
Machine Learning

Machine Learning
B. Supervised Learning: Nonlinear Models

B.1. Nearest-Neighbor Models

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science

University of Hildesheim, Germany

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 35

Machine Learning

Syllabus
Fri. 25.10. (1) 0. Introduction

A. Supervised Learning: Linear Models & Fundamentals
Fri. 1.11. (2) A.1 Linear Regression
Fri. 8.11. (3) A.2 Linear Classification
Fri. 15.11. (4) A.3 Regularization
Fri. 22.11. (5) A.4 High-dimensional Data

B. Supervised Learning: Nonlinear Models
Fri. 29.11. (6) B.1 Nearest-Neighbor Models
Fri. 6.12. (7) B.2 Neural Networks
Fri. 13.12. (8) B.3 Decision Trees
Fri. 20.12. (9) B.4 Support Vector Machines

— Christmas Break —
Fri. 10.1. (10) B.5 A First Look at Bayesian and Markov Networks

C. Unsupervised Learning
Fri. 17.1. (11) C.1 Clustering
Fri. 24.1. (12) C.2 Dimensionality Reduction
Fri. 31.1. (13) C.3 Frequent Pattern Mining
Fri. 7.2. (14) Q&A

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 35

Machine Learning

Outline

1. Distance Measures

2. K -Nearest Neighbor Models

3. Scalable Nearest Neighbor

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 35

Machine Learning 1. Distance Measures

Outline

1. Distance Measures

2. K -Nearest Neighbor Models

3. Scalable Nearest Neighbor

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 35

Machine Learning 1. Distance Measures

Motivation

So far, regression and classification methods covered in the lecture can be
used for

I numerical variables,

I binary variables (re-interpreted as numerical), and

I nominal variables (coded as set of binary indicator variables).

often called scalar variables.

Often one is also interested in more complex variables such as

I set-valued variables,

I sequence-valued variables (e.g., strings),

I . . .

often called structured variables or complex variables.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 35

Note: A complex variable in this sense has nothing to do with complex numbers.

Machine Learning 1. Distance Measures

Motivation

There are two kinds of approaches to deal with complex variables:

I. feature extraction
1. derive binary or numerical variables,

I manually: feature engineering

I automatically: end-to-end learning

2. then use standard methods on the feature vectors.

II. kernel methods
1. establish a distance measure between two values,

I manually.

I automatically: metric learning

2. then use methods that use only distances between objects
(but no feature vectors).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 35

Machine Learning 1. Distance Measures

Distance measures
Let d be a distance measure (also called metric) on a set X , i.e.,

d : X ×X → R

with

1. d is positive definite: d(x , y) ≥ 0 and d(x , y) = 0⇔ x = y

2. d is symmetric: d(x , y) = d(y , x)

3. d is subadditive: d(x , z) ≤ d(x , y) + d(y , z)
(triangle inequality)

(for all x , y , z ∈ X .)

Example: Euclidean metric on X := RN :

d(x , y) := (
N∑

n=1

(xn − yn)2)
1
2

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

3 / 35

Machine Learning 1. Distance Measures

Minkowski Metric / Lp metric
Minkowski Metric / Lp metric on X := RN :

d(x , y) := (
N∑

n=1

|xn − yn|p)
1
p

with p ∈ R, p ≥ 1.

p = 1 (taxicab distance; Manhattan distance):

d(x , y) :=
N∑

n=1

|xn − yn|

p = 2 (euclidean distance):

d(x , y) := (
N∑

n=1

(xn − yn)2)
1
2

p =∞ (maximum distance; Chebyshev distance):

d(x , y) :=
N

max
n=1
|xn − yn|

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

4 / 35

Machine Learning 1. Distance Measures

Minkowski Metric / Lp metric / Example

Example:

x :=

 1
3
4

 , y :=

 2
4
1



dL1(x , y) =|1− 2|+ |3− 4|+ |4− 1| = 1 + 1 + 3 = 5

dL2(x , y) =
√

(1− 2)2 + (3− 4)2 + (4− 1)2 =
√

1 + 1 + 9 =
√

11 ≈ 3.32

dL∞(x , y) = max{|1− 2|, |3− 4|, |4− 1|} = max{1, 1, 3} = 3

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

5 / 35

Machine Learning 1. Distance Measures

Different Metrics, Different Decisions

I data: three points: (
0.1
2.8

)
,

(
1
2

)
,

(
1.9
1.9

)

I query: which is closest to the origin

(
0
0

)
?

metric

(
0.1
2.8

) (
1
2

) (
1.9
1.9

)
L1 2.9 3 3.8

L2
√

7.94
√

5
√

7.22
L∞ 2.8 2 1.9

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

6 / 35

Machine Learning 1. Distance Measures

Similarity measures

Instead of a distance measure sometimes similarity measures are used,
i.e.,

sim : X ×X → R+
0

with

I sim is symmetric: sim(x , y) = sim(y , x).

Some similarity measures have stronger properties:

I sim is discerning: sim(x , y) ≤ 1 and sim(x , y) = 1⇔ x = y

I sim(x , z) ≥ sim(x , y) + sim(y , z)− 1.

Some similarity measures have values in [−1, 1] or even R
where negative values denote “dissimilarity”.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

7 / 35

Machine Learning 1. Distance Measures

Distance vs. Similarity measures

I discerning similarity measure semi-metric:
(pos. def. & symmetric, but not necessarily subadditive)

d(x , y) := 1− sim(x , y)

I metric discerning similarity measure:
(with values possibly in]−∞, 1])

sim(x , y) := 1− d(x , y)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

8 / 35

Machine Learning 1. Distance Measures

Cosine Similarity
The angle between two vectors in RN can be used as distance measure

d(x , y) := angle(x , y) := arccos(
〈x , y〉

||x ||2 ||y ||2
)

To avoid the arccos, often the cosine of the angle is used as similarity
measure (cosine similarity):

sim(x , y) := cos angle(x , y) :=
〈x , y〉

||x ||2 ||y ||2

Example:

x :=

 1
3
4

 , y :=

 2
4
1



sim(x , y) =
1 · 2 + 3 · 4 + 4 · 1√

1 + 9 + 16
√

4 + 16 + 1
=

18√
26
√

21
≈ 0.77

cosine similarity is not discerning as vectors with the same direction but of
arbitrary length have angle 0 and thus similarity 1.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

9 / 35

Machine Learning 1. Distance Measures

Distances for Nominal Variables
1. Binary variables:

I there is only one reasonable distance measure:

d(x , y) := 1− I(x = y) with I(x = y) :=

{
1 if x = y
0 otherwise

I This coincides with
I L∞, 1

2L1 and 1√
2
L2 distance

for the indicator/dummy variables.

2. Nominal variables (with more than two possible values):

I The same distance measure is useful.

3. Hierarchical variables
(i.e., a nominal variable with levels arranged in a hierarchy)

I there are more advanced distance measures (not covered here).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

10 / 35

Machine Learning 1. Distance Measures

Distances for Set-valued Variables

I set-valued variables: values are subsets of a set A
I Hamming distance:

the number of elements contained in only one of the two sets.

d(x , y) := |(x \ y) ∪ (y \ x)| = dL1(IA(x)− IA(y))

I Example:

d({a, e, p, l}, {a, b, n}) = 5, d({a, e, p, l}, {a, e, g , n, o, r}) = 6

I Jaccard coefficient (similarity measure):
the ratio of common elements over unique elements.

sim(x , y) :=
|x ∩ y |
|x ∪ y |I Example:

sim({a, e, p, l}, {a, b, n}) =
1

6
, sim({a, e, p, l}, {a, e, g , n, o, r}) =

2

8

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

11 / 35

Note: IA(x) := (I(a ∈ x)a∈A) indicator / one-hot encoding.

Machine Learning 1. Distance Measures

Distances for Strings / Sequences
edit distance / Levenshtein distance:

d(x , y) := minimal number of single character
– deletions
– insertions or
– substitutions

to transform x in y

Examples:

d(man,men) =

1

d(house, spouse) =

2

d(order, express order) =

8

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

12 / 35

Machine Learning 1. Distance Measures

Distances for Strings / Sequences
edit distance / Levenshtein distance:

d(x , y) := minimal number of single character
– deletions
– insertions or
– substitutions

to transform x in y

Examples:

d(man,men) =1

d(house, spouse) =2

d(order, express order) =8

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

12 / 35

Machine Learning 1. Distance Measures

Distances for Strings / Sequences

The edit distance is computed recursively:

d(x1:i , y1:j) = min{ d(x1:i−1, y1:j) + 1, # delete xi , x1:i−1 y1:j

d(x1:i , y1:j−1) + 1, # x1:i y1:j−1, insert yj

d(x1:i−1, y1:j−1) + I (xi 6= yj)} # x1:i−1 y1:j−1,

substitute yj for xi

starting from

d(x1:0, y1:j) = d(∅, y1:j) := j # insert y1, . . . , yj

d(x1:i , y1:0) = d(x1:i , ∅) := i # delete x1, . . . , xi

Such a recursive computing scheme is called dynamic programming.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

13 / 35

Note: x1:i := (xi′)i′=1,...,i = (x1, x2, . . . , xi), i ∈ N.

Machine Learning 1. Distance Measures

Distances for Strings / Sequences

Example: compute d(excused, exhausted).

e x c u s e d

0 1 2 3 4 5 6 7
e 1
x 2
h 3
a 4
u 5
s 6
t 7
e 8
d 9

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

14 / 35

Machine Learning 1. Distance Measures

Distances for Strings / Sequences

Example: compute d(excused, exhausted).

e x c u s e d

0 1 2 3 4 5 6 7
e 1 0 1 2 3 4 5 6
x 2 1 0 1 2 3 4 5
h 3 2 1 1 2 3 4 5
a 4 3 2 2 2 3 4 5
u 5 4 3 3 2 3 4 5
s 6 5 4 4 3 2 3 4
t 7 6 5 5 4 3 3 4
e 8 7 6 6 5 4 3 4
d 9 8 7 7 6 5 4 3

The Levenshtein distance is the last entry of the matrix.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

14 / 35

Machine Learning 2. K -Nearest Neighbor Models

Outline

1. Distance Measures

2. K -Nearest Neighbor Models

3. Scalable Nearest Neighbor

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

15 / 35

Machine Learning 2. K -Nearest Neighbor Models

Neighborhoods

Let d be a distance measure.
For a dataset

D ⊆ X × Y

and x ∈ X let
D = {(x1, y1), (x2, y2), . . . , (xN , yN)}

be an enumeration with increasing distance to x , i.e.,

d(x , xn) ≤ d(x , xn+1), n = 1, . . . ,N

(ties broken arbitrarily).
The first K ∈ N points of such an enumeration, i.e.,

CK (x) := {(x1, y1), (x2, y2), . . . (xK , yK)}

are called a K -neighborhood of x (in D).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

15 / 35

Machine Learning 2. K -Nearest Neighbor Models

Nearest Neighbor Regression and Classification Models
The K -nearest neighbor regressor

ŷ(x) :=
1

K

∑
(x ′,y ′)∈CK (x)

y ′

The K -nearest neighbor classifier

p̂(Y = y | x) :=
1

K

∑
(x ′,y ′)∈CK (x)

I(y = y ′)

and then predict the class with maximal predicted probability

ŷ(x) := arg max
y∈Y

p̂(Y = y | x)

i.e., the majority class in the neighborhood.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

16 / 35

Machine Learning 2. K -Nearest Neighbor Models

Nearest Neighbor Regression Algorithm

1 predict-knn-reg(q ∈ RM ,Dtrain := {(x1, y1), . . . , (xN , yN)} ∈ RM × R,K ∈ N, d):
2 allocate array D of size N
3 for n := 1 : N:
4 Dn := d(q, xn)
5 C := argmin-k(D,K)

6 ŷ := 1
K

∑K
k=1 yCk

7 return ŷ

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

17 / 35

Machine Learning 2. K -Nearest Neighbor Models

Nearest Neighbor Classification Algorithm

1 predict-knn-class(q ∈ RM ,Dtrain := {(x1, y1), . . . , (xN , yN)} ∈ RM × Y,K ∈ N, d):
2 allocate array D of size N
3 for n := 1 : N:
4 Dn := d(q, xn)
5 C := argmin-k(D,K)
6 allocate array p̂ of size |Y|
7 for k := 1 : K :
8 p̂Ck

:= p̂Ck
+ 1/K

9 return p̂

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

18 / 35

Machine Learning 2. K -Nearest Neighbor Models

Compute the argmin

1 argmin-k(x ∈ RN ,K ∈ N) :
2 allocate array T of size K
3 for n = 1 : min(K ,N):
4 insert-bottomk(T1:n, n, πx , 1)
5 for n = K + 1 : N:
6 if xn < xTK

:
7 insert-bottomk(T , n, πx , 0)
8 return T
9

10 insert-bottomk(T ∈ XK , n ∈ X , π : X → R, s ∈ N) :
11 k := find-sorted(T1:K−s , n, π)
12 for l := K : k + 1 decreasing:
13 Tl := Tl−1
14 Tk+1 := n

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

19 / 35

Note: πx (n) := xn comparison by x-values. Here, X := N.

Machine Learning 2. K -Nearest Neighbor Models

Compute the argmin / find (naive)

1 find-sorted-linear(x ∈ XK , z ∈ X , π : X → R) :
2 k := K
3 while k > 0 and π(z) < π(xk):
4 k := k − 1
5 return k

I requires
I x is sorted (increasingly w.r.t. π)

I returns smallest index k with π(xk) ≤ π(z)
I 0, if π(z) < π(x1)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

20 / 35

Note: Esp. for larger K it is better to use binary search.

Machine Learning 2. K -Nearest Neighbor Models

Decision Boundaries

For 1-nearest neighbor, the predictor space is partitioned in regions of
points that are closest to a given data point:

regionD(x1), regionD(x2), . . . , regionD(xN)

with

regionD(x) := {x ′ ∈ X | d(x ′, x) ≤ d(x ′, x ′′) ∀(x ′′, y ′′) ∈ D}

These regions often are called cells,
the whole partition a Voronoi tesselation.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

21 / 35

Machine Learning 2. K -Nearest Neighbor Models

Decision Boundaries

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

22 / 35

Machine Learning 2. K -Nearest Neighbor Models

Decision Boundaries

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

22 / 35

Machine Learning 3. Scalable Nearest Neighbor

Outline

1. Distance Measures

2. K -Nearest Neighbor Models

3. Scalable Nearest Neighbor

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

23 / 35

Machine Learning 3. Scalable Nearest Neighbor

Complexity of K -Nearest Neighbor Classifier
The K -Nearest Neighbor classifier needs no learning algorithm

I just stores all the training examples.

But predicting is slow:

I To predict the class of a new point x , the
distance d(x , xn) from x

to each of the N training examples
(x1, y1), . . . , (xN , yN)

has to be computed.

I For a predictor space X := RM , each such computation needs O(M)
operations.

I We then keep track of the K points with the smallest distance.

In total one needs O(NM + NK) operations.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

23 / 35

Machine Learning 3. Scalable Nearest Neighbor

Partial Distances / Lower Bounding
In practice, nearest neighbor classifiers often can be accelerated by several
methods.
Partial distances / lower bounding:

I Compute the distance to each training point x ′ only partially, e.g.,

dr (x , x ′) := (
r∑

m=1

(xm − x ′m)2)
1
2 , r ≤ M

I As dr is non-decreasing in r , once dr (x , x ′) exceeds the K -th smallest
distance computed so far, the training point x ′ can be dropped.

I This is a heuristic (w.r.t. scalability):
I it may accelerate computations

I but it also may slow it down
(as there are additional comparisons of the partial distances with the K
smallest distance).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

24 / 35

Machine Learning 3. Scalable Nearest Neighbor

Nearest Neighbor Classification Algorithm
1 predict-knn-reg(q ∈ RM ,Dtrain := {(x1, y1), . . . , (xN , yN)} ∈ RM × R,K ∈ N, d):
2 allocate array D of size N
3 for n := 1 : N:
4 Dn := d(q, xn)
5 C := argmin-k(D,K)

6 ŷ := 1
K

∑K
k=1 yCk

7 return ŷ

1 predict-knn-reg(q ∈ RM ,Dtrain := {(x1, y1), . . . , (xN , yN)} ∈ RM × R,K ∈ N, d):
2 C := π1(argclos-k(q, x1, x2, . . . , xN ,K))

3 ŷ := 1
K

∑K
k=1 yCk

4 return ŷ
5

6 argclos-k(q ∈ RM , x1, . . . , xN ∈ RM ,K ∈ N) :
7 allocate array D of size N
8 for n := 1 : N:
9 Dn := d(q, xn)

10 C := argmin-k(D,K)
11 return {(Ck ,DCk

) | k = 1 : K}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

25 / 35

Machine Learning 3. Scalable Nearest Neighbor

1 predict-knn-reg(q ∈ RM ,Dtrain := {(x1, y1), . . . , (xN , yN)} ∈ RM × R,K ∈ N, d):
2 allocate array D of size N
3 for n := 1 : N:
4 Dn := d(q, xn)
5 C := argmin-k(D,K)

6 ŷ := 1
K

∑K
k=1 yCk

7 return ŷ

1 predict-knn-reg(q ∈ RM ,Dtrain := {(x1, y1), . . . , (xN , yN)} ∈ RM × R,K ∈ N, d):
2 C := π1(argclos-k(q, x1, x2, . . . , xN ,K))

3 ŷ := 1
K

∑K
k=1 yCk

4 return ŷ
5

6 argclos-k(q ∈ RM , x1, . . . , xN ∈ RM ,K ∈ N) :
7 allocate array D of size N
8 for n := 1 : N:
9 Dn := d(q, xn)

10 C := argmin-k(D,K)
11 return {(Ck ,DCk

) | k = 1 : K}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

25 / 35

Machine Learning 3. Scalable Nearest Neighbor

Find Neighbors / Without Lower Bounding

1 argclos-k(q ∈ RM , x1, . . . , xN ∈ RM ,K ∈ N) :
2 allocate array T of size K for pairs N× R
3 for n = 1 : min(K ,N):

4 d :=
∑M

m=1(qm − xn,m)2

5 insert-bottomk(T , (n, d), π2, 1)
6 for n = K + 1 : N:

7 d :=
∑M

m=1(qm − xn,m)2

8 if d < π2(TK):
9 insert-bottomk(T , (n, d), π2, 0)

10 return T

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

26 / 35

Note: argclos-K returns the K points closest to q and their distances.
π2(n, d) := d comparison by second component (distance).

Machine Learning 3. Scalable Nearest Neighbor

Find Neighbors / Without Lower Bounding

1 argclos-k(q ∈ RM , x1, . . . , xN ∈ RM ,K ∈ N) :
2 allocate array T of size K for pairs N× R
3 for n = 1 : min(K ,N):

4 d :=
∑M

m=1(qm − xn,m)2

5 insert-bottomk(T , (n, d), π2, 1)
6 for n = K + 1 : N:
7 d := 0
8 m := 1
9 while m ≤ M:

10 d := d + (qm − xn,m)2

11 m := m + 1
12 if d < π2(TK):
13 insert-bottomk(T , (n, d), π2, 0)
14 return T

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

26 / 35

Note: argclos-K returns the K points closest to q and their distances.
π2(n, d) := d comparison by second component (distance).

Machine Learning 3. Scalable Nearest Neighbor

Find Neighbors / With Lower Bounding

1 argclos-k(q ∈ RM , x1, . . . , xN ∈ RM ,K ∈ N) :
2 allocate array T of size K for pairs N× R
3 for n = 1 : min(K ,N):

4 d :=
∑M

m=1(qm − xn,m)2

5 insert-bottomk(T , (n, d), π2, 1)
6 for n = K + 1 : N:
7 d := 0
8 m := 1
9 while m ≤ M and d < π2(TK):

10 d := d + (qm − xn,m)2

11 m := m + 1
12 if d < π2(TK):
13 insert-bottomk(T , (n, d), π2, 0)
14 return T

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

26 / 35

Note: argclos-K returns the K points closest to q and their distances.
π2(n, d) := d comparison by second component (distance).

Machine Learning 3. Scalable Nearest Neighbor

Search trees

Search trees:
Do not compute the distance of a new point x to all training examples,
but

1. organize the training examples as a tree (or a DAG) with
I sets of training examples at the leaves and

I a prototype (e.g., the mean of the training examples at all descendent
leaves) at each intermediate node.

2. starting at the root, recursively
I compute the distance to all children of the actual node and

I branch to the child with the smallest distance,

3. compute distances only to training examples in the leaf finally found.

This is an approximation.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

27 / 35

Machine Learning 3. Scalable Nearest Neighbor

Search trees

x2

x1

x2

x1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

28 / 35

Machine Learning 3. Scalable Nearest Neighbor

Search trees

x2

x1

x2

x1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

28 / 35

Machine Learning 3. Scalable Nearest Neighbor

Approximate Nearest Neighbor

I for low dimensions, k-d trees (k-dimensional trees) can be used
I only useful for very low dimensions (2d, 3d)

I in computational geometry, computer graphics, computer vision

I for higher dimensions locality-sensitive hashing performs better
I only works with specific distances (Euclidean/L2, L1, Hamming)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

29 / 35

Machine Learning 3. Scalable Nearest Neighbor

Locality-Sensitive Hashing [Datar et al., 2004]
I idea: create a hash key function h that puts

I close instances into the same bin, but
I far instances into different bins.

allowing some errors.

I for x ∈ RM , the discretized projection on a random line is

ha,b,s(x) :=

⌊
aT x + b

s

⌋
, a ∈ RM , b ∈ [0, s], s ∈ R+

where am ∼ N (0M , 1), b ∼ unif(0, s)

I use the concatenation of L such projection keys as hash key

hA,b,s(x) := (hAl,.,bl ,s(x))l=1,...,L

= (

⌊
1

s
(Ax + b)l

⌋
)l=1,...,L, A ∈ RL×M , b ∈ [0, s]L, s ∈ R+

I build H such hash maps and test all points found in any of them.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

30 / 35

Machine Learning 3. Scalable Nearest Neighbor

Editing
Editing / Pruning / Condensing:
shrink the set of training data points,

e.g., select a subset of the original training data points.

Example: remove all points with cells that are surrounded by cells of
points of the same class.

Xedited := {(x , y) ∈ X | ∃(x ′, y ′) ∈ X ,R(x ′) ∩ R(x) 6= ∅ and y ′ 6= y}

This basic editing algorithm
I retains the decision function,

I has complexity O(M3Nb
M
2
c logN)

(with bxc := max{n ∈ N | n ≤ x}; Duda et al. 2001, p. 186).

See e.g., Ottmann/Widmayer 2002, p. 501–515 for computing Voronoi
diagrams in two dimensions.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

31 / 35

Machine Learning 3. Scalable Nearest Neighbor

Editing

1 knn−edit−training−data(Dtrain ⊆ RM × Y):

2 compute Voronoi cells R(x) for all (x , y) ∈ Dtrain,

3 esp. Voronoi neighbors N(x) := {(x ′, y ′) ∈ Dtrain | R(x) ∩ R(x ′) 6= ∅}
4 E := ∅
5 for (x , y) ∈ Dtrain:
6 hasNeighborOfOtherClass := false
7 for (x ′, y ′) ∈ N(x):
8 if y 6= y ′:
9 hasNeighborOfOtherClass := true

10 if not hasNeighborOfOtherClass:
11 E := E ∪ {(x , y)}
12 return Dtrain \ E

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

32 / 35

Machine Learning 3. Scalable Nearest Neighbor

Editing

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.
0

2.
5

3.
0

3.
5

4.
0

Sepal.Length

S
ep

al
.W

id
th

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

33 / 35

Machine Learning 3. Scalable Nearest Neighbor

Editing

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.
0

2.
5

3.
0

3.
5

4.
0

Sepal.Length

S
ep

al
.W

id
th

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

33 / 35

Machine Learning 3. Scalable Nearest Neighbor

Summary
I Models for complex data instances can be built by

I feature extraction and using vector-based models or
I designing distances / similarities and using

distance-based / kernel models

I Simple classification and regression models can be built by
I averaging over target values (regression)
I counting the occurrences of the target class (classification)

of training instances close by (measured in some distance measure).

I The nearest neighbor takes always a fixed number K of nearest
points into account.

I Alternatively, one also could weight points with some similarity measure
(called kernel or Parzen window),
 this model is called kernel regression and kernel classification.

I There are no learning algorithms for these models,
as simply all training instances are stored (“memory-based methods”).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

34 / 35

Machine Learning 3. Scalable Nearest Neighbor

Summary (2/2)

I To compute predictions is more costly than for say linear models.

I There are several acceleration techniques:
I partial distances / lower bounding

I search trees / locality-sensitive hashing

I editing

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

35 / 35

Machine Learning

Further Readings

I [Hastie et al., 2005, chapter 13.3, 2.3.2], [Murphy, 2012, chapter
1.4.2, 14.1+2+4], [James et al., 2013, chapter 2.2.3,].

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

36 / 35

Machine Learning

References

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive hashing scheme based on p-stable
distributions. In Proceedings of the Twentieth Annual Symposium on Computational Geometry, pages 253–262. ACM, 2004.

Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin. The Elements of Statistical Learning: Data Mining,
Inference and Prediction, volume 27. Springer, 2005.

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction to Statistical Learning. Springer, 2013.

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

37 / 35

	1. Distance Measures
	2. K-Nearest Neighbor Models
	3. Scalable Nearest Neighbor
	Appendix

