

Machine Learning

B. Supervised Learning: Nonlinear Models
B.5. A First Look at Bayesian and Markov Networks

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science
University of Hildesheim, Germany

Jaivers/

Syllabus

Fri. 25.10. (1)Introduction A. Supervised Learning: Linear Models & Fundamentals Fri. 1.11. (2) A.1 Linear Regression (3) A.2 Linear Classification Fri. 8.11. Fri. 15.11. (4) A.3 Regularization Fri. 22.11. (5) A.4 High-dimensional Data B. Supervised Learning: Nonlinear Models Fri. 29.11. (6) B.1 Nearest-Neighbor Models **B.2 Neural Networks** Fri. 6.12. (7) Fri. 13.12 (8) **B.3 Decision Trees** Fri. 20.12. (9)**B.4 Support Vector Machines** — Christmas Break — Fri. 10.1. (10)B.5 A First Look at Bayesian and Markov Networks C. Unsupervised Learning Fri. 17.1 C.1 Clustering (11)Fri. 24.1. (12)C.2 Dimensionality Reduction Fri. 31.1. (13)C.3 Frequent Pattern Mining Fri. 7.2. (14)Q&A

Shiversite.

Outline

- 1. Introduction
- 2. Examples
- 3. Inference
- 4. Learning

Outline

- 1. Introduction

- 4. Learning

Still Self of the Self of the

Joint Distribution

 x_1 : the sun shines

$$p(x_1 = \text{false}) = 0.25 p(x_1 = \text{true}) = 0.75$$
 $\equiv p(x_1) = \begin{vmatrix} \text{false true} \\ 0.25 & 0.75 \end{vmatrix} = (0.25, 0.75)$

Still de and it

Joint Distribution

 x_1 : the sun shines

$$p(x_1 = \text{false}) = 0.25$$

 $p(x_1 = \text{true}) = 0.75$ $\equiv p(x_1) = \begin{vmatrix} \text{false true} \\ 0.25 & 0.75 \end{vmatrix} = (0.25, 0.75)$

 x_2 : it rains

$$p(x_2 = \text{false}) = 0.67$$

 $p(x_2 = \text{true}) = 0.33$ $= p(x_2) = \frac{\text{false true}}{0.67 \ 0.33} = (0.67, 0.33)$

Still de spaint.

Joint Distribution

 x_1 : the sun shines

$$p(x_1 = \text{false}) = 0.25$$

 $p(x_1 = \text{true}) = 0.75$ $\equiv p(x_1) = \begin{vmatrix} \text{false true} \\ 0.25 & 0.75 \end{vmatrix} = (0.25, 0.75)$

 x_2 : it rains

$$p(x_2 = \text{false}) = 0.67 p(x_2 = \text{true}) = 0.33$$
 $= p(x_2) = \frac{\text{false true}}{0.67 \quad 0.33} = (0.67, 0.33)$

joint distribution:

$$\begin{array}{lll} \rho(x_1 = {\sf false}, x_2 = {\sf false}) &= 0.07 \\ \rho(x_1 = {\sf false}, x_2 = {\sf true}) &= 0.18 \\ \rho(x_1 = {\sf true}, x_2 = {\sf false}) &= 0.6 \\ \rho(x_1 = {\sf true}, x_2 = {\sf true}) &= 0.15 \end{array} \right\} \equiv \begin{array}{lll} \rho(x_1, x_2) & x_2 \\ & | {\sf false} & {\sf true} \\ \hline x_1 & {\sf false} & 0.07 & 0.18 \\ & | {\sf true} & 0.6 & 0.15 \end{array}$$

Joint Distribution

 x_1 : the sun shines

$$p(x_1 = \text{false}) = 0.25 p(x_1 = \text{true}) = 0.75$$
 $\equiv p(x_1) = \begin{vmatrix} \text{false true} \\ 0.25 & 0.75 \end{vmatrix} = (0.25, 0.75)$

 x_2 : it rains

$$p(x_2 = \text{false}) = 0.67 p(x_2 = \text{true}) = 0.33$$
 $= p(x_2) = \frac{\text{false true}}{0.67 \ 0.33} = (0.67, 0.33)$

joint distribution:

$$p(x_1, x_2) = \frac{\begin{array}{c|cc} x_2 \\ \text{false true} \\ \hline x_1 & \text{false} \\ \text{true} & 0.6 & 0.15 \end{array}} = \left(\begin{array}{cc} 0.07 & 0.18 \\ 0.6 & 0.15 \end{array}\right)$$

Shiversite.

Independence

for two variables:

$$p(x,y) = p(x) \cdot p(y)$$

for two variable subsets:

$$p(x_1, x_2, \ldots, x_M) = p(x_I) \cdot p(x_J), \quad I, J \subseteq \{1, \ldots, M\}, I \cap J = \emptyset$$

Note: $x_I := \{x_{m_1}, x_{m_2}, \dots, x_{m_K}\}$ for $I := \{m_1, m_2, \dots, m_K\}$.

Independence

for two variables:

$$p(x,y) = p(x) \cdot p(y)$$

for two variable subsets:

$$p(x_1, x_2, \ldots, x_M) = p(x_I) \cdot p(x_J), \quad I, J \subseteq \{1, \ldots, M\}, I \cap J = \emptyset$$

Examples:

$$\left(\begin{array}{cc} 0.07 & 0.18 \\ 0.6 & 0.15 \end{array} \right) \qquad \left(\begin{array}{cc} 0.17 & 0.08 \\ 0.5 & 0.25 \end{array} \right)$$
 not independent independent

Note: $x_I := \{x_{m_1}, x_{m_2}, \dots, x_{m_K}\}$ for $I := \{m_1, m_2, \dots, m_K\}$.

Still deship

Chain Rule

$$p(x_{1}, x_{2}, ..., x_{M}) = p(x_{1})$$

$$p(x_{2} | x_{1})$$

$$p(x_{3} | x_{1}, x_{2})$$

$$\vdots$$

$$p(x_{M} | x_{1}, x_{2}, ..., x_{M-1})$$

Chain Rule

$$p(x_{1}, x_{2},..., x_{M}) = p(x_{1})$$

$$p(x_{2} | x_{1})$$

$$p(x_{3} | x_{1}, x_{2})$$

$$\vdots$$

$$p(x_{M} | x_{1}, x_{2},..., x_{M-1})$$

Examples:

$$\left(\begin{array}{cc} 0.07 & 0.18 \\ 0.6 & 0.15 \end{array}\right) = (0.25, 0.75) \cdot \left(\begin{array}{cc} 0.28 & 0.72 \\ 0.8 & 0.2 \end{array}\right)$$

Still de andie

Chain Rule

$$p(x_{1}, x_{2},..., x_{M}) = p(x_{1})$$

$$p(x_{2} | x_{1})$$

$$p(x_{3} | x_{1}, x_{2})$$

$$\vdots$$

$$p(x_{M} | x_{1}, x_{2},..., x_{M-1})$$

Examples:

$$\left(\begin{array}{cc} 0.17 & 0.08 \\ 0.5 & 0.25 \end{array}\right) = (0.25, 0.75) \cdot \left(\begin{array}{cc} 0.67 & 0.33 \\ 0.67 & 0.33 \end{array}\right)$$

Conditional Independence

two variables x, y are independent conditionally on variable z:

$$x \perp y \mid z :\Leftrightarrow p(x, y \mid z) = p(x \mid z) \cdot p(y \mid z)$$

two variable sets are independent conditionally on variables z_1, \ldots, z_K :

$$\{x_1,\ldots,x_I\} \perp \{y_1,\ldots,y_J\} \mid \{z_1,\ldots,z_K\} : \Leftrightarrow$$

$$p(x_1,\ldots,x_I,y_1,\ldots,y_J \mid z_1,\ldots,z_K) = p(x_1,\ldots,x_I \mid z_1,\ldots,z_K)$$

$$\cdot p(y_1,\ldots,y_J \mid z_1,\ldots,z_K)$$

Conditional Independence / Example

Example:

$$x_n \perp \{x_1, \dots, x_{n-2}\} \mid x_{n-1} \quad \forall n \text{ (Markov property)}$$

 $\rightsquigarrow p(x_1, \dots, x_N) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2) \cdots p(x_M \mid x_{M-1})$

Graphical Models

- represent joint distributions of variables by graphs
 - by directed graphs: Bayesian networks
 - by undirected graphs: Markov networks
 - by mixed directed/undirected graphs.
- nodes represent random variables
- ► absent edges represent conditional independence

Jrivers/Tay

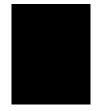
Directed Graph Terminology

- ▶ directed graph: $G := (V, E), E \subseteq V \times V$
 - ► V set called **nodes** / **vertices**
 - ▶ E called edges, $(v, w) \in E$ edge from v to w.
- ▶ adjacency matrix $A \in \{0,1\}^{N \times N}$

$$A_{v,w} := \delta((v,w) \in E), \quad v,w \in \{1,\ldots,N\}, N := |V|$$

- ▶ parents: $pa(v) := \{w \in V \mid (w, v) \in E\}$
- ▶ **children**: $ch(v) := \{w \in V \mid (v, w) \in E\}$
- ▶ neighbors: $nbr(v) := pa(v) \cup ch(v)$
- ▶ family: fam(v) := pa(v) \cup {v}
- ► root: *v* without parents.
- ▶ leaf: v without children.

Note: $\delta(P) := 1$ if proposition P is true, := 0 otherwise.



Shivers/Fair

Directed Graph Terminology

- ▶ path: $p \in V^* := \bigcup_{M \in \mathbb{N}} V^M$: $(p_m, p_{m+1}) \in E$ for all m.
 - $\blacktriangleright p = (p_1, \ldots, p_M), p_m \in V$
 - **▶ length** |*p*| := *M*
 - ▶ starts at p₁
 - ▶ ends at p_M
 - ▶ paths $G^* := \{ p \in V^* \mid (p_m, p_{m+1}) \in E \mid \forall m = 1, \dots, |p| 1 \}.$
 - $v \rightsquigarrow w$: exists path from v to w, i.e., $p \in G^*$: $p_1 = v, p_{|p|} = w$.
- ▶ ancestors: anc(v) := { $w \in V \mid w \leadsto v$ }
- ▶ **descendants**: $desc(v) := \{w \in V \mid v \leadsto w\}$
- in-degree |pa(v)|
- ▶ out-degree |ch(v)|
- ▶ degree |nbr(v)|

Note: $V^* := \bigcup_{M \in \mathbb{N}} V^M$ finite V-sequences.

Directed Graph Terminology

- ► cycle/loop at v: v ~ v
 - ▶ self loop: $(v, v) \in E$
- directed acyclic graph / DAG:
 - directed graph without cycles.
- topological ordering:
 - ▶ numbering of the nodes s.t. all nodes have lower number than their children.
 - exists for DAGs.

Bayesian Networks / Directed Graphical Models

A Bayesian network (aka directed graphical model) is a set of conditional probability distributions/densities (CPDs)

$$p(x_m \mid x_{\mathsf{ctxt}(m)}), \quad m \in \{1, \dots, M\}$$

s.t. the graph defined by

$$V := \{1, ..., M\}$$

 $E := \{(n, m) \mid m \in V, n \in \text{ctxt}(m)\}, \text{ i.e., pa}(m) := \text{ctxt}(m)$

is a DAG.

A Bayesian network defines a factorization of the joint distribution

$$p(x_1,...,x_M) = \prod_{m=1}^{M} p(x_m \mid x_{pa(m)})$$

Still deshall

Bayesian Networks / Example

For the DAG below,

$$p(x_1, x_2, x_3, x_4, x_5) = p(x_1) p(x_2 \mid x_1) p(x_3 \mid x_1) p(x_4 \mid x_2, x_3) p(x_5 \mid x_3)$$

Jriversitor.

Bayesian Networks / Example

For the DAG below,

$$p(x_1, x_2, x_3, x_4, x_5) = p(x_1) p(x_2 \mid x_1) p(x_3 \mid x_1) p(x_4 \mid x_2, x_3) p(x_5 \mid x_3)$$

lf

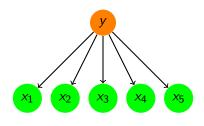
- ► all variables are binary and
- ► all CPDs given as **conditional probability tables (CPTs)**, then the BN is defined by the following 5 CPTs:

_^1		_						U		
0		_	0				0			
1			1				1			
	<i>x</i> ₂	0		0 1				<i>X</i> 3		
	<i>X</i> 3	0	1	0	1		<i>X</i> 5	0	1	
X4	0					_	0			
	1						1			

Outline

- 1. Introduction
- 2. Examples
- 4. Learning

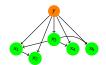
Naive Bayes Classifier



$$p(x_1,...,x_M,y) = p(y)p(x_1 | y)p(x_2 | y) \cdots p(x_M | y)$$

= $p(y) \prod_{m=1}^{M} p(x_m | y)$

more powerful generalization: tree-augmented naive Bayes:



JriNers/rdy

Medical Diagnosis



diseases / causes

symptoms

$$p(x_1,...,x_M,y_1,...,y_T) = \prod_{t=1}^{r} p(y_t) \prod_{m=1}^{m} p(x_m \mid y_{pa(m)})$$

- bipartite graph
- ▶ predictor variables $x_1, ..., x_M$ (symptoms)
- ▶ target variables $y_1, ..., y_T$ (diseases / causes)
 - ▶ multi-label (↔ Naive Bayes: single-label)
 - ▶ y's also could be hidden

Markov Models

first order:

$$p(x_1,...,x_M) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2) \cdots p(x_M \mid x_{M-1})$$

$$= p(x_1) \prod_{m=1}^{M-1} p(x_{m+1} \mid x_m)$$

Markov Models / Second Order

second order:

$$p(x_1, ..., x_M) = p(x_1, x_2)p(x_3 \mid x_1, x_2)p(x_4 \mid x_2, x_3) \cdots p(x_M \mid x_{M-2}, x_{M-1})$$

$$= p(x_1, x_2) \prod_{m=2}^{M-1} p(x_{m+1} \mid x_{m-1}, x_m)$$

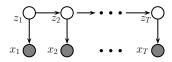
Jriversite.

Hidden Markov Models

- ightharpoonup observed variables x_1, \ldots, x_M
- ▶ hidden variables $z_1, ..., z_M$

$$p(x_1,\ldots,x_M,z_1,\ldots,z_M) = p(z_1) \prod_{m=1}^{M-1} p(z_{m+1} \mid z_m) \prod_{m=1}^{M} p(x_m \mid z_m)$$

- ▶ transition model $p(z_{m+1} | z_m)$
- ▶ observation model $p(x_m \mid z_m)$



Outline

- 1. Introduction
- 3. Inference
- 4. Learning

Januars in the state of the sta

The Probabilistic Inference Problem

Given

- ▶ a Bayesian network model $\theta := G = (V, E)$,
- ► a **query** consisting of
 - ▶ a set $X := \{x_1, ..., x_M\} \subseteq V$ of predictor variables (aka observed, visible variables)
 - with a value v_m for each x_m (m = 1, ..., M) and
 - ▶ a set $Y := \{y_1, \dots, y_T\} \subseteq V$ of target variables (aka query variables), with $X \cap Y = \emptyset$,

compute

$$p(Y \mid X = v; \theta) := p(y_1, \dots, y_T \mid x_1 = v_1, x_2 = v_2, \dots, x_M = v_M; \theta)$$

= $(p(y_1 = w_1, \dots, y_T = w_T \mid x_1 = v_1, x_2 = v_2, \dots, x_M = v_M; \theta))_{w_1, \dots, w_T}$

Variables that are neither predictor variables nor target variables are called **nuisance variables**.

Still de and it

Inference Without Nuisance Variables

Without nuisance variables: $V = X \dot{\cup} Y$.

$$p(Y \mid X = v; \theta) \stackrel{\text{def}}{=} \frac{p(X = v, Y; \theta)}{p(X = v; \theta)} = \frac{p(X = v, Y; \theta)}{\sum_{w} p(X = v, Y = w; \theta)}$$

- \blacktriangleright first, clamp predictors X to their observed values v,
- ▶ then, normalize $p(X = v, Y; \theta)$ to sum to 1 (over Y).
- ▶ $p(X = v; \theta)$ likelihood of the data / probability of evidence is a constant.

Note: Summation over w is over all possible values of variables Y.

Inference With Nuisance Variables

Nuisance variables: $Z := \{z_1, \dots, z_K\} := V \setminus (X \dot{\cup} Y)$.

- 1. add to target variables
- 2. answer resulting query without nuisance variables: $p(Y, Z \mid X)$.
- 3. marginalize out nuisance variables:

$$p(Y \mid X = v; \theta) \stackrel{\text{marginalization}}{=} \sum_{u} p(Y, Z = u \mid X = v; \theta)$$

Note: Summation over u is over all possible values of variables Z.

Inference With Nuisance Variables

Nuisance variables: $Z := \{z_1, \dots, z_K\} := V \setminus (X \dot{\cup} Y)$.

- 1. add to target variables
- 2. answer resulting query without nuisance variables: $p(Y, Z \mid X)$.
- 3. marginalize out nuisance variables:

$$p(Y \mid X = v; \theta) \stackrel{\text{marginalization}}{=} \sum_{u} p(Y, Z = u \mid X = v; \theta)$$

Caveat: This is a naive algorithm never used in practice. See BN lecture for practically useful BN inference algorithms.

Note: Summation over u is over all possible values of variables Z.

Still ersitate

Complexity of Inference

- ► for simplicity assume
 - ► all *M* predictor variables are nominal with *L* levels,
 - ▶ all *K* nuisance variables are nominal with *L* levels,
 - ➤ a single target variable: Y = {y}, T = 1 also nominal with L levels.
- without (Conditional) Independencies:
 - ▶ full table *p* requires $L^{M+K+1} 1$ cells storage.
 - ▶ inference requires $O(L^{K+1})$ operations.
 - for each Y = w sum over all L^K many Z = u.
- ▶ with (Conditional) Independencies / Bayesian network:
 - ▶ CPDs p require $O((M + K + 1)L^{\text{max indegree}+1})$ cells storage.
 - ▶ inference requires $O((K+1)L^{\text{treewidth}+1})$ operations.
- ► treewidth=1 for a chain!

 Note: See the Bayesian networks lecture for BN inference algorithms.

Outline

- 1. Introduction

- 4. Learning

Learning Bayesian Networks

- parameter learning: given
 - ▶ the structure of the network (graph G),
 - ▶ a regularization penalty $Reg(\theta)$ for the parameters θ of the CPTs, and
 - \blacktriangleright data x_1, \ldots, x_N ,

learn the CPTs p.

$$\hat{\theta} := \arg\max_{\theta} \sum_{n=1}^{N} \log p(x_n; \theta) - \text{Reg}(\theta)$$

- structure learning: given
 - ▶ data.

learn the **structure** G and the **CPTs** p.

Bayesian Approach

- in the Bayesian approach, parameters are also considered to be random variables, thus,
- learning is just a special type of inference (with the parameters as targets)
- ▶ information about the distribution of the parameters before seeing the data is required (**prior distribution** $p(\theta)$)
- ► parameter learning: given
 - ightharpoonup the structure of the network (graph G) and
 - a prior distribution $p(\theta)$ of the parameters,
 - ▶ data x₁,...,x_N,

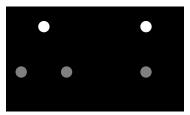
learn the CPTs p.

$$\hat{\theta} := \arg\max_{\theta} \sum_{n=1}^{N} \log p(x_n; \theta) + \log p(\theta)$$

Plate Notation

- ► variables on plates are duplicated
 - ► the number of copies is given in the lower right corner.
- ► an index is used to differentiate copies of the same variable.

Example 1: data x_1, \dots, x_N is independently identically distributed (iid)

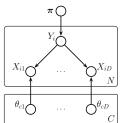


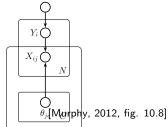
[Murphy, 2012, fig. 10.7]

Plate Notation

- variables on plates are duplicated
 - ▶ the number of copies is given in the lower right corner.
- ▶ an **index** is used to differentiate copies of the same variable.
- variables being in several plates will be duplicated for every combination, i.e., have several indices.
 - for clarity, the index should be added to the plate (but often is omitted).

Example 2: Naive Bayes classifier.





Learning from Complete Data

Likelihood decomposes w.r.t. graph structure:

$$p(\mathcal{D} \mid \theta) := \prod_{n=1}^{N} p(x_n \mid \theta)$$

$$= \prod_{n=1}^{N} \prod_{m=1}^{M} p(x_{n,m} \mid x_{n,pa(m)}, \theta_m)$$

$$= \prod_{m=1}^{M} \prod_{n=1}^{N} p(x_{n,m} \mid x_{n,pa(m)}, \theta_m)$$

$$= \prod_{m=1}^{M} p(\mathcal{D}_m \mid \theta_m)$$

where θ_m are the parameters of $p(x_m \mid pa(m))$

Note: In Bayesian contexts, often $p(\ldots \mid \theta)$ is used instead of $p(\ldots; \theta)$.

Stivers/

Learning from Complete Data

If the prior also factorizes,

$$p(\theta) = \prod_{m=1}^{M} p(\theta_m)$$

then the posterior factorizes as well

$$p(\theta \mid \mathcal{D}) \propto p(\mathcal{D} \mid \theta)p(\theta) = \prod_{m=1}^{M} p(\mathcal{D}_m \mid \theta_m)p(\theta_m)$$

and the parameters θ_m of each CPT can be estimated independently.

Note: In Bayesian contexts, often $p(\ldots \mid \theta)$ is used instead of $p(\ldots; \theta)$.

Learning from Complete Data / Dirichlet Prior

lf

- all variables are nominal.
- \blacktriangleright variable m has L_m levels $(m=1,\ldots,M)$, and parameters θ of CPTs are

$$p(x_m \mid x_{\mathsf{pa}(m)}) = \theta_{m,c,l}, \quad c := x_{\mathsf{pa}(m)}, l := x_m$$
 with
$$\sum_{l=1}^{L} \theta_{m,c,l} = 1, \quad \forall m, c$$

and a Dirichlet distribution for each row in the CPT

$$\theta_{m,c,\cdot} \sim \mathsf{Dir}(\alpha_{m,c}), \quad \alpha_{m,c} \in (\mathbb{R}_0^+)^{L_m}$$

is a useful prior.

Learning from Complete Data / Dirichlet Prior

Then the posterior $p(\theta_{m,c,\cdot} \mid \mathcal{D})$ is also Dirichlet:

$$heta_{m,c,\cdot} \mid \mathcal{D} \sim \mathsf{Dir}(lpha_{m,c} + N_{m,c})$$
 $N_{m,c,l} := \sum_{n=1}^N \delta(x_{n,m} = l, x_{n,\mathsf{pa}(m)=c})$
with mean $ar{ heta}_{m,c,l} = rac{N_{m,c,l} + lpha_{m,c,l'}}{\sum_{l'=1}^L N_{m,c,l'} + lpha_{m,c,l'}}$

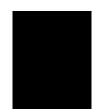
graph structure:

Learning from Complete Data / Example

data:

 $p(\theta_{m,c}) := Dir(1,1)$

prior:



learned parameters for CPT of x_4 (m = 4):

$c = x_{pa(m)}$		$N_{m,c,I}$		$\theta_{m,c,l}$	
<i>x</i> ₂	<i>x</i> ₃	$N_{4,c,1}$	$N_{4,c,0}$	$\mid ar{ heta}_{ ext{4,c,1}} \mid$	$ar{ heta}_{ extsf{4,c,0}}$
0	0	0	0	1/2	1/2
1	0	1	0	2/3	1/3
0	1	0	1	1/3	2/3
1	1	2	1	3/5	2/5

[Murphy, 2012, fig. 10.1a

Learning BN from Complete Data / Algorithm

```
\begin{array}{ll} 1 \ \ \textbf{learn-bn-params}(\mathcal{D}^{\mathsf{train}} := \{x_1, \dots, x_N\} \subset \mathcal{X}_1 \times \dots \times \mathcal{X}_M, G, \alpha): \\ 2 \quad \  \  \text{for} \  \  \, n := 1:N: \\ 3 \quad \  \  \, \text{for} \  \  \, m := 1:M: \\ 4 \quad \qquad \alpha_{m,x_{n,m},x_{n,\mathsf{pa}(m)}} += 1 \\ 5 \quad \  \  \, \text{return} \  \  \, \alpha \end{array}
```

where

- $\mathcal{X}_m := \{1, \dots, L_m\}$ discrete domains of variable X_m (having L_m different levels)
- ► G is a DAG on $\{1, \ldots, M\}$
- $(\alpha_{m,l,c})_{m=1:M,l=1:L_m,c\in\prod_{c\in\mathrm{pa}(m)}L_c}\geq 0$ the Dirichlet prior of the parameters

Learning with Missing and/or Hidden Variables

Learning with

- missing values or
- ► hidden variables

is more complicated as

- ▶ the likelihood no longer factorizes and
- ▶ neither is convex.

→ use iterative approximation algorithms to find a local MAP or ML optimum.

Summary

- ▶ Bayesian Networks define a joint probability distribution by a factorization of conditional probability distributions (CPDs) $p(x_n \mid pa(x_n))$
 - ▶ Conditions pa(m) form a DAG.
 - ► For nominal variables, all CPDs can be represented as tables (CPTs).
 - ▶ Storage complexity is $O(L^{\max \text{ indegree}+1})$ (instead of $O(L^M)$).
- Many model classes essentially are Bayesian networks:
 - ► Naive Bayes classifier, Markov Models, Hidden Markov Models
- ► Inference in BN means to compute the (marginal joint) distribution of target variables given observed evidence of some predictor variables.
 - ► A Bayesian network can answer queries for arbitrary targets (not just a predefined one as most predictive models).
 - Nuisance variables (for a query) are variables neither observed nor used as targets.

Summary (2/2)

- ► Learning BN has to distinguish between
 - ▶ parameter learning: learn just the CPDs for a given graph, vs.
 - structure learning: learn both, graph and CPDs.
- Parameter learning the maximum aposteriori (MAP) for BN with CPTs and Dirichlet prior can be done simply by counting the frequencies of families in the data.

Still despoint

Further Readings

► [Murphy, 2012, chapter 10].

Still de spill

References

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.