Deadline: Friday December 11th, 10:00 Upload a . pdf file via LearnWeb. (e.g. exported Jupyter notebook)

1 Distance Measures

		М	А	С	Η	Ι	Ν	Е
	0	1	2	3	4	5	6	7
L	1							
Е	2							
А	3							
R	4							
Ν	5							
Ι	6							
Ν	7							
G	8							

B [3p] Show that the Hamming distance between two sets

$$dist_{Ham}(X,Y) = |(X \setminus Y) \cup (Y \setminus X)| = |(X \cup Y) \setminus (Y \cap X)|$$

satisfies the 3 properties (positive definiteness, symmetry and triangle inequality) a of distance measures.

Hint: Draw some Venn diagrams!

C [4p] In \mathbb{R}^2 , draw all points that are distance 1 away from the origin with respect to

- 1. The taxicab distance $\operatorname{dist}(x, y) = ||x y||_1$
- 2. The euclidean distance $dist(x, y) = ||x y||_2$
- 3. The maximum distance $dist(x, y) = ||x y||_{\infty}$
- 4: The Mahalanobis distance with matrix $\Sigma^{-1} = \left(\begin{smallmatrix} 1 & 0.5 \\ 0.5 & 1 \end{smallmatrix}\right)$
- [3] Given a symmetric, positive definite covariance matrix Σ , show that the **Mahalanobis distance**

$$\operatorname{dist}_{\operatorname{Maha}}(x,y) = \sqrt{(x-y)^{\mathsf{T}}\Sigma^{-1}(x-y)}$$

satisfies the 3 defining properties of a distance measure.

Hint: Try to make use of the following facts from linear algebra.

- If $\langle x|y \rangle$ is an inner product, then $||x|| \stackrel{\text{def}}{=} \sqrt{\langle x|x \rangle}$ is a norm.
- If ||x|| is a norm, then $dist(x, y) \stackrel{\text{def}}{=} ||x y||$ is a distance measure.

2 K Nearest Neighbors

Given is following data set:

x	1	2	3	4	5	6	7	8	9	10
у	20	18	16	14	12	10	8	6	4	2

A [3p] Predict the target for x = 0, x = 2.5 and x = 5.75 using 2-nearest-neighbor regression using the L_2 metric.

B [2p] Make a sketch of the final prediction for $x \in [0, 10]$ of the resulting 2-nearest-neighbor regression. What is noticeable?

(10+3 points)

1-0	• • • •	
(10)	points)	
(10	points	,

C [5p] The nearest-neighbor regression considers instances in its neighborhood, but neglects the actual distance. Kernel regression is similar to nearest-neighbor regression where the neighborhood **does not have a fixed size**. Instead, all instances contribute to the final prediction weighted by their similarity to the instance for which we want to predict. Precisely, the prediction is

$$\hat{y}(x_0) = \frac{\sum_{(x_i, y_i) \in \mathcal{D}_{train}} K(x_i, x_0) y_i}{\sum_{(x_i, y_i) \in \mathcal{D}_{train}} K(x_i, x_0)}$$

where K is a similarity measure. So the prediction is an average of the targets seen in the training data, however weighted by the similarities. Use the similarity function

$$K(x,x_0) = D\Big(\tfrac{|x-x_0|}{\lambda} \Big)$$

where D(t) is defined as

$$D(t) = \begin{cases} \frac{3}{4}(1-t^2) & t < 1\\ 0 & otherwise \end{cases}$$

and $\lambda = 2$ to predict the target for x = 0, x = 2.5 and x = 5.75.