Deadline: Friday December $\mathbf{1 1}^{\text {th }}, \mathbf{1 0 : 0 0}$ Upload a \cdot pdf file via LearnWeb. (e.g. exported Jupyter notebook)

1 Distance Measures

A [3p] Compute the Levenshtein distance between the two strings machine and learning

		M	A	C	H	I	N	E
	0	1	2	3	4	5	6	7
L	1							
E	2							
A	3							
R	4							
N	5							
I	6							
N	7							
G	8							

B [3p] Show that the Hamming distance between two sets

$$
\operatorname{dist}_{\text {Ham }}(X, Y)=|(X \backslash Y) \cup(Y \backslash X)|=|(X \cup Y) \backslash(Y \cap X)|
$$

satisfies the 3 properties (positive definiteness, symmetry and triangle inequality) a of distance measures.

Hint: Draw some Venn diagrams!

C [4p] In \mathbb{R}^{2}, draw all points that are distance 1 away from the origin with respect to

1. The taxicab distance $\operatorname{dist}(x, y)=\|x-y\|_{1}$
2. The euclidean distance $\operatorname{dist}(x, y)=\|x-y\|_{2}$
3. The maximum distance $\operatorname{dist}(x, y)=\|x-y\|_{\infty}$

4* The Mahalanobis distance with matrix $\Sigma^{-1}=\left(\begin{array}{cc}1 & 0.5 \\ 0.5 & 1\end{array}\right)$
[3] Given a symmetric, positive definite covariance matrix Σ, show that the Mahalanobis distance

$$
\operatorname{dist}_{\text {Maha }}(x, y)=\sqrt{(x-y)^{\top} \Sigma^{-1}(x-y)}
$$

satisfies the 3 defining properties of a distance measure.

Hint: Try to make use of the following facts from linear algebra.

- If $\langle x \mid y\rangle$ is an inner product, then $\|x\| \stackrel{\text { def }}{=} \sqrt{\langle x \mid x\rangle}$ is a norm.
- If $\|x\|$ is a norm, then $\operatorname{dist}(x, y) \stackrel{\text { def }}{=}\|x-y\|$ is a distance measure.

2 K Nearest Neighbors

(10 points)
Given is following data set:

x	1	2	3	4	5	6	7	8	9	10
y	20	18	16	14	12	10	8	6	4	2

A [3p] Predict the target for $x=0, x=2.5$ and $x=5.75$ using 2-nearest-neighbor regression using the L_{2} metric.
B [2p] Make a sketch of the final prediction for $x \in[0,10]$ of the resulting 2-nearest-neighbor regression. What is noticeable?

C [5p] The nearest-neighbor regression considers instances in its neighborhood, but neglects the actual distance. Kernel regression is similar to nearest-neighbor regression where the neighborhood does not have a fixed size. Instead, all instances contribute to the final prediction weighted by their similarity to the instance for which we want to predict. Precisely, the prediction is

$$
\hat{y}\left(x_{0}\right)=\frac{\sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}_{\text {train }}} K\left(x_{i}, x_{0}\right) y_{i}}{\sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}_{\text {train }}} K\left(x_{i}, x_{0}\right)}
$$

where K is a similarity measure. So the prediction is an average of the targets seen in the training data, however weighted by the similarities. Use the similarity function

$$
K\left(x, x_{0}\right)=D\left(\frac{\left|x-x_{0}\right|}{\lambda}\right)
$$

where $D(t)$ is defined as

$$
D(t)= \begin{cases}\frac{3}{4}\left(1-t^{2}\right) & t<1 \\ 0 & \text { otherwise }\end{cases}
$$

and $\lambda=2$ to predict the target for $x=0, x=2.5$ and $x=5.75$.

