Deadline: Friday January 22nd, 10:00 Upload a . pdf file via LearnWeb. (e.g. exported Jupyter notebook)

1 Conditional independence

A [2p] What does it mean in lay-mans terms if we say two events A and B are conditionally independent given that an event C occurred?

B [2p] Draw the Bayesian network associated with the joint pdf:

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=p\left(x_{5} \mid x_{1}, x_{3}, x_{4}\right) p\left(x_{4} \mid x_{2}, x_{3}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right)
$$

C [4p] Consider the following Bayesian Networks

(a) "chain"

(b) "split" or "fork"

(c) "join" or "collider"

These graphs are associated with the joint probabilities:
(a) $p(x, y, z)=p(z \mid y) p(y \mid x) p(x)$
(b) $p(x, y, z)=p(y \mid x) p(z \mid x) p(x)$
(c) $p(x, y, z)=p(z \mid x, y) p(y) p(x)$

Show that, for the different cases respectively, holds:
(a) X and Z are conditionally independent given Y
(b) Y and Z are conditionally independent given X
(c) X and Y are generally not conditionally independent given Z^{1}

2 Naïve Bayes

A [5p] Given is an imbalanced data set for binary classification with 100,000 instances, only 10 labeled as positive, all remaining as negative. Our learned classifier is able to classify 99.99% of the instances correctly. What is the probability that an instance that is classified as positive is actually negative?

B [7p] Given is the following training data:

	Color	Type	Origin	Stolen
1	Red	Sports	Domestic	Yes
2	Red	Sports	Domestic	No
3	Blue	Sports	Domestic	Yes
4	Blue	Sports	Domestic	No
5	Blue	Sports	Imported	Yes
6	Blue	Grand tourer	Imported	No
7	Blue	Grand tourer	Imported	Yes
8	Blue	Grand tourer	Domestic	No
9	Red	Grand tourer	Imported	Yes
10	Red	Sports	Imported	Yes

[3 a] Calculate the probabilities
P (Red|Yes) , $\quad P$ (Grand tourer|Yes), $\quad P$ (Domestic|Yes), $P($ Red \mid No $), \quad P($ Grand tourer \mid No $), \quad P($ Domestic \mid No $)$
[4 b b Predict the probability that a car with properties $X_{1}=\operatorname{Red}, X_{2}=$ Grand tourer, $X_{3}=$ Domestic will be stolen.

[^0]
[^0]: ${ }^{1}$ Provide a counter example.

