell(y, \hat{y}):=\|y-\hat{y}\|_{2}^{2}$ the RSS loss/error.

L1 regularized Linear Regression (Lasso):

$$
\begin{aligned}
f(\beta) & :=\ell(y, \hat{y})+\lambda\|\beta\|_{1} \\
& \propto \hat{\beta}^{T} X^{T} X \hat{\beta}-2 y^{T} X \hat{\beta}+\lambda \sum_{m=1}^{M}\left|\beta_{m}\right|
\end{aligned}
$$

- L1 regularized problem has new terms $\left|\beta_{m}\right|$.
- Esp. non-differentiable at 0 .
- All learning algorithms seen so far do not work.
- Solving SLE is not applicable.
- Gradient Descent does not work.

Hard \& Soft Thresholding

$\operatorname{hard}(x, \epsilon):= \begin{cases}x, & \text { if }|x|>\epsilon \\ 0, & \text { else }\end{cases}$

$$
\operatorname{soft}(x, \epsilon):= \begin{cases}x-\epsilon, & \text { if } x>\epsilon \\ 0, & \text { if }|x| \leq \epsilon \\ x+\epsilon, & \text { if } x<-\epsilon\end{cases}
$$

Coordinate Descent for L1 Regularized Linear Regression

$$
\begin{gathered}
f(\hat{\beta}):=\hat{\beta}^{T} X^{T} X \hat{\beta}-2 y^{T} X \hat{\beta}+\lambda \sum_{m=1}^{M}\left|\beta_{m}\right| \\
f\left(\hat{\beta}_{m} ; \hat{\beta}_{-m}\right) \propto x_{m}^{T} x_{m} \hat{\beta}_{m}^{2}-2\left(y-X_{-m} \hat{\beta}_{-m}\right)^{T} x_{m} \hat{\beta}_{m}+\lambda\left|\beta_{m}\right| \\
\frac{\partial f\left(\hat{\beta}_{m} ; \hat{\beta}_{-m}\right)}{\partial \hat{\beta}_{m}} \stackrel{!}{=} 0 \rightsquigarrow \hat{\beta}_{m} \stackrel{\text { naive }}{=} \begin{cases}\frac{\left(y-X_{-m} \hat{\beta}_{-m}\right)^{T} x_{m}-\frac{1}{2} \lambda}{x_{m}^{T} x_{m}}, & \hat{\beta}_{m}>0 \\
\frac{\left(y-X_{-m} \hat{\beta}_{-m}\right)^{T} x_{m}+\frac{1}{2} \lambda}{x_{m}^{T} x_{m}}, & \hat{\beta}_{m}<0\end{cases} \\
\rightsquigarrow \hat{\beta}_{m}=\operatorname{soft}\left(\frac{\left(y-X_{-m} \hat{\beta}_{-m}\right)^{T} x_{m}}{x_{m}^{T} x_{m}}, \frac{\frac{1}{2} \lambda}{x_{m}^{T} x_{m}}\right)
\end{gathered}
$$

Note: LASSO = Least Absolute Selection and Shrinkage Operator.
naive $=$ without checking that the update might leave the branches $\hat{\beta}_{m}>0$ and <0.

Learn L1-regularized Linear Regression via CD (Shooting Algorithm)

learn-linreg-l1reg-CD $\left(\mathcal{D}^{\text {train }}:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}, \lambda \in \mathbb{R}^{+}, i_{\max } \in \mathbb{N}, \epsilon \in \mathbb{R}^{+}\right)$

$$
\begin{aligned}
& X:=\left(x_{1}, x_{2}, \ldots, x_{N}\right)^{T} \\
& y:=\left(y_{1}, y_{2}, \ldots, y_{N}\right)^{T} \\
& \hat{\beta}_{0}:=(0, \ldots, 0) \\
& \hat{\beta}:=\operatorname{minimize}-\mathrm{CD}\left(f(\hat{\beta}):=(y-X \hat{\beta})^{T}(y-X \hat{\beta})+\lambda\|\beta\|_{1},\right. \\
& g\left(\hat{\beta}_{m} ; \hat{\beta}_{-m}\right):=\operatorname{soft}\left(\frac{\left(y-x_{-m} \hat{\beta}-m\right)^{\top} x_{m}}{x_{m}^{T} x_{m}}, \frac{\frac{1}{2} \lambda}{x_{m}^{\top} x_{m}}\right), \\
& \left.\hat{\beta}_{0}, \alpha, i_{\text {max }}, \epsilon\right)
\end{aligned}
$$

6 return $\hat{\beta}$

Note: $x_{m}:=X_{\text {, }, m}$ denotes the m-th column of X, X_{-m} denotes the matrix X without column m.

Regularization Paths

L2 regularization

x-axis: bound B on parameter size.
y-axis: parameter $\hat{\theta}$.

L1 regularization

Summary

- High-dimensional data poses problems as many parameters have to be estimated from comparable few instances.
- Non-linear effects can be captured by derived predictor variables.
- e.g., in polynomial models.
- making even originally low-dimensional data high-dimensional.
- Relevant variables can be searched explicitly through a greedy forward search and backward search.
- To minimize a function, coordinate descent cyclicly chooses the coordinate axes as descent direction.
- efficient, if the one-dimensional subproblems can be solved analytically.
- does need no step length.

Further Readings

- [James et al., 2013, chapter 6], [Murphy, 2012, chapter 13], [Hastie et al., 2005, chapter 3.3-8].

References

Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin. The Elements of Statistical Learning: Data Mining, Inference and Prediction, volume 27. Springer, 2005.

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction to Statistical Learning. Springer, 2013. Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

