Machine Learning 1 Prof. Schmidt-Thieme, Hadi S. Jomaa

"deshe"

Deadline: Friday January 29th, 10:00 Upload a . pdf file via LearnWeb. (e.g. exported Jupyter notebook)

1. K Means Clustering

A. [2p] Compute the (squared) distance matrix $D_{ij} = \text{dist}_{\text{eucl.}}(x_i, x_j)^2$, given the data from Table	x_1	x_2
1.	0	0
B. [2p] Name two possible ways to choose the updated mean in the K-means clustering.	-1	0
	-1	-1
C. [4p] Perform K-means clustering on the dataset from Table 1. Use the first and last datapoints as initial centers ($K = 2$). Given the final parameters, which cluster would $x^* = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ belong to?	0	-1
	1	1
	1	2

2. Hierarchical Clustering

A. [2p] Compute the distance matrix $D_{ij} = \text{dist}(x_i, x_j)$, using the Manhatten distance (i.e. L^1), given the data from Table 1.

B. [4p] Perform **agglomerative Hierarchical Clustering** using **single linkage** as the cluster distance measure. Draw the associated tree.

3. Gaussian Mixture Models

A Gaussian mixture model containing K = 3 components has been learned for some one-dimensional training data. The individual Gaussians are given by

$$\mu_1 = -1$$
 $\mu_2 = 1$ $\mu_3 = 4$
 $\sigma_1 = 1$ $\sigma_2 = 2$ $\sigma_3 = 0.4$

Additionally, the probabilities for the individual clusters are:

$$\pi_1 = 0.4$$
 $\pi_2 = 0.4$ $\pi_3 = 0.2$

A. [4p] Compute the responsibilities for a point $x \in \mathbb{R}$ to belong to a cluster *i* as:

$$r_i(x) = \frac{\pi_i \mathcal{N}(\mu_i, \sigma_i)}{\sum_{i'} \pi_{i'} \mathcal{N}(\mu_{i'}, \sigma_{i'})}$$

for all three clusters for the points $x \in \{-2, 2, 4.5, 6\}$ and assign the instances to clusters.

B. [2p] What happens if we extrapolate from the data, i.e. go to regions where we had no training data? Which Gaussian will be the dominant one? Explain why.

(8 points)

0	-1	
1	1	
1	2	
(6 ^{Tabl}	e ints))

(6 points)