Machine Learning 1 Prof. Schmidt-Thieme, Hadi S. Jomaa

"deshe

Deadline: December 18th, 10:00 Upload a . pdf file via LearnWeb. (e.g. exported Jupyter notebook)

1. Neural Networks - Practice

Consider the Neural Network depicted in Figure 1. Bias terms are omitted in this exercise.

Figure 1: Neural Network model

A. [3p] Perform the forward pass for the single input datapoint x = (2, 4).

B. [5p] Given the single training instance x = (1, 2), y = 1 update all the weights once via back-propagation, using the log-likelihood objective function function $\ell = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})$, sigmoid activation function, learn rate $\eta = 1$ and without any regularization.

C. [2p] Perform another forward pass, using the updated weights. Comment on the result.

2. Neural Networks – Theory

In tutorial 3 we have seen that a logistic regression model, i.e. a single artificial neuron with sigmoid activation function cannot solve the xor dataset.

x_1	x_2	y	_	x_1	x_2	y	x_1	x_2	y	_	x_1	x_2	y	_	x_1	x_2	y
0	0	0	-	0	0	0	0	0	1	-	0	0	1	-	0	0	0
0	1	1		0	1	0	0	1	0		0	1	1		0	1	1
1	0	1		1	0	0	1	0	0		1	0	1		1	0	1
1	1	1		1	1	1	1	1	0		1	1	0		1	1	0
(a) or				(b) and		(c) nor		ł		(d)	(d) nand			(e) xor			

A. [3p] Show that the binary XOR function can be realized as combination of the binary AND and OR functions plus negations.

B. [7p] Design a Neural Network consisting of 3 neurons which realizes the binary XOR function. Provide a full explicit description of the network! (activation function, weights, etc.)

Figure 2: Perceptron model

1/1

	-	^		•		`
		"	nc		atc.	•
•		v	170	,	11.5	
•		~	r ~			,

(10 points)