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Machine Learning

Syllabus
Fri. 25.10. (1) 0. Introduction

A. Supervised Learning: Linear Models & Fundamentals
Fri. 1.11. (2) A.1 Linear Regression
Fri. 8.11. (3) A.2 Linear Classification
Fri. 15.11. (4) A.3 Regularization
Fri. 22.11. (5) A.4 High-dimensional Data

B. Supervised Learning: Nonlinear Models
Fri. 29.11. (6) B.1 Nearest-Neighbor Models
Fri. 6.12. (7) B.2 Neural Networks
Fri. 13.12. (8) B.3 Decision Trees
Fri. 20.12. (9) B.4 Support Vector Machines

— Christmas Break —
Fri. 10.1. (10) B.5 A First Look at Bayesian and Markov Networks

C. Unsupervised Learning
Fri. 17.1. (11) C.1 Clustering
Fri. 24.1. (12) C.2 Dimensionality Reduction
Fri. 31.1. (13) C.3 Frequent Pattern Mining
Fri. 7.2. (14) Q&A
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Machine Learning

Outline

1. k-means & k-medoids

2. Gaussian Mixture Models

3. Hierarchical Cluster Analysis
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Machine Learning 1. k-means & k-medoids
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Machine Learning 1. k-means & k-medoids

Partitions

Let X be a set. A set P ⊆ P(X ) of subsets of X is called
a partition of X if the subsets

1. are pairwise disjoint: A ∩ B = ∅, A,B ∈ P,A 6= B

2. cover X :
⋃
A∈P

A = X , and

3. do not contain the empty set: ∅ 6∈ P.
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Machine Learning 1. k-means & k-medoids

Partitions

Let X := {x1, . . . , xN} be a finite set. A set P := {X1, . . . ,XK} of subsets
Xk ⊆ X is called a partition of X if the subsets

1. are pairwise disjoint: Xk ∩ Xj = ∅, k , j ∈ {1, . . . ,K}, k 6= j

2. cover X :
K⋃

k=1

Xk = X , and

3. do not contain the empty set: Xk 6= ∅, k ∈ {1, . . . ,K}.

A set Xk is also called a cluster, a partition P a clustering.
K ∈ N is called number of clusters.

Part(X ) denotes the set of all partitions of X .
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Machine Learning 1. k-means & k-medoids

Partitions

Let X be a finite set. A surjective function

p : X → {1, . . . ,K}

is called a K partition function of X .

The sets Xk := p−1(k) form a partition P := {X1, . . . ,XK}.
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Machine Learning 1. k-means & k-medoids

Partitions

Let X := {x1, . . . , xN} be a finite set. A binary N × K matrix

P ∈ {0, 1}N×K

is called a partition matrix of X if it

1. is row-stochastic:
K∑

k=1

Pn,k = 1, n ∈ {1, . . . ,N}

2. does not contain a zero column: X.,k 6= (0, . . . , 0)T , k ∈ {1, . . . ,K}

The sets Xk := {xn | n ∈ {1, . . . ,N},Pn,k = 1} form a partition
P := {X1, . . . ,XK}.

P.,k is called membership vector of class k .
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Machine Learning 1. k-means & k-medoids

The Cluster Analysis Problem

Given

I a set X called data space, e.g., X := RM ,

I a set X ⊆ X called data, and

I a function

D :
⋃

X⊆X
Part(X )→ R+

0

called distortion measure where D(P) measures how bad a partition
P ∈ Part(X ) for a data set X ⊆ X is,

I a number K ∈ N of clusters,

find a partition P = {X1,X2, . . .XK} ∈ Part(X ) with minimal distortion
D(P).
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Machine Learning 1. k-means & k-medoids

The Cluster Analysis Problem (with K clusters)

Given

I a set X called data space, e.g., X := RM ,

I a set X ⊆ X called data,

I a function

D :
⋃

X⊆X
Part(X )→ R+

0

called distortion measure where D(P) measures how bad a partition
P ∈ Part(X ) for a data set X ⊆ X is, and

I a number K ∈ N of clusters,

find a partition P = {X1,X2, . . .XK} ∈ Part K (X ) with K clusters with
minimal distortion D(P).
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Machine Learning 1. k-means & k-medoids

k-means: Distortion Sum of Distances to Cluster Centers
Sum of squared distances to cluster centers:

D(P) :=
K∑

k=1

N∑
n=1:

Pn,k=1

||xn − µk ||2

with

µk := mean {xn | Pn,k = 1, n ∈ {1, . . . ,N}}

Minimizing D over partitions with varying number of clusters leads to
singleton clustering with distortion 0; only the cluster analysis problem
with given K makes sense.

Minimizing D is not easy as reassigning a point to a different cluster also
shifts the cluster centers.
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Machine Learning 1. k-means & k-medoids

k-means: Minimizing Distances to Cluster Centers
Add cluster centers µ as auxiliary optimization variables:

D(P, µ) :=
N∑

n=1

K∑
k=1

Pn,k ||xn − µk ||2

Block coordinate descent:

1. fix µ, optimize P  reassign data points to clusters:

Pn,k := I(k = `n), `n := arg min
k∈{1,...,K}

||xn − µk ||2

2. fix P, optimize µ  recompute cluster centers:

µk :=

∑N
n=1 Pn,kxn∑N
n=1 Pn,k

Iterate until partition is stable.
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Machine Learning 1. k-means & k-medoids

k-means: Initialization

k-means is usually initialized by picking K data points as cluster centers at
random:

1. pick the first cluster center µ1 out of the data points at random and
then

2. sequentially select the data point with the largest sum of distances to
already choosen cluster centers as next cluster center

µk := xn, n := arg max
n∈{1,...,N}

k−1∑
`=1

||xn − µ`||2, k = 2, . . . ,K

Different initializations may lead to different local minima.

I run k-means with different random initializations and

I keep only the one with the smallest distortion (random restarts).
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Machine Learning 1. k-means & k-medoids

k-means Algorithm

1 cluster-kmeans(D := {x1, . . . , xN} ⊆ RM ,K ∈ N, ε ∈ R+) :
2 n1 ∼ unif({1, . . . ,N}), µ1 := xn1

3 for k := 2, . . . ,K :

4 nk := arg max
n∈{1,...,N}

∑k−1
j=1 ||xn − µj ||2, µk := xnk

5 repeat

6 µold := µ
7 for n := 1, . . . ,N:
8 Pn := arg min

k∈{1,...,K}
||xn − µk ||2

9 for k := 1, . . . ,K :
10 µk := mean {xn | Pn = k , n ∈ {1, . . . ,N}}
11 until 1

K

∑K
k=1 ||µk − µold

k || < ε
12 return P
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Note: In implementations, the two loops over the data (lines 7 and 10) can be combined in
one loop.



Machine Learning 1. k-means & k-medoids

Example

1 2 3 4 5 6 7 8 9 10 11 12

x1 x2 x3 x4 x5 x6

x1 x2 x3 x4 = µ1 x5 x6

x1 = µ2 x2 x3 x4 = µ1 x5 x6

x1 µ2 x2 x3 x4 µ1 x5 x6

x1 µ2 x2 x3 x4 µ1 x5 x6

x1 x2 = µ2 x3 x4 x5 = µ1 x6

x1 x2 = µ2 x3 x4 x5 = µ1 x6

d = 33

d = 23.7

d = 16
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Machine Learning 1. k-means & k-medoids

How Many Clusters K?

K

D

N σ2

0
1 N
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Machine Learning 1. k-means & k-medoids

k-medoids: k-means for General Distances
One can generalize k-means to general distances d :

D(P, µ) :=
N∑

n=1

K∑
k=1

Pn,kd(xn, µk)

I step 1 assigning data points to clusters remains the same

Pn,k := I(k = `n), `n := arg min
k∈{1,...,K}

d(xn, µk)

I but step 2 finding the best cluster representatives µk is not solved
by the mean and may be difficult in general.

idea k-medoids: choose cluster representatives out of cluster data points:

µk := xn, n := arg min
n∈{1,...,N}:Pn,k=1

N∑
`=1

P`,kd(x`, xn)
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Machine Learning 1. k-means & k-medoids

k-medoids: k-means for General Distances

k-medoids is a “kernel method”: it requires no access to the variables, just
to the distance measure.

For the Manhattan distance/L1 distance, step 2 finding the best cluster
representatives µk can be solved without restriction to cluster data points:

(µk)m := median{(xn)m | Pn,k = 1, n ∈ {1, . . . ,N}}, m = 1, . . . ,M
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Machine Learning 2. Gaussian Mixture Models

Outline
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Machine Learning 2. Gaussian Mixture Models

Soft Partitions: Row Stochastic Matrices

Let X := {x1, . . . , xN} be a finite set. A N × K matrix

P ∈ [0, 1]N×K

is called a soft partition matrix of X if it

1. is row-stochastic:
K∑

k=1

Pn,k = 1, n ∈ {1, . . . ,N}

2. does not contain a zero column: X.,k 6= (0, . . . , 0)T , k ∈ {1, . . . ,K}

Pn,k is called the

I membership degree of instance n in class k or the

I cluster weight of instance n in cluster k .

P.,k is called membership vector of class k .

SoftPart(X ) denotes the set of all soft partitions of X .
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Note: Soft partitions are also called soft clusterings and fuzzy clusterings.



Machine Learning 2. Gaussian Mixture Models

The Soft Clustering Problem

Given

I a set X called data space, e.g., X := RM ,

I a set X ⊆ X called data, and

I a function

D :
⋃

X⊆X
SoftPart(X )→ R+

0

called distortion measure where D(P) measures how bad a soft
partition P ∈ SoftPart(X ) for a data set X ⊆ X is,

I a number K ∈ N of clusters,

find a soft partition P ∈ SoftPart(X ) with minimal distortion D(P).
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Machine Learning 2. Gaussian Mixture Models

The Soft Clustering Problem (with given K )

Given

I a set X called data space, e.g., X := RM ,

I a set X ⊆ X called data,

I a function

D :
⋃

X⊆X
SoftPart(X )→ R+

0

called distortion measure where D(P) measures how bad a soft
partition P ∈ SoftPart(X ) for a data set X ⊆ X is, and

I a number K ∈ N of clusters,

find a soft partition P ∈ SoftPart K (X )⊆ [0, 1]|X |×K with K clusters with
minimal distortion D(P).
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Machine Learning 2. Gaussian Mixture Models

Mixture Models

Mixture models assume that there exists an unobserved nominal
variable Z with K levels:

p(X ,Z ) = p(Z )p(X | Z ) =
K∏

k=1

(πkp(X | Z = k)I(Z=k)

likelihood marginalizing out unknown zn’s:

L(Θ;X ) :=
N∏

n=1

K∑
zn=1

p(xn, zn; Θ)

log-likelihood:

`(Θ;X ) := log L(Θ;X ) =
N∑

n=1

log
K∑

zn=1

p(xn, zn; Θ)
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Machine Learning 2. Gaussian Mixture Models

Optimizing log-sums

Lemma
For x1, x2, . . . , xN ∈ R+

0 :

log
N∑

n=1

xn = max
q∈∆N

N∑
n=1

qn log
xn
qn

Proof: “≥”:

log
N∑

n=1

xn = log
N∑

n=1

qn
xn
qn

≥
Jensen’s ineq.

N∑
n=1

qn log
xn
qn
, ∀q ∈ ∆N

log
N∑

n=1

xn ≥ max
q∈∆N

N∑
n=1

qn log
xn
qn

“≤”: Especially for qn := xn∑N
n′=1 xn′

:

N∑
n=1

qn log
xn
qn

=
N∑

n=1

xn∑N
n′=1 xn′

log
N∑

n′=1

xn′ = log
N∑

n′=1

xn′
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Machine Learning 2. Gaussian Mixture Models

Joint Objective Function

`(Θ;X ) =
N∑

n=1

log
K∑

zn=1

p(xn, zn; Θ)

=
N∑

n=1

max
qn∈∆K

K∑
zn=1

qn(zn) log
p(xn, zn; Θ)

qn(zn)

view as joint maximization:

`(Θ, (qn,k)n=1:N,k=1:K ;X ) =
N∑

n=1

K∑
k=1

qn,k log
p(xn, zn; Θ)

qn,k

s.t. qn ∈ ∆K
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Machine Learning 2. Gaussian Mixture Models

EM Algorithm

`(Θ, (qn,k)n=1:N,k=1:K ;X ) =
N∑

n=1

K∑
k=1

qn,k log
p(xn, zn; Θ)

qn,k

Block coordinate descent (EM algorithm): alternate until convergence

1. expectation step: (fix Θ, maximize qn,k)

q
(t−1)
n,k =

p(X = xn | Z = k ; Θ(t−1)) p(Z = k ; Θ(t−1))∑K
k ′=1 p(X = xn | Z = k ′; Θ(t−1)) p(Z = k ′; Θ(t−1))

=
p(X = xn | Z = k ; θ

(t−1)
k )π

(t−1)
k∑K

k ′=1 p(X = xn | Z = k ′; θ
(t−1)
k )π

(t−1)
k

(0)

2. maximization step: (fix qn,k , maximize Θ)

Θ(t) := arg max
Θ

`(Θ, q(t−1))

= arg max
π1,...,πK ,θ1,...,θK

N∑
n=1

K∑
k=1

q
(t−1)
n,k (lnπk + ln p(X = xn | Z = k ; θk))
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Machine Learning 2. Gaussian Mixture Models

EM Algorithm

2. maximization step:

Θ(t) = arg max
π1,...,πK ,θ1,...,θK

N∑
n=1

K∑
k=1

q
(t−1)
n,k (lnπk + ln p(X = xn | Z = k ; θk))

 π
(t)
k =

∑N
n=1 q

(t−1)
n,k

N
(1)

N∑
n=1

q
(t−1)
n,k

p(X = xn | Z = k ; θk)

∂p(X = xn | Z = k ; θk)

∂θk
= 0, ∀k (∗)

(*) needs to be solved for specific cluster specific distributions p(X |Z ).
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Machine Learning 2. Gaussian Mixture Models

Gaussian Mixtures

Gaussian mixtures:

I use Gaussians for p(X |Z ):

p(X = x | Z = k) =
1√

(2π)M |Σk |
e−

1
2

(x−µk )T Σ−1
k (x−µk ), θk := (µk ,Σk)

 µ
(t)
k =

∑N
n=1 q

(t−1)
n,k xn∑N

n=1 q
(t−1)
n,k

(2)

Σ
(t)
k =

∑N
n=1 q

(t−1)
n,k (xn − µ(t)

k )(xn − µ(t)
k )T∑N

n=1 q
(t−1)
n,k

=

∑N
n=1 q

(t−1)
n,k xnx

T
n∑N

n=1 q
(t−1)
n,k

− µ(t)
k µ

(t)
k

T (3)
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Machine Learning 2. Gaussian Mixture Models

Gaussian Mixtures: EM Algorithm, Summary
1. expectation step: ∀n, k

q̃
(t−1)
n,k = π

(t−1)
k

1√
(2π)M |Σ(t−1)

k |
e−

1
2

(xn−µ(t−1)
k )T Σ

(t−1)
k

−1(xn−µ(t−1)
k ) (0a)

q
(t−1)
n,k =

q̃
(t−1)
n,k∑K

k ′=1 q̃
(t−1)
n,k ′

(0b)

2. maximization step: ∀k

π
(t)
k =

∑N
n=1 q

(t−1)
n,k

N
(1)

µ
(t)
k =

∑N
n=1 q

(t−1)
n,k xn∑N

n=1 q
(t−1)
n,k

(2)

Σ
(t)
k =

∑N
n=1 q

(t−1)
n,k xnx

T
n∑N

n=1 q
(t−1)
n,k

− µ(t)
k µ

(t)
k

T (3)
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Machine Learning 2. Gaussian Mixture Models

Gaussian Mixtures for Soft Clustering

I The responsibilities q ∈ [0, 1]N×K are a soft partition.

P := q

I The negative log-likelihood can be used as cluster distortion:

D(P) := −max
Θ

`(Θ,P)

I To minimize D, we simply can run EM.

For hard clustering:

I assign points to the cluster with highest responsibility (hard EM):

q
(t−1)
n,k = I(k = arg max

k ′=1,...,K
q̃

(t−1)
n,k ′ ) (0b′)
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Machine Learning 2. Gaussian Mixture Models

Gaussian Mixtures: EM Algorithm
1 cluster-soft-em(D := {x1, . . . , xN} ⊆ RM ,K ∈ N, ε ∈ R+) :

2 q̃
(0)
n,k ∼ unif([0, 1]), n := 1, . . . ,N, k := 1, . . . ,K

3 q
(0)
n,k := q̃

(0)
n,k/

∑K
k′=1 q̃

(0)
n,k′ , n := 1, . . . ,N, k := 1, . . . ,K

4 repeat
5 t := t + 1
6 for k := 1 : K

7 π
(t)
k :=

∑N
n=1 q

(t−1)
n,k /N

8 µ
(t)
k :=

∑N
n=1 q

(t−1)
n,k xn/

∑N
n=1 q

(t−1)
n,k

9 Σ
(t)
k := (

∑N
n=1 q

(t−1)
n,k xnx

T
n )/(

∑N
n=1 q

(t−1)
n,k )− µ(t)

k µ
(t)
k

T

10 for n := 1 : N

11 q̃
(t)
n,k := π

(t)
k

1√
(2π)M |Σ(t)

k |
e−

1
2 (xn−µ(t)

k )T Σ
(t)
k
−1(xn−µ(t)

k ), k := 1 : K

12 q
(t)
n,k := q̃

(t)
n,k/

∑K
k′=1 q̃

(t)
n,k′ , k := 1 : K

13 until ||q(t) − q(t−1)|| < ε

14 return π(t), µ(t),Σ
(t)
k , q(t)
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Machine Learning 2. Gaussian Mixture Models

Gaussian Mixtures for Soft Clustering / Example

−2 0 2

−2

0

2
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Machine Learning 2. Gaussian Mixture Models

Model-based Cluster Analysis
Different parametrizations of the covariance matrices Σk restrict possible
cluster shapes:
I full Σ:

all sorts of ellipsoid clusters.

I diagonal Σ:
ellipsoid clusters with axis-parallel axes

I unit Σ:
spherical clusters.

One also distinguishes
I cluster-specific Σk :

each cluster can have its own shape.

I shared Σk = Σ:
all clusters have the same shape.
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Machine Learning 2. Gaussian Mixture Models

k-means: Hard EM with spherical clusters

1. expectation step: ∀n, k

q̃
(t−1)
n,k =

1√
(2π)M |Σ(t−1)

k |
e−

1
2

(xn−µ(t−1)
k )T Σ

(t−1)
k

−1(xn−µ(t−1)
k ) (0a)

=
1√

(2π)M
e−

1
2

(xn−µ(t−1)
k )T (xn−µ(t−1)

k )

q
(t−1)
n,k = I(k = arg max

k ′=1,...,K
q̃

(t−1)
n,k ′ ) (0b′)

arg max
k ′=1,...,K

q̃
(t−1)
n,k ′ = arg max

k ′=1,...,K

1√
(2π)M

e−
1
2

(xn−µ(t−1)
k )T (xn−µ(t−1)

k )

= arg max
k ′=1,...,K

−(xn − µ(t−1)
k )T (xn − µ(t−1)

k )

= arg min
k ′=1,...,K

||xn − µ(t−1)
k ||2
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Machine Learning 3. Hierarchical Cluster Analysis

Outline

1. k-means & k-medoids

2. Gaussian Mixture Models

3. Hierarchical Cluster Analysis
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Machine Learning 3. Hierarchical Cluster Analysis

Hierarchies

Let X be a set.
A tree (H,E ), E ⊆ H × H edges pointing towards root

I with leaf nodes h corresponding bijectively to elements xh ∈ X

I plus a surjective map L : H → {0, . . . , d}, d ∈ N with
I L(root) = 0 and

I L(h) = d for all leaves h ∈ H and

I L(h) ≤ L(g) for all (g , h) ∈ E

called level map

is called an hierarchy over X .

d is called the depth of the hierarchy.

Hier(X ) denotes the set of all hierarchies over X .
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Machine Learning 3. Hierarchical Cluster Analysis

Hierarchies / Example

X : x1 x2 x3 x4 x5 x6
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Hierarchies / Example
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◦

◦
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Machine Learning 3. Hierarchical Cluster Analysis

Hierarchies: Nodes Correspond to Subsets

Let (H,E ) be such an hierarchy:
I nodes of an hierarchy correspond to subsets of X :

I leaf nodes h correspond to a singleton subset by definition.

subset(h) := {xh}, xh ∈ X corresponding to leaf h

I interior nodes h correspond to the union of the subsets of their children:

subset(h) :=
⋃
g∈H

(g,h)∈E

subset(g)

I thus the root node h corresponds to the full set X :

subset(h) = X
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Machine Learning 3. Hierarchical Cluster Analysis

Hierarchies: Nodes Correspond to Subsets

X : {x1} {x3} {x4} {x2} {x5} {x6}

{x1, x3}

{x2, x5}

{x2, x5, x6}

{x1, x3, x4}

{x1, x3, x4, x2, x5, x6}
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Machine Learning 3. Hierarchical Cluster Analysis

Hierarchies: Levels Correspond to Partitions

Let (H,E ) be such an hierarchy:

I levels ` ∈ {0, . . . , d} correspond to partitions

P`(H, L) := {subset(h) | h ∈ H, L(h) ≥ `, 6 ∃g ∈ H :L(g) ≥ `,
subset(h) ( subset(g)}
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Machine Learning 3. Hierarchical Cluster Analysis

Hierarchies: Levels Correspond to Partitions

{x1} {x3} {x4} {x2} {x5} {x6}

{x1, x3}

{x2, x5}

{x2, x5, x6}

{x1, x3, x4}

{x1, x3, x4, x2, x5, x6} {{x1, x3, x4, x2, x5, x6}}

{{x1, x3, x4}, {x2, x5, x6}}

{{x1, x3}, {x4}, {x2, x5, x6}}

{{x1, x3}, {x4}, {x2, x5}, {x6}}

{{x1, x3}, {x4}, {x2}, {x5}, {x6}}

{{x1}, {x3}, {x4}, {x2}, {x5}, {x6}}
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Machine Learning 3. Hierarchical Cluster Analysis

The Hierarchical Cluster Analysis Problem

Given

I a set X called data space, e.g., X := RM ,

I a set X ⊆ X called data and

I a function

D :
⋃

X⊆X
Hier(X )→ R+

0

called distortion measure where D(P) measures how bad a hierarchy
H ∈ Hier(X ) for a data set X ⊆ X is,

find a hierarchy H ∈ Hier(X ) with minimal distortion D(H).
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Machine Learning 3. Hierarchical Cluster Analysis

Distortions for Hierarchies

Examples for distortions for hierarchies:

D(H) :=
N∑

K=1

D̃(PK (H))

where

I PK (H) denotes the partition at level K − 1 (with K classes) and

I D̃ denotes a distortion for partitions.
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Machine Learning 3. Hierarchical Cluster Analysis

Agglomerative and Divisive Hierarchical Clustering

Hierarchies are usually learned by greedy search level by level:
I agglomerative clustering:

1. start with the singleton partition PN :

PN := {Xk | k = 1, . . . ,N}, Xk := {xk}, k = 1, . . . ,N

2. in each step K = N, . . . , 2 build PK−1 by joining the two clusters
k, ` ∈ {1, . . . ,K} that lead to the minimal distortion

D({X1, . . . ,��Xk , . . . ,��X` , . . . ,XK ,Xk ∪ X`})
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Machine Learning 3. Hierarchical Cluster Analysis

Agglomerative and Divisive Hierarchical Clustering

Hierarchies are usually learned by greedy search level by level:
I divisive clustering:

1. start with the all partition P1:

P1 := {X}

2. in each step K = 1,N − 1 build PK+1 by splitting one cluster Xk in two
clusters X ′k ,X

′
` that lead to the minimal distortion

D({X1, . . . ,��Xk , . . . ,XK ,X
′
k ,X

′
`), Xk = X ′k ∪ X ′`
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Machine Learning 3. Hierarchical Cluster Analysis

Class-wise Defined Partition Distortions

If the partition distortion can be written as a sum of distortions of its
classes,

D({X1, . . . ,XK}) =
K∑

k=1

D̃(Xk)

then the optimal pair does only depend on Xk ,X`:

D({X1, . . . ,��Xk , . . . ,��X` , . . . ,XK ,Xk ∪ X`)

− D({X1, . . . ,Xk , . . . ,X`, . . . ,XK )

= D̃(Xk ∪ X`)− (D̃(Xk) + D̃(X`))
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Machine Learning 3. Hierarchical Cluster Analysis

Closest Cluster Pair Partition Distortions

For a cluster distance

d̃ : P(X )× P(X )→ R+
0

with d̃(A ∪ B,C ) ≥ min{d̃(A,C ), d̃(B,C )}, A,B,C ⊆ X

a partition can be judged by the closest cluster pair it contains:

D({X1, . . . ,XK}) := min
k,`=1,K

k 6=`

d̃(Xk ,X`)

Such a distortion has to be maximized.

To increase it, the closest cluster pair has to be joined.
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Machine Learning 3. Hierarchical Cluster Analysis

Single Link Clustering

dsl(A,B) := min
x∈A,y∈B

d(x , y), A,B ⊆ X
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Machine Learning 3. Hierarchical Cluster Analysis

Complete Link Clustering

dcl(A,B) := max
x∈A,y∈B

d(x , y), A,B ⊆ X
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Machine Learning 3. Hierarchical Cluster Analysis

Average Link Clustering

dal(A,B) :=
1

|A||B|
∑

x∈A,y∈B
d(x , y), A,B ⊆ X
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Machine Learning 3. Hierarchical Cluster Analysis

Recursion Formulas for Cluster Distances

dsl(Xi ∪ Xj ,Xk) := min
x∈Xi∪Xj ,y∈Xk

d(x , y)

= min{ min
x∈Xi ,y∈Xk

d(x , y), min
x∈Xj ,y∈Xk

d(x , y)}

= min{dsl(Xi ,Xk), dsl(Xj ,Xk)}

dcl(Xi ∪ Xj ,Xk) = max{dcl(Xi ,Xk), dcl(Xj ,Xk)}

dal(Xi ∪ Xj ,Xk) =
|Xi |

|Xi |+ |Xj |
dal(Xi ,Xk) +

|Xj |
|Xi |+ |Xj |

dal(Xj ,Xk)

 agglomerative hierarchical clustering requires to compute the
distance matrix D ∈ RN×N only once:

Dn,` := d(xn, x`), n, ` = 1, . . . ,N

Thus it is a kernel method.
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Machine Learning 3. Hierarchical Cluster Analysis

Conclusion (1/2)

I Cluster analysis aims at detecting latent groups in data,
without labeled examples (↔ record linkage).

I Latent groups can be described in three different granularities:
I partitions segment data into K subsets (hard clustering).

I soft clusterings / row-stochastic matrices build overlapping groups
to which data points can belong with some membership degree
(soft clustering).

I hierarchies structure data into an hierarchy,
in a sequence of consistent partitions (hierarchical clustering).

I k-means finds a K -partition by finding K cluster centers with
smallest Euclidean distance to all their cluster points.

I k-medoids generalizes k-means to general distances; it finds a
K -partition by selecting K data points as cluster representatives
with smallest distance to all their cluster points.
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Machine Learning 3. Hierarchical Cluster Analysis

Conclusion (2/2)

I Gaussian Mixture Models find soft clusterings by modeling data by
a class-specific multivariate Gaussian distribution p(X | Z ) and
estimating expected class memberships (expected likelihood).

I The Expectation Maximiation Algorithm (EM) can be used to
learn Gaussian Mixture Models via block coordinate descent.

I k-means is a special case of a Gaussian Mixture Model
I with hard/binary cluster memberships (hard EM) and

I spherical cluster shapes.

I hierarchical single link, complete link and average link methods
I find a hierarchy by greedy search over consistent partitions,

I starting from the singleton parition (agglomerative)

I being efficient due to recursion formulas,

I requiring only a distance matrix.
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Machine Learning

Readings

I k-means:
I ?, ch. 14.3.6, 13.2.3, 8.5 ?, ch. 9.1, ?, ch. 11.4.2

I hierarchical cluster analysis:
I ?, ch. 14.3.12, ?, ch. 25.5. ?, ch. 16.4.

I Gaussian mixtures:
I ?, ch. 14.3.7, ?, ch. 9.2, ?, ch. 11.2.3, ?, ch. 16.1.
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