Machine Learning

B. Supervised Learning: Nonlinear Models B.1. Nearest-Neighbor Models

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science
University of Hildesheim, Germany

Syllabus

Fri. 25.10.
(1) 0 . Introduction
A. Supervised Learning: Linear Models \& Fundamentals

Fri. 1.11. (2) A. 1 Linear Regression
Fri. 8.11.
(3) A. 2 Linear Classification

Fri. 15.11.
(4) A. 3 Regularization

Fri. 22.11.
(5) A. 4 High-dimensional Data
B. Supervised Learning: Nonlinear Models

Fri. 29.11. (6) B. 1 Nearest-Neighbor Models
Fri. 6.12. (7) B. 2 Neural Networks
Fri. 13.12. (8) B. 3 Decision Trees
Fri. 20.12. (9) B. 4 Support Vector Machines

- Christmas Break -

Fri. 10.1. (10) B. 5 A First Look at Bayesian and Markov Networks
C. Unsupervised Learning

Fri. 17.1. (11) C. 1 Clustering
Fri. 24.1. (12) C. 2 Dimensionality Reduction
Fri. 31.1. (13) C. 3 Frequent Pattern Mining
Fri. 7.2. (14) Q\&A

Outline

1. Distance Measures
2. K-Nearest Neighbor Models
3. Scalable Nearest Neighbor

Outline

1. Distance Measures

2. K-Nearest Neighbor Models

3. Scalable Nearest Neighbor

Motivation

So far, regression and classification methods covered in the lecture can be used for

- numerical variables,
- binary variables (re-interpreted as numerical), and
- nominal variables (coded as set of binary indicator variables). often called scalar variables.

Often one is also interested in more complex variables such as

- set-valued variables,
- sequence-valued variables (e.g., strings),
often called structured variables or complex variables.
Note: A complex variable in this sense has nothing to do with complex numbers.

Motivation

There are two kinds of approaches to deal with complex variables:
I. feature extraction

1. derive binary or numerical variables,

- manually: feature engineering
- automatically: end-to-end learning

2. then use standard methods on the feature vectors.
II. kernel methods
3. establish a distance measure between two values,

- manually.
- automatically: metric learning

2. then use methods that use only distances between objects (but no feature vectors).

Distance measures

Let d be a distance measure (also called metric) on a set \mathcal{X}, i.e.,

$$
d: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}
$$

with

1. d is positive definite: $d(x, y) \geq 0$ and $d(x, y)=0 \Leftrightarrow x=y$
2. d is symmetric: $d(x, y)=d(y, x)$
3. d is subadditive: $d(x, z) \leq d(x, y)+d(y, z)$
(triangle inequality)
(for all $x, y, z \in \mathcal{X}$.)
Example: Euclidean metric on $\mathcal{X}:=\mathbb{R}^{N}$:

$$
d(x, y):=\left(\sum_{n=1}^{N}\left(x_{n}-y_{n}\right)^{2}\right)^{\frac{1}{2}}
$$

Minkowski Metric / L_{p} metric

 Minkowski Metric / L_{p} metric on $\mathcal{X}:=\mathbb{R}^{N}$:with $p \in \mathbb{R}, p \geq 1$.

$$
d(x, y):=\left(\sum_{n=1}^{N}\left|x_{n}-y_{n}\right|^{p}\right)^{\frac{1}{p}}
$$

$p=1$ (taxicab distance; Manhattan distance):

$$
d(x, y):=\sum_{n=1}^{N}\left|x_{n}-y_{n}\right|
$$

$p=2$ (euclidean distance):

$$
d(x, y):=\left(\sum_{n=1}^{N}\left(x_{n}-y_{n}\right)^{2}\right)^{\frac{1}{2}}
$$

$p=\infty$ (maximum distance; Chebyshev distance):

$$
d(x, y):=\max _{n=1}^{N}\left|x_{n}-y_{n}\right|
$$

Minkowski Metric / L_{p} metric / Example

Example:

$$
\begin{aligned}
& d_{L_{1}}(x, y)=|1-2|+|3-4|+|4-1|=1+1+3=5 \\
& d_{L_{2}}(x, y)=\sqrt{(1-2)^{2}+(3-4)^{2}+(4-1)^{2}}=\sqrt{1+1+9}=\sqrt{11} \approx 3.32
\end{aligned}
$$

$$
d_{L_{\infty}}(x, y)=\max \{|1-2|,|3-4|,|4-1|\}=\max \{1,1,3\}=3
$$

Different Metrics, Different Decisions

- data: three points:

$$
\binom{0.1}{2.8},\binom{1}{2},\binom{1.9}{1.9}
$$

- query: which is closest to the origin $\binom{0}{0}$?

metric	$\binom{0.1}{2.8}$	$\binom{1}{2}$	$\binom{1.9}{1.9}$
L_{1}	2.9	3	3.8
L_{2}	$\sqrt{7.94}$	$\sqrt{5}$	$\sqrt{7.22}$
L_{∞}	2.8	2	1.9

Similarity measures

Instead of a distance measure sometimes similarity measures are used, i.e.,

$$
\operatorname{sim}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}_{0}^{+}
$$

with

- sim is symmetric: $\operatorname{sim}(x, y)=\operatorname{sim}(y, x)$.

Some similarity measures have stronger properties:

- sim is discerning: $\operatorname{sim}(x, y) \leq 1$ and $\operatorname{sim}(x, y)=1 \Leftrightarrow x=y$
- $\operatorname{sim}(x, z) \geq \operatorname{sim}(x, y)+\operatorname{sim}(y, z)-1$.

Some similarity measures have values in $[-1,1]$ or even \mathbb{R} where negative values denote "dissimilarity".

Distance vs. Similarity measures

- discerning similarity measure \rightsquigarrow semi-metric: (pos. def. \& symmetric, but not necessarily subadditive)

$$
d(x, y):=1-\operatorname{sim}(x, y)
$$

- metric \rightsquigarrow discerning similarity measure: (with values possibly in] $-\infty, 1$])

$$
\operatorname{sim}(x, y):=1-d(x, y)
$$

Cosine Similarity

The angle between two vectors in \mathbb{R}^{N} can be used as distance measure

$$
d(x, y):=\operatorname{angle}(x, y):=\arccos \left(\frac{\langle x, y\rangle}{\|x\|_{2}\|y\|_{2}}\right)
$$

To avoid the arccos, often the cosine of the angle is used as similarity measure (cosine similarity):

$$
\operatorname{sim}(x, y):=\cos \operatorname{angle}(x, y):=\frac{\langle x, y\rangle}{\|x\|_{2}\|y\|_{2}}
$$

Example:

$$
\begin{gathered}
x:=\left(\begin{array}{l}
1 \\
3 \\
4
\end{array}\right), \quad y:=\left(\begin{array}{l}
2 \\
4 \\
1
\end{array}\right) \\
\operatorname{sim}(x, y)=\frac{1 \cdot 2+3 \cdot 4+4 \cdot 1}{\sqrt{1+9+16} \sqrt{4+16+1}}=\frac{18}{\sqrt{26} \sqrt{21}} \approx 0.77
\end{gathered}
$$

Distances for Nominal Variables

1. Binary variables:

- there is only one reasonable distance measure:

$$
d(x, y):=1-\mathbb{I}(x=y) \quad \text { with } \mathbb{I}(x=y):= \begin{cases}1 & \text { if } x=y \\ 0 & \text { otherwise }\end{cases}
$$

- This coincides with
- $L_{\infty}, \frac{1}{2} L_{1}$ and $\frac{1}{\sqrt{2}} L_{2}$ distance
for the indicator/dummy variables.

2. Nominal variables (with more than two possible values):

- The same distance measure is useful.

3. Hierarchical variables

(i.e., a nominal variable with levels arranged in a hierarchy)

- there are more advanced distance measures (not covered here).

Distances for Set-valued Variables

- set-valued variables: values are subsets of a set A
- Hamming distance: the number of elements contained in only one of the two sets.

$$
d(x, y):=|(x \backslash y) \cup(y \backslash x)|=d_{L_{1}}\left(\mathbb{I}_{A}(x)-\mathbb{I}_{A}(y)\right)
$$

- Example:

$$
d(\{a, e, p, l\},\{a, b, n\})=5, \quad d(\{a, e, p, l\},\{a, e, g, n, o, r\})=6
$$

- Jaccard coefficient (similarity measure): the ratio of common elements over unique elements.
- Example:

$$
\operatorname{sim}(x, y):=\frac{|x \cap y|}{|x \cup y|}
$$

$$
\begin{aligned}
& \operatorname{sim}(\{a, e, p, l\},\{a, b, n\})=\frac{1}{6}, \quad \operatorname{sim}(\{a, e, p, l\},\{a, e, g, n, o, r\})=\frac{2}{8} \\
& \text { Note: } \mathbb{I}_{A}(x):=\left(\mathbb{I}(a \in x)_{a \in A}\right) \text { indicator } / \text { one-hot encoding. }
\end{aligned}
$$

Distances for Strings / Sequences

 edit distance / Levenshtein distance:$$
\begin{aligned}
d(x, y):=\text { minimal } & \text { number of single character } \\
& \text { - deletions } \\
& \text { - insertions or } \\
& \text { - substitutions } \\
& \text { to transform } x \text { in } y
\end{aligned}
$$

Examples:

$$
\begin{aligned}
d(\text { man }, \text { men }) & = \\
d(\text { house }, \text { spouse }) & =
\end{aligned}
$$

$d($ order, express order $)=$

Distances for Strings / Sequences

 edit distance / Levenshtein distance:$$
\begin{aligned}
d(x, y):=\text { minimal } & \text { number of single character } \\
& \text { - deletions } \\
& \text { - insertions or } \\
& \text { - substitutions } \\
& \text { to transform } x \text { in } y
\end{aligned}
$$

Examples:

$$
\begin{aligned}
d(\text { man }, \text { men }) & =1 \\
d(\text { house }, \text { spouse }) & =2
\end{aligned}
$$

$d($ order, express order $)=8$

Distances for Strings / Sequences

The edit distance is computed recursively:

$$
\begin{aligned}
& d\left(x_{1: i}, y_{1: j}\right)=\min \left\{d\left(x_{1: i-1}, y_{1: j}\right)+1,\right. \\
& d\left(x_{1: i}, y_{1: j-1}\right)+1, \\
& \left.d\left(x_{1: i-1}, y_{1: j-1}\right)+I\left(x_{i} \neq y_{j}\right)\right\} \\
& \text { \# delete } x_{i}, x_{1: i-1} \rightsquigarrow y_{1: j} \\
& \# x_{1: i} \rightsquigarrow y_{1: j-1} \text {, insert } y_{j} \\
& \# x_{1: i-1} \rightsquigarrow y_{1: j-1} \text {, } \\
& \text { substitute } y_{j} \text { for } x_{i}
\end{aligned}
$$

starting from

$$
\begin{array}{lll}
d\left(x_{1: 0}, y_{1: j}\right)=d\left(\emptyset, y_{1: j}\right):= & \text { \# insert } y_{1}, \ldots, y_{j} \\
d\left(x_{1: i}, y_{1: 0}\right)=d\left(x_{1: i}, \emptyset\right):= & \text { \# delete } x_{1}, \ldots, x_{i}
\end{array}
$$

Such a recursive computing scheme is called dynamic programming.

Note: $x_{1: i}:=\left(x_{i^{\prime}}\right)_{i^{\prime}=1, \ldots, i}=\left(x_{1}, x_{2}, \ldots, x_{i}\right), \quad i \in \mathbb{N}$.

Distances for Strings / Sequences

Example: compute d (excused, exhausted).

		e	x	c	u	s	e	d
	0	1	2	3	4	5	6	7
e	1							
x	2							
h	3							
a	4							
u	5							
s	6							
t	7							
e	8							
d	9							

Distances for Strings / Sequences

Example: compute d (excused, exhausted).

		e	x	c	u	s	e	d
	0	1	2	3	4	5	6	7
e	1	0	1	2	3	4	5	6
x	2	1	0	1	2	3	4	5
h	3	2	1	1	2	3	4	5
a	4	3	2	2	2	3	4	5
u	5	4	3	3	2	3	4	5
s	6	5	4	4	3	2	3	4
t	7	6	5	5	4	3	3	4
e	8	7	6	6	5	4	3	4
d	9	8	7	7	6	5	4	3

The Levenshtein distance is the last entry of the matrix.

Outline

1. Distance Measures

2. K-Nearest Neighbor Models

3. Scalable Nearest Neighbor

Neighborhoods

Let d be a distance measure.
For a dataset

$$
D \subseteq X \times Y
$$

and $x \in \mathcal{X}$ let

$$
D=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}
$$

be an enumeration with increasing distance to x, i.e.,

$$
d\left(x, x_{n}\right) \leq d\left(x, x_{n+1}\right), \quad n=1, \ldots, N
$$

(ties broken arbitrarily).
The first $K \in \mathbb{N}$ points of such an enumeration, i.e.,

$$
C_{K}(x):=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\left(x_{K}, y_{K}\right)\right\}
$$

are called a K-neighborhood of $x($ in $D)$.

Nearest Neighbor Regression and Classification Models

 The K-nearest neighbor regressor$$
\hat{y}(x):=\frac{1}{K} \sum_{\left(x^{\prime}, y^{\prime}\right) \in C_{K}(x)} y^{\prime}
$$

The K-nearest neighbor classifier

$$
\hat{p}(Y=y \mid x):=\frac{1}{K} \sum_{\left(x^{\prime}, y^{\prime}\right) \in C_{K}(x)} \mathbb{I}\left(y=y^{\prime}\right)
$$

and then predict the class with maximal predicted probability

$$
\hat{y}(x):=\underset{y \in \mathcal{Y}}{\arg \max } \hat{p}(Y=y \mid x)
$$

i.e., the majority class in the neighborhood.

Nearest Neighbor Regression Algorithm

${ }^{1}$ predict-knn-reg $\left(q \in \mathbb{R}^{M}, \mathcal{D}^{\text {train }}:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\} \in \mathbb{R}^{M} \times \mathbb{R}, K \in \mathbb{N}, d\right)$: allocate array D of size N
for $n:=1: N$:
$D_{n}:=d\left(q, x_{n}\right)$
$C:=\operatorname{argmin}-\mathbf{k}(D, K)$
$\hat{y}:=\frac{1}{K} \sum_{k=1}^{K} y_{C_{k}}$
return \hat{y}

Nearest Neighbor Classification Algorithm

```
predict-knn-class \(\left(q \in \mathbb{R}^{M}, \mathcal{D}^{\text {train }}:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\} \in \mathbb{R}^{M} \times \mathcal{Y}, K \in \mathbb{N}, d\right)\) :
    allocate array \(D\) of size \(N\)
    for \(n:=1: N\) :
        \(D_{n}:=d\left(q, x_{n}\right)\)
    \(C:=\operatorname{argmin}-\mathbf{k}(D, K)\)
    allocate array \(\hat{p}\) of size \(|\mathcal{Y}|\)
    for \(k:=1: K\) :
        \(\hat{p}_{C_{k}}:=\hat{p}_{C_{k}}+1 / K\)
    return \(\hat{p}\)
```


Compute the argmin

```
\(\operatorname{argmin}-\mathbf{k}\left(x \in \mathbb{R}^{N}, K \in \mathbb{N}\right):\)
    allocate array \(T\) of size \(K\)
    for \(n=1: \min (K, N)\) :
        insert-bottomk \(\left(T_{1: n}, n, \pi_{x}, 1\right)\)
    for \(n=K+1: N\) :
        if \(x_{n}<x_{T_{K}}\) :
        insert-bottomk \(\left(T, n, \pi_{x}, 0\right)\)
    return \(T\)
insert-bottomk \(\left(T \in \mathcal{X}^{K}, n \in \mathcal{X}, \pi: \mathcal{X} \rightarrow \mathbb{R}, s \in \mathbb{N}\right):\)
    \(k:=\) find-sorted \(\left(T_{1: K-s}, n, \pi\right)\)
    for \(I:=K: k+1\) decreasing:
        \(T_{l}:=T_{l-1}\)
    \(T_{k+1}:=n\)
```

Note: $\pi_{x}(n):=x_{n}$ comparison by x-values. Here, $\mathcal{X}:=\mathbb{N}$.

Compute the argmin / find (naive)

find-sorted-linear $\left(x \in \mathcal{X}^{K}, z \in \mathcal{X}, \pi: X \rightarrow \mathbb{R}\right)$:
$k:=K$
while $k>0$ and $\pi(z)<\pi\left(x_{k}\right)$:
$k:=k-1$
return k

- requires
- x is sorted (increasingly w.r.t. π)
- returns smallest index k with $\pi\left(x_{k}\right) \leq \pi(z)$
- 0 , if $\pi(z)<\pi\left(x_{1}\right)$

Note: Esp. for larger K it is better to use binary search.

Decision Boundaries

For 1-nearest neighbor, the predictor space is partitioned in regions of points that are closest to a given data point:

$$
\operatorname{region}_{D}\left(x_{1}\right), \text { region }_{D}\left(x_{2}\right), \ldots, \text { region }_{D}\left(x_{N}\right)
$$

with

$$
\operatorname{region}_{D}(x):=\left\{x^{\prime} \in \mathcal{X} \mid d\left(x^{\prime}, x\right) \leq d\left(x^{\prime}, x^{\prime \prime}\right) \quad \forall\left(x^{\prime \prime}, y^{\prime \prime}\right) \in D\right\}
$$

These regions often are called cells, the whole partition a Voronoi tesselation.

Decision Boundaries

Decision Boundaries

Outline

1. Distance Measures

2. K-Nearest Neighbor Models

3. Scalable Nearest Neighbor

Complexity of K-Nearest Neighbor Classifier

The K-Nearest Neighbor classifier needs no learning algorithm

- just stores all the training examples.

But predicting is slow:

- To predict the class of a new point x, the distance $d\left(x, x_{n}\right)$ from x to each of the N training examples $\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)$
has to be computed.
- For a predictor space $\mathcal{X}:=\mathbb{R}^{M}$, each such computation needs $O(M)$ operations.
- We then keep track of the K points with the smallest distance.

In total one needs $O(N M+N K)$ operations.

Partial Distances / Lower Bounding

In practice, nearest neighbor classifiers often can be accelerated by several methods.

Partial distances / lower bounding:

- Compute the distance to each training point x^{\prime} only partially, e.g.,

$$
d_{r}\left(x, x^{\prime}\right):=\left(\sum_{m=1}^{r}\left(x_{m}-x_{m}^{\prime}\right)^{2}\right)^{\frac{1}{2}}, \quad r \leq M
$$

- As d_{r} is non-decreasing in r, once $d_{r}\left(x, x^{\prime}\right)$ exceeds the K-th smallest distance computed so far, the training point x^{\prime} can be dropped.
- This is a heuristic (w.r.t. scalability):
- it may accelerate computations
- but it also may slow it down (as there are additional comparisons of the partial distances with the K smallest distance).

Nearest Neighbor Classification Algorithm

predict-knn-reg $\left(q \in \mathbb{R}^{M}, \mathcal{D}^{\text {train }}:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\} \in \mathbb{R}^{M} \times \mathbb{R}, K \in \mathbb{N}, d\right)$: allocate array D of size N
for $n:=1: N$:
$D_{n}:=d\left(q, x_{n}\right)$
$C:=\operatorname{argmin}-\mathbf{k}(D, K)$
$\hat{y}:=\frac{1}{K} \sum_{k=1}^{K} y c_{k}$
return \hat{y}

$$
\text { for } n:=1: N \text { : }
$$

$$
D_{n}:=d\left(q, x_{n}\right)
$$

$C:=\operatorname{argmin}-\mathbf{k}(D, K)$
$\hat{y}:=\frac{1}{K} \sum_{k=1}^{K} y c_{k}$
return \hat{y}
predict-knn-reg $\left(q \in \mathbb{R}^{M}, \mathcal{D}^{\text {train }}:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\} \in \mathbb{R}^{M} \times \mathbb{R}, K \in \mathbb{N}, d\right)$:
$C:=\pi_{1}\left(\operatorname{ARGCLOS}-K\left(q, x_{1}, x_{2}, \ldots, x_{N}, K\right)\right)$
$\hat{y}:=\frac{1}{K} \sum_{k=1}^{K} y c_{k}$
return \hat{y}
$\operatorname{argclos-k}\left(q \in \mathbb{R}^{M}, x_{1}, \ldots, x_{N} \in \mathbb{R}^{M}, K \in \mathbb{N}\right)$:
allocate array D of size N
for $n:=1: N$:
$D_{n}:=d\left(q, x_{n}\right)$
$C:=\operatorname{argmin}-\mathbf{k}(D, K)$
return $\left\{\left(C_{k}, D_{C_{k}}\right) \mid k=1: K\right\}$

Find Neighbors / Without Lower Bounding

$\operatorname{argclos-k}\left(q \in \mathbb{R}^{M}, x_{1}, \ldots, x_{N} \in \mathbb{R}^{M}, K \in \mathbb{N}\right)$:
allocate array T of size K for pairs $\mathbb{N} \times \mathbb{R}$
for $n=1: \min (K, N)$:
$d:=\sum_{m=1}^{M}\left(q_{m}-x_{n, m}\right)^{2}$
insert-bottomk($\left.T,(n, d), \pi_{2}, 1\right)$
for $n=K+1: N$:
$d:=\sum_{m=1}^{M}\left(q_{m}-x_{n, m}\right)^{2}$
if $d<\pi_{2}\left(T_{K}\right)$:
insert-bottomk($\left.T,(n, d), \pi_{2}, 0\right)$
return T

Note: ARGCLOS-K returns the K points closest to q and their distances. $\pi_{2}(n, d):=d$ comparison by second component (distance).

Find Neighbors / Without Lower Bounding

```
argclos-k(q\in\mp@subsup{\mathbb{R}}{}{M},\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{N}{}\in\mp@subsup{\mathbb{R}}{}{M},K\in\mathbb{N}):
```

 allocate array \(T\) of size \(K\) for pairs \(\mathbb{N} \times \mathbb{R}\)
 for \(n=1: \min (K, N)\) :
 \(d:=\sum_{m=1}^{M}\left(q_{m}-x_{n, m}\right)^{2}\)
 insert-bottomk \(\left(T,(n, d), \pi_{2}, 1\right)\)
 for \(n=K+1: N\) :
 \(d:=0\)
 \(m:=1\)
 while \(m \leq M\) :
 \(d:=d+\left(q_{m}-x_{n, m}\right)^{2}\)
 \(m:=m+1\)
 if \(d<\pi_{2}\left(T_{K}\right)\) :
 insert-bottomk(\(\left.T,(n, d), \pi_{2}, 0\right)\)
 return \(T\)

Find Neighbors / With Lower Bounding

```
argclos-k(q\in\mp@subsup{\mathbb{R}}{}{M},\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{N}{}\in\mp@subsup{\mathbb{R}}{}{M},K\in\mathbb{N}):
```

 allocate array \(T\) of size \(K\) for pairs \(\mathbb{N} \times \mathbb{R}\)
 for \(n=1: \min (K, N)\) :
 \(d:=\sum_{m=1}^{M}\left(q_{m}-x_{n, m}\right)^{2}\)
 insert-bottomk \(\left(T,(n, d), \pi_{2}, 1\right)\)
 for \(n=K+1: N\) :
 \(d:=0\)
 \(m:=1\)
 while \(m \leq M\) and \(d<\pi_{2}\left(T_{K}\right)\) :
 \(d:=d+\left(q_{m}-x_{n, m}\right)^{2}\)
 \(m:=m+1\)
 if \(d<\pi_{2}\left(T_{K}\right)\) :
 insert-bottomk \(\left(T,(n, d), \pi_{2}, 0\right)\)
 return \(T\)
 Note: ARGCLOS-K returns the K points closest to q and their distances. $\pi_{2}(n, d):=d$ comparison by second component (distance).

Search trees

Search trees:

Do not compute the distance of a new point x to all training examples, but

1. organize the training examples as a tree (or a DAG) with

- sets of training examples at the leaves and
- a prototype (e.g., the mean of the training examples at all descendent leaves) at each intermediate node.

2. starting at the root, recursively

- compute the distance to all children of the actual node and
- branch to the child with the smallest distance,

3. compute distances only to training examples in the leaf finally found.

This is an approximation.

Search trees

Search trees

Approximate Nearest Neighbor

- for low dimensions, k-d trees (k-dimensional trees) can be used
- only useful for very low dimensions (2d, 3d)
- in computational geometry, computer graphics, computer vision
- for higher dimensions locality-sensitive hashing performs better
- only works with specific distances (Euclidean/L2, L1, Hamming)

Locality-Sensitive Hashing [Datar et al., 2004]

- idea: create a hash key function h that puts
- close instances into the same bin, but
- far instances into different bins.
allowing some errors.
- for $x \in \mathbb{R}^{M}$, the discretized projection on a random line is

$$
\begin{aligned}
& h_{a, b, s}(x):=\left\lfloor\frac{a^{T} x+b}{s}\right\rfloor, \quad a \in \mathbb{R}^{M}, b \in[0, s], s \in \mathbb{R}^{+} \\
& \quad \text { where } a_{m} \sim \mathcal{N}\left(0_{M}, 1\right), b \sim \operatorname{unif}(0, s)
\end{aligned}
$$

- use the concatenation of L such projection keys as hash key

$$
\begin{aligned}
h_{A, b, s}(x) & :=\left(h_{l_{l,,}, b_{l}, s}(x)\right)_{l=1, \ldots, L} \\
& =\left(\left\lfloor\frac{1}{s}(A x+b)_{l}\right\rfloor\right)_{l=1, \ldots, L}, \quad A \in \mathbb{R}^{L \times M}, b \in[0, s]^{L}, s \in \mathbb{R}^{+}
\end{aligned}
$$

- build H such hash maps and test all points found in any of them.

Editing

Editing / Pruning / Condensing:

shrink the set of training data points,
e.g., select a subset of the original training data points.

Example: remove all points with cells that are surrounded by cells of points of the same class.

$$
X_{\text {edited }}:=\left\{(x, y) \in X \mid \exists\left(x^{\prime}, y^{\prime}\right) \in X, R\left(x^{\prime}\right) \cap R(x) \neq \emptyset \text { and } y^{\prime} \neq y\right\}
$$

This basic editing algorithm

- retains the decision function,
- has complexity $O\left(M^{3} N^{\left\lfloor\frac{M}{2}\right\rfloor} \log N\right)$

$$
\text { (with }\lfloor x\rfloor:=\max \{n \in \mathbb{N} \mid n \leq x\} \text {; Duda et al. 2001, p. 186). }
$$

See e.g., Ottmann/Widmayer 2002, p. 501-515 for computing Voronoi diagrams in two dimensions.

Editing

knn-edit-training-data $\left(\mathcal{D}^{\text {train }} \subseteq \mathbb{R}^{M} \times \mathcal{Y}\right)$:
compute Voronoi cells $R(x)$ for all $(x, y) \in \mathcal{D}^{\text {train }}$,
esp. Voronoi neighbors $N(x):=\left\{\left(x^{\prime}, y^{\prime}\right) \in \mathcal{D}^{\text {train }} \mid R(x) \cap R\left(x^{\prime}\right) \neq \emptyset\right\}$ $E:=\emptyset$
for $(x, y) \in \mathcal{D}^{\text {train }}$:
hasNeighborOfOtherClass := false
for $\left(x^{\prime}, y^{\prime}\right) \in N(x)$:
if $y \neq y^{\prime}$:
hasNeighborOfOtherClass := true
if not hasNeighborOfOtherClass:
$E:=E \cup\{(x, y)\}$
return $\mathcal{D}^{\text {train }} \backslash E$

Editing

Editing

Summary

- Models for complex data instances can be built by
- feature extraction and using vector-based models or
- designing distances / similarities and using distance-based / kernel models
- Simple classification and regression models can be built by
- averaging over target values (regression)
- counting the occurrences of the target class (classification) of training instances close by (measured in some distance measure).
- The nearest neighbor takes always a fixed number K of nearest points into account.
- Alternatively, one also could weight points with some similarity measure (called kernel or Parzen window), \rightsquigarrow this model is called kernel regression and kernel classification.
- There are no learning algorithms for these models, as simply all training instances are stored ("memory-based methods").

Summary (2/2)

- To compute predictions is more costly than for say linear models.
- There are several acceleration techniques:
- partial distances / lower bounding
- search trees / locality-sensitive hashing
- editing

Further Readings

- [Hastie et al., 2005, chapter 13.3, 2.3.2], [Murphy, 2012, chapter 1.4.2, 14.1+2+4], [James et al., 2013, chapter 2.2.3,].

References

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive hashing scheme based on p-stable distributions. In Proceedings of the Twentieth Annual Symposium on Computational Geometry, pages 253-262. ACM, 2004.

Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin. The Elements of Statistical Learning: Data Mining, Inference and Prediction, volume 27. Springer, 2005.

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction to Statistical Learning. Springer, 2013.
Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

