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Machine Learning 1. Principal Components Analysis

The Dimensionality Reduction Problem

Given

» aset X called data space, e.g., X := R,
» aset X C X called data,

» a function

p: |J ®RHYY-R{
XCX,KEN

called distortion where D(P) measures how bad a low dimensional
representation P : X — R for a data set X C X is, and

» a number K € N of latent dimensions,

find a low dimensional representation P : X — RX with K dimensions with
minimal distortion D(P).
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Machine Learning 1. Principal Components Analysis

B
Distortions 1 / Multidimensional Scaling i

Let dy be a distance on X and
dz be a distance on the latent space Z := RK
— usually just the Euclidean distance: k

dz(v,w) = lv—wlla = O (vk — wi)?)
k=1

N

Multidimensional scaling aims to find latent representations P that
reproduce the distance measure dy as well as possible:

D(P) = Wl,_l) S (dxlx,x') — dz(P(x), P(x')))?

x,x'eX
x#x!

1 N N
= N 1) 2 2 (G ) = llzn = zml)*, 20 = Plxa)

n=1 m=1
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Machine Learning 1. Principal Components Analysis

S _ N
Distortions 2 / Reconstruction i

Feature reconstruction methods aim to find latent representations P

and reconstruction maps r : RK — X from a given class of maps that
reconstruct features as well as possible:

D(P, Zd;(xr (x)))

xEX

- %Z dx(xn, (z0)): 20 = Plxn)
n=1
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Machine Learning 1. Principal Components Analysis

Reconstruction / Make it simple
» allow only linear maps for reconstructions r:
r(z) .= Wz, W eRMxK
» use squared Euclidean distance to assess the reconstruction error:

dx(x,x) := |]x = x'|I3

1 N
sy D(P, r) = deX(Xm r(Zn)),
n=1

N
x Z X0 — Wan%
n=1

= |Ix — wz|lr

i.e., find the best low rank approximation w.r.t. the Frobenius norm.

N M
1AllF = > Arm
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Machine Learning 1. Principal Components Analysis

Low Rank Approximation

Let Ac RV*M_ For K < min{N, M}, any pair of matrices
U e RVXK v ¢ RMXK

is called a low rank approximation of A with rank K.
The matrix

uv’

is called the reconstruction of A by U, V and the quantity

N M
1A= UVTE= (O] (Anm— Ul Vin)?)2

n=1m=1
the L2 reconstruction error.

Note: ||A||r is called Frobenius norm.
(Do not confuse it with the L2 norm || - ||2 for matrices.)
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Machine Learning 1. Principal Components Analysis

B
Singular Value Decomposition (SVD) i

Theorem (Existence of SVD)
For every matrix A € RNxM

> UERNXK
> VERMXK

there exist matrices

» both with orthonormal columns, i.e., UTU =1, VTV =]
= ]RKXK’

» diagonal, i.e. ¥ := diag(o1,...,0k)
» 012022+ 20R>0pp1 =" =0k =0,
with K := min{N, M}, R :=rank(A)
such that -
A=ULV
o, are called singular values of A.
Note: [ := diag(l,...,1) € RK*XK denotes the unit matrix
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Machine Learning 1. Principal Components Analysis

Singular Value Decomposition (SVD; 2/2)

It holds:

a) o2 are eigenvalues and Vj eigenvectors of AT A:

ATAVi=02Vi, k=1,...,K,V=(W,...

b) ai are eigenvalues and Uy eigenvectors of AAT:

(AATY U = 02Uy, k=1,....K,U=(Uy,...
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Machine Learning 1. Principal Components Analysis

Singular Value Decomposition (SVD; 2/2)

It holds:

a) o2 are eigenvalues and Vj eigenvectors of AT A:

ATAVi=02Vi, k=1,...,K,V=(W,...

b) ai are eigenvalues and Uy eigenvectors of AAT:

(AA U = 02Uy, k=1,....K,U=(Us,..

proof:
a) (ATAV,=VITUT UZVTV, = VX2e
b) (AAT U, = UXTVT VETUT U\, = UL?e,
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Machine Learning 1. Principal Components Analysis

Truncated SVD

Let A€ RV*M and ULV = Aits SVD. Then for K’ < min{N, M} the

decomposition

A ~ U/Z/VIT
with
U = (le, ceey U,K’)7 V' .= (\/71, cee, VJ(/),ZI = diag(al, .. .,O'K/)

is called truncated SVD with rank K’.
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Machine Learning 1. Principal Components Analysis

NN
Optimal Low Rank Approximation is Truncated SVD “

Theorem (Low Rank Approximation; Eckart-Young theorem)

Let Ac RN*M_ For K < min{N, M}, the optimal low rank approximation
of rank K (i.e., with smallest reconstruction error)

(U*,V*):= argmin  |[A-UVT|Z
UERNXK,VERMXK

is the truncated SVD.

Note: As U, V do not have to be orthonormal, one can take U := U'Y/, V := V' for the
K-truncated SVD A= U'Y/V'T.
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Machine Learning 1. Principal Components Analysis

.. . N
Principal Components Analysis (PCA) i
Let X := {x1,...,xny} € RM be a data set and

K € N called number of latent dimensions (K < M).
PCA finds

» K principal components vy, ..., vk € RM and
» latent weights z, € RK for each data point n € {1,..., N},

such that the linear combination of the principal components reconstructs
the original features x, as well as possible:

K
Xp = E Z,,7ka
k=1
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Machine Learning 1. Principal Components Analysis

.. . N
Principal Components Analysis (PCA) i
Let X := {x1,...,xny} € RM be a data set and

K € N called number of latent dimensions (K < M).
PCA finds

» K principal components vy, ..., vk € RM and
» latent weights z, € RK for each data point n € {1,..., N},

such that the linear combination of the principal components reconstructs
the original features x, as well as possible:

argmanHX,, Zz,,kka

,,,,,

:ZHX,,—VZ,,HZ, Vo= (vi,...,vk)"
n=1
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Machine Learning 1. Principal Components Analysis

.. . N
Principal Components Analysis (PCA) i
Let X := {x1,...,xny} € RM be a data set and
K € N called number of latent dimensions (K < M).
PCA finds
» K principal components vy, ..., vk € RM and

» latent weights z, € RK for each data point n € {1,..., N},

such that the linear combination of the principal components reconstructs
the original features x, as well as possible:

argmanHX,, Zz,,kka

,,,,,

N
:ZHX,,—VZ,,HZ, Vo= (vi,...,vk)"
=1

HX VT2, Xi=(x1,....xn) ", Z = (z1,...,zn) "
thus PCA is iust the SVD of the data matrix X
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Machine Learning 1. Principal Components Analysis

PCA Algorithm

dimred-pca(D := {x1,...,xy} CRM K e N):
X = (x1,%2, ..., xn) "
(U, L, V) :=svd(X)
Z = U.,l:K : Z1:K,1:K
return pdimred .— [ 7, .. Zn.}

» X usually is normalized s.t. its columns have zero mean.
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1. Principal Components Analysis

Machine Learning

Principal Components Analysis (Example 1)

15

[Hastie et al., 2005, p. 5:

-1

-1
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Machine Learning 1. Principal Components Analysis

Principal Components Analysis (Example 1)
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Principal Components Analysis (Example 2)
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Machine Learning 1. Principal Components Analysis

NN
Principal Components Analysis (Example 2) “
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First Principal Component

[Hastie et al., 2005, p. 5:
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Machine Learning 2. Probabilistic PCA & Factor Analysis

. NN
Outline v

2. Probabilistic PCA & Factor Analysis
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Machine Learning 2. Probabilistic PCA & Factor Analysis

Probabilistic Model

Probabilistic PCA provides a probabilistic interpretation of PCA.
It models for each data point

» a multivariate normal distributed latent factor z,

» that influences the observed variables linearly:

p(z) == N(z;0,1)
p(x | z;p, 0%, W) i= N(x; pp+ Wz, 0°1)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2. Probabilistic PCA & Factor Analysis

NN
Probabilistic PCA Loglikelihood “

X, Z;p, 0% W)

n
= Inp(xi | zi; 0, W) + In p(z)
i=1
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Machine Learning 2. Probabilistic PCA & Factor Analysis

B
Probabilistic PCA Loglikelihood “

X, Z;p, 0% W)

n
= Inp(xi | zi; 0, W) + In p(z)
i=1

= ZInN(x;;u—{— Wz;,021) + InN(z;; 0, 1)

]
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Machine Learning 2. Probabilistic PCA & Factor Analysis

Probabilistic PCA Loglikelihood

X, Z;p, 0% W)

n
= Inp(xi | zi; 0, W) + In p(z)
i=1

= ZInN(x;;u—{— Wz;,021) + InN(z;; 0, 1)

sz,-

1 1 1
mZ—Elogaz— f‘z(xi—u— Wz) T (xi — p — Waz;) — 52

1
remember: N(x;p,¥) = —2——e” BlmpE T )
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Machine Learning 2. Probabilistic PCA & Factor Analysis

B
Probabilistic PCA Loglikelihood “

X, Z;p, 0% W)

n
= Inp(xi | zi; 0, W) + In p(z)
i=1

= ZInN(x;;u—{— Wz;,021) + InN(z;; 0, 1)

1 1
x Z —Zlogo® — fﬂ(x" — = Wz)T(x; — p— Wz;) — EZ,-TZ,'

1
x — Z logo? + ;(NTN + T WT Wz — 2xT 1 — 2xT Wz + 2" W)

i + z,-Tz,-
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Machine Learning 2. Probabilistic PCA & Factor Analysis

PCA vs Probabilistic PCA

E(X,Z;,LL,OQ, W)

1 1
x Z ~5 log o2 — ?(X; — = Wz) T (xi — p — Wz;)
1

» as PCA: Decompose with minimal L2 loss
K
Xj = Qo+ Zzi,ka
k=1
with vy == W.
» different from PCA: L2 regularized row features z.
» cannot be solved by SVD. Use EM as learning algorithm!

TZ,'

1
~ 5

» additionally also regularization of column features W possible

(through a prior on W).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2. Probabilistic PCA & Factor Analysis

NS
EM / Block Coordinate Descent: Outline i

UX,Z; p, 0%, W)

x — Zloga + 5 (1 T+ zTWT Wz — 2xT i — 2xTWz,+2uTWz,)

—|—2 Zj

1. expectation step: Vi

gf,- 20 ~Zi= L (0)
2. minimization step:

5 Lo S &

;;; =0 - o? = (2)

aalj/éo W= (3)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2. Probabilistic PCA & Factor Analysis

B
EM / Block Coordinate Descent i

E(X,Z;'[L,O'z, W)

T

1
x — Z logo? + ;(/,LT/,L + T WT Wz — 2xT i — 2xT Wz + 2" W)
i + z; z;

ol 1
E = —§(2ZiTWTW — 2XI'TW + 2,LLTW) — 2ZI'T ; O
(WTW + 021 zi = WT(x; — )
zi=(WTW +a21)TWT (x; — ) (0)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2. Probabilistic PCA & Factor Analysis

B
EM / Block Coordinate Descent i

UX, Z; p, 0%, W)

X — Zlog(f + 5 (1 Tu+zTWT Wz — 2xT i — 2x7 Wz + 2T Waz;)

+ Z,TZ,'

ov 1

:;I;ZX,'— WZ,' (1)

Note: As E(z;) =0, p often is fixed to p := %Z,‘X:’-
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Machine Learning 2. Probabilistic PCA & Factor Analysis

B
EM / Block Coordinate Descent i

UX,Z; p, 0%, W)

X — Zloga +

u u—l—zTW Wz,—2x w— 2xTWz,—i—2u Wz,)
+z Zj

o 1 1
2= "2 + WZMTM—FZ,TWTWZ,- —2xT = 2xT Waz; +2uT Wz
i

= ZuTu + z,-TWTWz,- — 2X,-T,U, — 2x,-T Wz; 4+ 2u" Wz
i
1 T
= D 06— = Wz)T (x5 — p— Waz)
i
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Machine Learning 2. Probabilistic PCA & Factor Analysis

B
EM / Block Coordinate Descent i

UX,Z; p, 0%, W)

X — Zlogo’ —|— u /,L+ZTWTWZ,—2X "m— 2XTWz,—|—2,u Wz;)
—|—z,Tz,-

——%Z2Wz,-z,- —2x:z] + 2uz] =0
W(Z ziz) = Z(Xi — )z’
W= - (7)) ! ©)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Machine Learning 2. Probabilistic PCA & Factor Analysis

EM / Block Coordinate Descent: Summary

alternate until convergence:

1. expectation step: Vi
zi=(WTW + 021 TWT(x; — )
2. minimization step:

1
W= - x; — Wz;
i
2 1 T
o=~ (xi —p— Wzi)' (xi — p — Wz;)
i
W=> 0 —wz (Y zz")™
i i

(1)
(2)
(3)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2. Probabilistic PCA & Factor Analysis

. ; P2
Matrix Notation v
Xo=1lp+wz"

1
log (W, Z, j1,0%; X) —§n|ogo2

tr(X — U — WZT)(X = —wz™)T

© 202
1
2ZZT
1. expectation step:
ZT=(WTW + 2N TWT(X — 1) (0)
2. minimization step:
pT =07 (X - wzT) 1)
1
02 = —tr(X = Ty — WZTY(X —1p—wz™)T (2)
WT =(272)7ZT(X — 1) (3)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2. Probabilistic PCA & Factor Analysis

Probabilistic PCA Algorithm (EM)

dimred-ppca(D = {x1,...,xy} CRM K € N,e € RT):

allocate z;,...,zy :=0€RK =0 RM W :=0c RV*K s2:=1€cR

repeat
2 ._ 2 _old.
Ofg :=0°,2 =z

for n::l,...,N:

Zy = (WTW +a21)TWT (x, — )
Hold = [
= %an,, — Wz,
02 = % n(Xn Hold — WZ,,) ( — Hold — WZ,,)

w:=3%, (Xn fold) 2y (32, Znzg )"
until % anl |z, — z29|| < €
return DAimred .— £z . zy}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2. Probabilistic PCA & Factor Analysis

NN
EM / Block Coordinate Descent: Example i

-2 0 2 .
[Bishop, 2006, p. 581]
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Machine Learning 2. Probabilistic PCA & Factor Analysis

NN
EM / Block Coordinate Descent: Example i

2t (b)
|
VE/a

-2 0 2

[Bishop, 2006, p. 581]
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Machine Learning 2. Probabilistic PCA & Factor Analysis

NN
EM / Block Coordinate Descent: Example i

-2 0 .
[Bishop, 2006, p. 581]
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Machine Learning 2. Probabilistic PCA & Factor Analysis

NN
EM / Block Coordinate Descent: Example i

2t (d) .\ 0\
0f 3;.:\

-2 0 2 .
[Bishop, 2006, p. 581]
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Machine Learning 2. Probabilistic PCA & Factor Analysis

NN
EM / Block Coordinate Descent: Example i

2t (o) o/

g
e

-2 0 2 .
[Bishop, 2006, p. 581]
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Machine Learning 2. Probabilistic PCA & Factor Analysis

NN
EM / Block Coordinate Descent: Example i

2t () o/
</

ol ..\./\.
%

-2 0 2 .
[Bishop, 2006, p. 581]
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Machine Learning 2. Probabilistic PCA & Factor Analysis

Regularization of Column Features W

p(W) =[N (w;;0,771), W =(w,...,wm)
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Machine Learning 2. Probabilistic PCA & Factor Analysis

Regularization of Column Features W
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Machine Learning 2. Probabilistic PCA & Factor Analysis

Regularization of Column Features W

p(W) = HN(WJ;O,TJ?/), W= (wi,...,wp)
j=1
ol 1
- Wdiag(—,. .., —
8W dlag(T12, 77_,2")
1 1
W = zf:(xi - M)Z,'T(zi: ZiZ,-T -+ 02 dlag('y?’ ceey %))_1 (3/)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2. Probabilistic PCA & Factor Analysis

Regularization of Column Features W

p(W) :HN(VVJ'OaTJI)’ W_(Wla an)
j=1
=) —KlogT! — Swlw,
j=1
or 1 1 |
— =K==+ ——w/w; =0
I 7
=W Wi

This variant of probabilistic PCA is called Bayesian PCA.

(4)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2. Probabilistic PCA & Factor Analysis

Bayesian PCA: Example

[Bishop, 2006, p. 584]
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Machine Learning 2. Probabilistic PCA & Factor Analysis

Bayesian PCA: Example

[Bishop, 2006, p. 584]
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Machine Learning 2. Probabilistic PCA & Factor Analysis

Factor Analysis

p(z) == N(z;0,1)
p(x |z u X, W) :=N(x;un+ Wz, ), X diagonal

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2. Probabilistic PCA & Factor Analysis

Factor Analysis

) :=N(z0,1)
)=

p(z
p(x |z p, X, W N(x; p+ Wz,¥), X diagonal

UX, Z;p, 2, W)

2

1 1 _ 1
x Z —5 log |X| — E(Xi — = Wz)TE N (x — = Wz) — 2z z
1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2. Probabilistic PCA & Factor Analysis

Factor Analysis

p(z) := N(z;0,1)
p(x | zip, X, W) = N(x;p+ Wz,X), X diagonal

EM:
zi=(WTZ W+ NTWTE (% — p) (0)

M:in,-—Wz,' (1)
Xjj= %Z((Xi — pi — Wzp);)? (2)

W = Z(Xi - M)Z;T(Z ziz] )™ (3)

Note: See appendix for derivation of EM formulas.
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Machine Learning 3. Non-linear Dimensionality Reduction
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Outline v

3. Non-linear Dimensionality Reduction
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Machine Learning 3. Non-linear Dimensionality Reduction

Linear Dimensionality Reduction

Dimensionality reduction accomplishes two tasks:
1. compute lower dimensional representations for given data points x;
» for PCA:

u=X"WTx, U:= (b1, ..y u,,)T

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 3. Non-linear Dimensionality Reduction

Linear Dimensionality Reduction

Dimensionality reduction accomplishes two tasks:
1. compute lower dimensional representations for given data points x;
» for PCA:

u=X"WTx, U:= (b1, ..y u,,)T

2. compute lower dimensional representations for new data points x
(often called “fold in")

» for PCA:

u:=argmin||x — VZul? =X VTx
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Machine Learning 3. Non-linear Dimensionality Reduction

Linear Dimensionality Reduction

Dimensionality reduction accomplishes two tasks:
1. compute lower dimensional representations for given data points x;
» for PCA:

u=X"WTx, U:= (b1, ..y u,,)T

2. compute lower dimensional representations for new data points x
(often called “fold in")

» for PCA:

u:=argmin||x — VZul? =X VTx

PCA is called a linear dimensionality reduction technique because the
latent representations u depend linearly on the observed representations x.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 3. Non-linear Dimensionality Reduction

NN
Kernel Trick v

Represent (conceptionally) non-linearity by linearity in a higher
dimensional embedding

¢ :R™ — R™

but compute in lower dimensionality for methods that depend on x only
through a scalar product

%70 = ¢p(x)Tp(0) = k(x,0), x,0 € R™

if k can be computed without explicitly computing ¢.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 3. Non-linear Dimensionality Reduction

Kernel Trick / Example

Example:
1
¢ R — R00L 31.62x
N << 1000 ) 3 X’,> _ 706.75 x?2
i B :
i=0,...,1000 :
' 31.62 x99
51000

1000
K70 =o(x)To(0) = > < 1000 > X0 = (14 x0)19% —. k(x, )
i=0

Naive computation:

» 2002 binomial coefficients, 3003 multiplications, 1000 additions.
Kernel computation:

» 1 multiplication, 1 addition, 1 exponentiation.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 3. Non-linear Dimensionality Reduction

Kernel PCA

¢ R™" SR m>m
P(x1)"

5. ¢(X.2)T

¢(xn) T
X ~UxzvT

We can compute the columns of U as eigenvectors of XX T € R"*n
without having to compute V € R™*k (which is large!):

XXTU; = o?U;

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 3. Non-linear Dimensionality Reduction

B
Kernel PCA / Removing the Mean i

Issue 1: The X; := ¢(x;) may not have zero mean and thus distort PCA.

n
o 1Z~
Xi =X — — X
n<
i=1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 3. Non-linear Dimensionality Reduction

B
Kernel PCA / Removing the Mean i

Issue 1: The X; := ¢(x;) may not have zero mean and thus distort PCA.

1 n
~/ —— - =,
X =X - Zx,
i=1
oT 1
=(XT(1 = 1)),

- 1 -
X =(,.... 3 = - ;]J)XT

1)i=1,...,n,j=1,...,n Matrix of ones,

o(i = unity matrix.
Lars c(vm(\'d TI‘/ )w’e %mfbrﬂﬂ’*/ﬂo}ﬁ v Syslems a achineLearning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 3. Non-linear Dimensionality Reduction

B
Kernel PCA / Removing the Mean i

Issue 1: The X; := ¢(x;) may not have zero mean and thus distort PCA.

n
o 1Z~
Xi =X — — X
n-
i=1

=(XT( -2,

o 1 . -
X =(,.... 3 = - ;]J)XT
K =X'XT=(- 111)>"<T X (I — 1]J)
n n
1
=HKH, H:=(l—- E]J) centering matrix

Thus, the kernel matrix K’ with means removed can be computed from
the kernel matrix K without having to access coordinates.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 3. Non-linear Dimensionality Reduction

Kernel PCA / Fold In

Issue 2: How to compute projections u of new points x (as V is not
computed)?

u:=argmin||x — VZu|? =L 1VTx
u
With

<t

=XTyuz1t

u=YWTx =215 W Xx = 272U (k(x;, x))i=1

N

u can be computed with access to kernel values only (and to U, X).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 3. Non-linear Dimensionality Reduction

B
Kernel PCA / Summary i

Given:

» data set X := {x1,...,x,} CR",

» kernel function k : R™ x R™ — R.

task 1: Learn latent representations U of data set X:

K ::(k(xiaXj))iZl,‘..,nxj:I,...,n (0)
1

K':=HKH, H:=(l - -1)
n

(U, X) :=eigen decomposition K'U = UZ (2)

task 2: Learn latent representation u of new point x:
U= Z_zUT(k(x;,x)),-:L,_.m (3)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Machine Learning 3. Non-linear Dimensionality Reduction

Kernel PCA: Example 1

Eigenvalue=22.558
1.5

1

Eigenvalue=20.936
15

Eigenvalue=4.648
5

Eigenvalue=3.988
5

Eigenvalue=3.372
5

©

0.5 0.5
O O O
-0.5 5

0

1.5
1
0.5
0

-0.5

-1

Eigenvalue=2.760
5
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Machine Learning 3. Non-linear Dimensionality Reduction

Kernel PCA: Example 2

06— T T
g‘ x
oAb % g M
® X& X Xy -
x
02f X % X %
x
ok
x
—02f
F e,
oah x % %
x% ”*‘* X x
% x
—06 x
-08 . .
06 04 02

0.6

[Murphy, 2012, p. 495]
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Machine Learning 3. Non-linear Dimensionality Reduction

NN
Kernel PCA: Example 2 “

0.6

-0.4[ 3 1
¥
g
L
0

08 L L L
-0.8 -0.6 -0.4 -0.2

[Murphy, 2012, p. 495]
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Machine Learning 4. Supervised Dimensionality Reduction

. NN
Outline v

4. Supervised Dimensionality Reduction

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 4. Supervised Dimensionality Reduction

Dimensionality Reduction as Pre-Processing

Given a prediction task and
a data set D" := {(x1, 1), -, (Xn,¥n)} CR™ x V.

1. compute latent features z; € R¥ for the objects of a data set by
means of dimensionality reduction of the predictors x;.

» eg., using PCAon {xy,...,x,} CR™

2. learn a prediction model
y.RK 5y
on the latent features based on

p/train . _ {(z1,51)s -5 (Znyyn)}

3. treat the number K of latent dimensions as hyperparameter.
» e.g., find using grid search.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 4. Supervised Dimensionality Reduction

Dimensionality Reduction as Pre-Processing
Advantages:
» simple procedure

» generic procedure

» works with any dimensionality reduction method and any prediction
method as component methods.

» usually fast

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 4. Supervised Dimensionality Reduction

Dimensionality Reduction as Pre-Processing “
Advantages:
» simple procedure

» generic procedure

» works with any dimensionality reduction method and any prediction
method as component methods.

» usually fast

Disadvantages:

» dimensionality reduction is unsupervised, i.e., not informed about
the target that should be predicted later on.

> leads to the very same latent features regardless of the prediction task.

» likely not the best task-specific features are extracted.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 4. Supervised Dimensionality Reduction

Supervised PCA

p(z) == N(z;0,1)
p(x | z; px, 05, Wi) 1= N (x; pux + Wiz, 031)
p(y | zipy 00, W) == Ny py + Wy z,021)

» like two PCAs, coupled by shared latent features z:
» one for the predictors x.

» one for the targets y.
» latent features act as information bottleneck.

» also known as Latent Factor Regression or Bayesian Factor
Regression.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

37 /

40



Machine Learning 4. Supervised Dimensionality Reduction

NN
Supervised PCA: Discriminative Likelihood “

A simple likelihood would put the same weight on
» reconstructing the predictors and

» reconstructing the targets.

A weight a € ]Rar for the reconstruction error of the predictors should be
introduced (discriminative likelihood):

Lo(©;x,y,2) = [ [ pyi | zi: ©)p(xi | zi: ©)*p(zi; ©)
i=1

« can be treated as hyperparameter and found by grid search.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 4. Supervised Dimensionality Reduction

NN
Supervised PCA: EM “

» The M-steps for ju, o2, Wy and uy,af,, W, are exactly as before.

» the coupled E-step is:

1 1 171 1
z= <2vv]vvy tas WJWX> (2 W (3 — pay) + g W (o5 — ux))
oy (g oy (o5

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 4. Supervised Dimensionality Reduction

NS
Conclusion (1/4) i

» Dimensionality reduction aims to find a lower dimensional
representation of data that preserves the information as much as
possible. — " Preserving information” means

> to preserve pairwise distances between objects
(multidimensional scaling).

> to be able to reconstruct the original object features
(feature reconstruction).

» The truncated Singular Value Decomposition (SVD) provides the
best low rank factorization of a matrix in two factor matrices.
» SVD is usually computed by an algebraic factorization method
(such as QR decomposition).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 4. Supervised Dimensionality Reduction

B
Conclusion (2/4) i

» Principal components analysis (PCA) finds latent object features
and latent variable features that provide the best linear
reconstruction (in L2 error).

» PCA is a truncated SVD of the data matrix.

» Probabilistic PCA (PPCA) provides a probabilistic interpretation of
PCA.

» PPCA adds a L2 regularization of the object features.
» PPCA is learned by the EM algorithm.

» Adding L2 regularization for the linear reconstruction/variable features
on top leads to Bayesian PCA.

» Generalizing to variable-specific variances leads to Factor Analysis.

» For both, Bayesian PCA and Factor Analysis, EM can be adapted easily.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 4. Supervised Dimensionality Reduction

B
Conclusion (3/4) i

» To capture a nonlinear relationship between latent features and
observed features, PCA can be kernelized (Kernel PCA).

» Learning a Kernel PCA is done by an eigen decomposition of the kernel
matrix.

» Kernel PCA often is found to lead to “unnatural visualizations”.

» But Kernel PCA sometimes provides better classification performance
for simple classifiers on latent features (such as 1-Nearest Neighbor).
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Machine Learning 4. Supervised Dimensionality Reduction

B
Conclusion (4/4) i

» To learn a latent representation that is useful for a given supervised

task, either

» a two-stage approach can be taken (PCA regression):
1. to learn a PCA (unsupervised) and
2. to learn a supervised model based on the PCA features.
> treating the PCA dimensionality K as hyperparameter, or

» the PCA and the regression model can be combined into one model

learned jointly (supervised PCA)

» yields features optimized for the supervised task at hand.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning

Readings

v

Principal Components Analysis (PCA)

» Hastie et al. [2005], ch. 14.5.1, Bishop [2006], ch. 12.1, Murphy
[2012], ch. 12.2.

Probabilistic PCA
» Bishop [2006], ch. 12.2, Murphy [2012], ch. 12.2.4.

v

v

Factor Analysis
» Hastie et al. [2005], ch. 14.7.1, Bishop [2006], ch. 12.2.4.

Kernel PCA

» Hastie et al. [2005], ch. 14.5.4, Bishop [2006], ch. 12.3, Murphy
[2012], ch. 14.4.4.

\{

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning

Further Readings

» (Non-negative) Matrix Factorization
» Hastie et al. [2005], ch. 14.6
» Independent Component Analysis, Exploratory Projection Pursuit
» Hastie et al. [2005], ch. 14.7 Bishop [2006], ch. 12.4 Murphy [2012]
ch. 12.6.
» Nonlinear Dimensionality Reduction

» Hastie et al. [2005], ch. 14.9, Bishop [2006], ch. 12.4

\4

Very influential paper about visualization:
» van der Maaten and Hinton [2008]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning

Factor Analysis: Loglikelihood

UX, Z;p,x, W)

n
= Inp(x | zp, T, W)+Inp(z)
i=1
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Machine Learning

Factor Analysis: Loglikelihood

UX,Z;pu, 2, W)

n
= Inp(x | zp, T, W)+Inp(z)
i=1

= InN(x;p+ Wz, X) + In N (20, 1)

1
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Machine Learning

Factor Analysis: Loglikelihood

UX,Z;pu, 2, W)

n
= Inp(x | zp, T, W)+Inp(z)
i=1

= InN(x;p+ Wz, X) + In N (20, 1)

1 1 _ L
x D =5 log [T = 50— p = Wa) T 5 — = Wap) = 52z

2

1
remember: N(x; i, ¥) = —2——e” HCRD LGl
Lars Schmidt-Thieme, Information Séggen A A%\/lachme Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning

Factor Analysis: Loglikelihood

UX,Z;pu, 2, W)

n
= Inp(x | zp, T, W)+Inp(z)
i=1

= InN(x;p+ Wz, X) + In N (20, 1)
x Z 1 log |X| — 1(x — = Wz) T Y% — o — W) — 1z-Tz-
: 5 5 i i i i 5 i
x — Z log |X| 4+ (x " x4+ pu L+ 2T WL Wz — 2xT 1
' —2xT XYWz 4+ 2T W) 4z z
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Machine Learning

NS
Factor Analysis: EM / Block Coordinate Descent i

UX, Z;p,x, W)
x — Z log |X| 4+ (x " Ixi 4+ pu L+ 2T WTE Wz — 2xT 1
’ — T MW + 20 TS W) + 2T 2

gl =2z WTsIw —2x" w4 2,7y tw) — 227 -
zj

(WTE W4 Nz = WTE Y (x — p)
zi=(WTE W+ NTWTEY(x — p)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
44 / 40



Machine Learning

NS
Factor Analysis: EM / Block Coordinate Descent i

UX, Z;p, 2, W)
x — Z log ||+ ("= I+ pu S+ 2T W Wz — 2x 571y
/ —2xT X Wz 4+ 20 TS W) 4z z

ol

5= SouTE ooty 2 wiE =0
H i

1
== . — Wz Iy
I n%X z (1)

Note: As E(z;) =0, p often is fixed to pu:= 1 3", x;.

n
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Machine Learning

NS
Factor Analysis: EM / Block Coordinate Descent i

UX, Z;p, 2, W)
x — Z log ||+ ("= I+ pu S+ 2T W Wz — 2x 571y
/ —2xT X Wz 4+ 2T W) 4 2 z;

ol 1
-

1 .
= — + —— (X,'—u,'—WZ,')giO
9% Yo (Zg)? Z /

Xjj = Y (6 = pi = Way);)? (2)

i
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Machine Learning

NS
Factor Analysis: EM / Block Coordinate Descent i

UX,Z;p,x, W)
x — Z log |[Z| 4+ ("= + "X u+ 2T WTE Wz — 2x" 21y
i — 2] XYWz 4+ 2T S W) + ZT z

= _ Z 25 TWzizT — 25 txz] 42X tuz 710
Z ZiZ, = Z Xi — :U’)ZIT
W= Z )ZiT(Z ziz! )™ 3")
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Machine Learning
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Machine Learning

Matrix Trace

The function tr - U R™" s R
neN

is called matrix trace.
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Machine Learning

Matrix Trace

The function tr: U R/ S R
neN

n

A tr(A) = Z aj j

i=1
is called matrix trace. It holds:

a) invariance under permutations of factors:
tr(AB) = tr(BA)
b) invariance under basis change:

tr(B71AB) = tr(A)
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Machine Learning

Matrix Trace
The function tr - U R™M S R

neN

A tr(A) = Z aj j
is called matrix trace. It holds:

a) invariance under permutations of factors:
tr(AB) = tr(BA)

b) invariance under basis change:
tr(B71AB) = tr(A)

proof:

a) tr(AB) ZZA,JBJ, _ZZB,JAJ, = tr(BA)

b) tr(B~ 1AB):tr(BB lA):tr(A)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning

Frobenius Norm
The function || . ||f: U R™M — RE
n,meN n.m 1
A |Alle =0 a)):
i=1 j=1

is called Frobenius norm.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
47 / 40



Machine Learning

Frobenius Norm
The function || . ||¢ : U R™M — RE

n,meN n.m 5 |1
A Al =] ar))

i=1 j=1
is called Frobenius norm. It holds:

a) trace representation:
1
IAl[F = (tr(ATA))z
b) invariance under orthonormal transformations:

tr(UAVT) = tr(A), U,V orthonormal
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Machine Learning

NN
Frobenius Norm v

The function || . ||f: U RXM _y R+

n,meN 1
A}_)HAHF - Zzau

i=1 j=1

N \

is called Frobenius norm. It holds:
a) trace representation:
1AllF = (tr(AT A))>
b) invariance under orthonormal transformations:

tr(UAVT) = tr(A), U,V orthonormal

a) tr(ATA) = ZZ Aji = lIAl13

b) ||UAV||% = tr(VATUTUAVT) =tr(VATAVT)
=tr(ATAVTV) = tr(AT A) = [|A||2

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning

NS
Frobenius Norm (2/2) i

c) representation as sum of squared singular values:

min{m,n}

1Alle= > of
i=1
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Machine Learning

Frobenius Norm (2/2)

c) representation as sum of squared singular values:

min{m,n}
lAllF=>_ of
i=1

proof:
c)let A= ULV the SVD of A

min{m,n}

Il = VRVl = Il = () = 3 of
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