Deadline: Friday January 22nd, 10:00 Upload a . pdf file via LearnWeb. (e.g. exported Jupyter notebook)

1 Conditional independence

A [2p] What does it mean in lay-mans terms if we say two events A and B are conditionally independent given that an event C occurred?

B [2p] Draw the Bayesian network associated with the joint pdf:

 $p(x_1, x_2, x_3, x_4, x_5) = p(x_5 | x_1, x_3, x_4) p(x_4 | x_2, x_3) p(x_3 | x_1, x_2) p(x_2 | x_1) p(x_1)$

C [4p] Consider the following Bayesian Networks

These graphs are associated with the joint probabilities:

- (a) p(x, y, z) = p(z|y)p(y|x)p(x)
- (b) p(x, y, z) = p(y|x)p(z|x)p(x)
- (c) p(x, y, z) = p(z|x, y)p(y)p(x)

Show that, for the different cases respectively, holds:

- (a) X and Z are conditionally independent given Y
- (b) Y and Z are conditionally independent given X
- (c) X and Y are generally **not** conditionally independent given Z^1

2 Naïve Bayes

A [5p] Given is an imbalanced data set for binary classification with 100,000 instances, only 10 labeled as positive, all remaining as negative. Our learned classifier is able to classify 99.99% of the instances correctly. What is the probability that an instance that is classified as positive is actually negative?

B [7p] Given is the following training data:

	Color	Туре	Origin	Stolen
1	Red	Sports	Domestic	Yes
2	Red	Sports	Domestic	No
3	Blue	Sports	Domestic	Yes
4	Blue	Sports	Domestic	No
5	Blue	Sports	Imported	Yes
6	Blue	Grand tourer	Imported	No
7	Blue	Grand tourer	Imported	Yes
8	Blue	Grand tourer	Domestic	No
9	Red	Grand tourer	Imported	Yes
10	Red	Sports	Imported	Yes

[3 **a**] Calculate the probabilities

```
\begin{array}{ll} P\left(\text{Red}|\text{Yes}\right), & P\left(\text{Grand tourer}|\text{Yes}\right), & P\left(\text{Domestic}|\text{Yes}\right), \\ P\left(\text{Red}|\text{No}\right), & P\left(\text{Grand tourer}|\text{No}\right), & P\left(\text{Domestic}|\text{No}\right) \end{array}
```

[4 **b**]Predict the probability that a car with properties $X_1 = \text{Red}, X_2 = \text{Grand tourer}, X_3 = \text{Domestic will be stolen}$.

(12 points)

(8 points)

¹Provide a counter example.