In Class Exercises for $\mathbf{2}^{\text {nd }}$ week tutorials These are some in class problems repeating material from the Pre-Course. We will solve them in class in small groups and then discuss the solutions.

1. Linear Algebra

In the lecture, the optimal parameters $\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)$ of a linear regression model $\hat{y}(x)=\beta_{0}+\beta_{1} x$ were given by the formulas

$$
\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x} \quad \hat{\beta}_{1}=\frac{\sum_{n=1}^{N}\left(x_{n}-\bar{x}\right)\left(y_{n}-\bar{y}\right)}{\sum_{n=1}^{N}\left(x_{n}-\bar{x}\right)^{2}}
$$

show that these are equivalent to the following formulas by vectorizing the sums.

$$
\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x} \quad \hat{\beta}_{1}=\frac{\frac{1}{N} x^{\top} y-\bar{x} \cdot \bar{y}}{\frac{1}{N} x^{\top} x-\bar{x}^{2}}
$$

2. Calculus

In the lecture the residual square error (RSS) of a model $\hat{y}(x, \beta)$ was defined as

$$
\operatorname{RSS}(\beta)=\sum_{n=1}^{N}\left(y_{n}-\hat{y}\left(x_{n}\right)\right)^{2}
$$

In the case of a linear model $\hat{y}(x)=\beta_{0}+\beta_{1} x$, convince yourself that this is equal to

$$
\operatorname{RSS}(\beta)=\|y-\hat{y}(x)\|_{2}^{2}=\left\|y-(1, x)\binom{\beta_{0}}{\beta_{1}}\right\|_{2}^{2}=\|y-\tilde{X} \beta\|_{2}^{2}
$$

where $\tilde{X}=\left(\begin{array}{ll}1 & x\end{array}\right)=\left(\begin{array}{cc}1 & x_{1} \\ 1 & x_{2} \\ \vdots & \vdots \\ i & x_{n}\end{array}\right)$. Then compute the gradient ∇_{β} RSS two times in two different ways: once using the summation notation and computing the partial derivatives $\frac{\partial}{\partial \beta_{0}} \operatorname{RSS}$ and $\frac{\partial}{\partial \beta_{1}} \operatorname{RSS}$ individually, and once via the vector notation computing both simultaneously.

3. Optimization

Use the gradient obtained from the last exercise to perform 2 steps of gradient descent

$$
\beta^{(t+1)}=\beta^{(t)}-\eta \nabla_{\beta} \operatorname{RSS}
$$

on the dataset (1). Start with $\beta^{(0)}=(1,0)$ and use a learning rate of $\eta=0.01$. Make a scatter-plot of the data and sketch \hat{y} after each iteration.

x	y
1	1
2	3
4	3

4. Probability - Bayes Theorem

(Example 2.2.3.1 from Murphy's book). Consider taking a medical test that can detect breast-cancer. The test has a sensitivity of 80%, i.e. if the person has breast-cancer, then the test will be positive with a chance of 80%. Moreover, the test is also 90% specific, i.e. if a person does not have breast-cancer, the test will be negative with a chance of 90%.
A. Given that 0.4% of the total population suffer from breast cancer, how high is the probability that a person has cancer if the test result is positive?
B. How high is the chance that a person has cancer if they get tested positively two times with a different, independent tests (with same sensitivity and specificity)? How high after 3, 4 and 5 positive tests?

