Deadline: Friday November 27 ${ }^{\text {th }}, \mathbf{1 0 : 0 0}$ Please upload a .pdf file via LearnWeb. (e.g. exported Jupyter notebook)

1 Model Selection

A [2p] Explain how one can detect whether a model is over- or underfitting.
B [2p] Explain how one can deal with a model that's over- or underfitting.
C [2p] Consider a binary classification problem where each class is generated by a Normal distribution.

- 50% of the datapoints belong to class A and are distributed as $p(x \mid y=A)=\mathcal{N}\left(x \mid \mu_{A}, 1\right)$
- 50% of the datapoints belong to class B and are distributed as $p(x \mid y=B)=\mathcal{N}\left(x \mid \mu_{B}, 1\right)$

What the maximum accuracy any classifier could achieve for this problem, depending on $\delta=\mu_{A}-\mu_{B}$? (you can assume $\mu_{A}>\mu_{B}$). The minimal possible error is also known as the irreducible error or Bayes error rate.

D [2p] Consider fitting a model on a new dataset. If we observe a very high training loss value, what does this tell us about the quality of the model? Is it over- or underfitting?

2 Bayesian Information Criterion

(4 points)
The is commonly assumed in regression problems that the target variables y are generated by a deterministic function f and an additive, white noise error term ϵ, i.e.

$$
y_{i}=f\left(x_{i}\right)+\epsilon_{i} \quad \text { where } \quad \epsilon_{i} \stackrel{\text { iid }}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)
$$

The goal is to recover the function f. Towards this goal, a parametric function $\hat{y}(x ; \beta)$ is chosen, and the model is learned by maximizing the conditional likelihood $p(y \mid x)=\mathcal{N}\left(y \mid \hat{y}(x ; \beta), \sigma^{2}\right)$.

A [2p] Show that for such a model, the conditional log-likelihood has the form

$$
\ell\left(\beta, \sigma^{2}\right)=-\frac{1}{2 \sigma^{2}} \mathrm{RSS}-\frac{1}{2} N \log \left(2 \pi \sigma^{2}\right)
$$

\mathbf{B} [2p] Show that the maximum likelihood estimate for σ^{2} is $\hat{\sigma}^{2}=\operatorname{MSE}(\hat{y})=\frac{1}{N}\|y-\hat{y}(x ; \beta)\|_{2}^{2}$.

3 Multi-output Linear Regression

(8 points)
When we have multiple independent outputs in linear regression, the model is defined as

$$
p(y \mid x, W)=\prod_{j=1}^{M} \mathcal{N}\left(y_{i} \mid w_{j}^{T} x_{i}, \sigma^{2}\right)
$$

Since the likelihood factorizes across dimensions, so does the maximum likelihood estimator (MLE). Thus

$$
\hat{W}=\left[\hat{w}_{1}, \ldots, \hat{w}_{M}\right]
$$

where $\hat{w}_{j}=\left(X^{T} X\right)^{-1} Y_{:, j}$. In this exercise we apply this result to a model with a 2-dimensional response vector $y_{i} \in \mathbb{R}^{2}$.
Suppose we have the following binary data, $x_{i} \in\{0,1\}$, and the following training data:

x	y
0	$(-1,-1)^{T}$
0	$(-1,-2)^{T}$
0	$(-2,-1)^{T}$
1	$(1,1)^{T}$
1	$(1,2)^{T}$
1	$(2,1)^{T}$

A [1p] Write down the model closed form.(Hint: You can define an embedding function ϕ for x such that $\phi(0)=(1,0)^{T}$ and $\left.\phi(1)=(0,1)^{T}\right)$

B [7p] Solve for \hat{W}.

