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1 L2 regularization (10 points)
A [7p] Fit a linear regression model (including bias) with L2 regularization to the dataset from Table ?? by performing
2 iterations of coordinate descent (update each parameter twice). Use β(0) = 0 and λ = 0.5.

x1 x2 y

1 1 1.4
1 -1 1.6
-1 0 0.5
-1 -1 0.6

Table 1

B [3p] The elastic-net model is a linear model with a mix of L1 and L2 regularization.

Lenet(β) =
1

2N
∥y −Xβ∥22 + λ

(
α∥β∥1 + (1− α) 12∥β∥

2
2

)
Note that if α = 1, elastic net is the same as lasso and for α = 0 it is the same as ridge regression. For α ∈ (0, 1) it is
something in between. We trained an Elastic Net model 4 times on a regression task, each time choosing a different
trade-off α ∈ {0, 0.25, 0.5, 1}. The resulting regularization paths, as well as the number of non-zero coefficients at
different total regularization strength λ is shown in Figure ??. Explain which figure corresponds to which choice of α.
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Figure 1: Regularization paths of the 4 models

2 Hyperparameter Optimization – Programming (10 points)
Use the following code to load the ”IRIS” dataset using the sklearn library. Follow the TODOs.

from sklearn.svm import SVC
from sklearn import datasets
from sklearn.modelselection import traintestsplit
from sklearn.metrics import SCORERS
from sklearn.modelselection import crossvalscore
from sklearn.metrics import accuracyscore

CVSPLITS=5

data, target = datasets.loadiris(returnXy=True)

shuffleseed = 2020
# Always shuffle your data to be safe. Use fixed seed for reprod.
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dataX, dataXt, datay, datayt = traintestsplit(
data, target, testsize=0.2, randomstate=shuffleseed, shuffle=True

)

hyperparameters = –
”C”: –

”range”: (1.0, 1e3)
,

”gamma”: –
”range”: (1e-4, 1e-3)
,

fixedparameters = –
”kernel”: ”rbf”,
”probability”: True,
”tol”:1e-1

# TODO : Select 100 pairs of hyperparameters, e.g. –”C”:4,”gamma”:2e-4
# Iteratively:
# TODO : create a parameters dictionary including the fixedparameters

and the new hyper-parameters
# TODO : Define a SVC Model given the new parameters
# clf = ?
# Do a cross validation and report the mean and standard deviation
# S = crossvalscore(clf, dataX, datay, scoring=SCORERS[”accuracy

”], cv=CVSPLITS)
# Report the test accuracy
# Visualize the results on a 2D grid. Show one figure for the validation, and

one figure for the test results.

[5]Parameter Variance – OLS vs Ridge Regression For the following problem, we assume that the ground truth is is a
linear function y(x) = xTβ̂ + ϵ with ϵ

iid∼ N (0, σ2) and we are given a finite data sample (X,Y ). From the lecture we
know that the ordinary least squares (ols) estimator β̂ols = (XTX)−1XTY satisfies:

• E[β̂ols ] = β̂

• V[β̂ols ] = (XTX)−1σ2

In particular, we note that the ols estimator is unbiased!

A [2p] Show that the ridge estimator β̂ridge = (XTX + λ I)−1XTy satisfies

• E[β̂ridge ] = (XTX + λ I)−1XTXβ̂

• V[β̂ridge ] = (XTX + λ I)−1XTX(XTX + λ I)−1σ2

In particular, we note that the ridge estimator is biased!

B [3p] Given two covariance matrices ΣA and ΣB , we say that ΣA is strictly greater than ΣB (in symbols ΣA > ΣB)
iff ΣA − ΣB is positive definite. (This is the so called Löwner order). Show that β̂ols has stricly greater variance than
β̂ridge

Hint: Note that (XTX)−1 and XTX + λ I commute. More generally, if p and q are polynomial functions, then
p(A)q(A) = q(A)p(A) and likewise q(A)−1p(a) = p(A)q(A)−1 for any square matrix A.

https://en.wikipedia.org/wiki/Loewner_order

	
	
	

	
	
	


