
Machine Learning

Machine Learning
C. Unsupervised Learning

C.3 Frequent Pattern Mining

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science

University of Hildesheim, Germany

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 40

Machine Learning

Syllabus
Fri. 25.10. (1) 0. Introduction

A. Supervised Learning: Linear Models & Fundamentals
Fri. 1.11. (2) A.1 Linear Regression
Fri. 8.11. (3) A.2 Linear Classification
Fri. 15.11. (4) A.3 Regularization
Fri. 22.11. (5) A.4 High-dimensional Data

B. Supervised Learning: Nonlinear Models
Fri. 29.11. (6) B.1 Nearest-Neighbor Models
Fri. 6.12. (7) B.2 Neural Networks
Fri. 13.12. (8) B.3 Decision Trees
Fri. 20.12. (9) B.4 Support Vector Machines

— Christmas Break —
Fri. 10.1. (10) B.5 A First Look at Bayesian and Markov Networks

C. Unsupervised Learning
Fri. 17.1. (11) C.1 Clustering
Fri. 24.1. (12) C.2 Dimensionality Reduction
Fri. 31.1. (13) C.3 Frequent Pattern Mining
Fri. 7.2. (14) Q&A

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 40

Machine Learning

Outline

1. The Frequent Itemset Problem

2. Breadth First Search: Apriori Algorithm

3. Depth First Search: Eclat Algorithm

4. Supervised Pattern Mining

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 40

Machine Learning 1. The Frequent Itemset Problem

Outline

1. The Frequent Itemset Problem

2. Breadth First Search: Apriori Algorithm

3. Depth First Search: Eclat Algorithm

4. Supervised Pattern Mining

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 40

Machine Learning 1. The Frequent Itemset Problem

Market Basket Analysis

Association rules in large transaction datasets:

I look for products frequently bought together (frequent itemsets).

I look for rules in buying behavior (association rules)

Examples:
I {beer, pampers, pizza} (support=0.5)
{bread,milk} (support=0.5)

I If beer and pampers, then pizza (confidence= 0.75)
If bread, then milk (confidence=0.75)

cid beer bread icecream milk pampers pizza

1 + – – + + +
2 + + – – + +
3 + – + – + +
4 – + – + – +
5 – + + + – –
6 + + – + + –

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 40

Machine Learning 1. The Frequent Itemset Problem

Market Basket Analysis
Association rules in large transaction datasets:
I look for products frequently bought together (frequent itemsets).

I look for rules in buying behavior (association rules)

Examples:
I {beer, pampers, pizza} (support=0.5)
{bread,milk} (support=0.5)

I If beer and pampers, then pizza (confidence= 0.75)
If bread, then milk (confidence=0.75)

cid beer bread icecream milk pampers pizza

1 + – – + + +
2 + + – – + +
3 + – + – + +
4 – + – + – +
5 – + + + – –
6 + + – + + –

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 40

Machine Learning 1. The Frequent Itemset Problem

Market Basket Analysis
Association rules in large transaction datasets:
I look for products frequently bought together (frequent itemsets).

I look for rules in buying behavior (association rules)

Examples:
I {beer, pampers, pizza} (support=0.5)
{bread,milk} (support=0.5)

I If beer and pampers, then pizza (confidence= 0.75)
If bread, then milk (confidence=0.75)

cid beer bread icecream milk pampers pizza

1 + – – + + +
2 + + – – + +
3 + – + – + +
4 – + – + – +
5 – + + + – –
6 + + – + + –

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 40

Machine Learning 1. The Frequent Itemset Problem

Transaction Data, Frequency & Support
Let I be a set called set of items.
A subset X ⊆ I is called itemset.

Let D ⊆ P(I) be a set of subsets of I called transaction data set.
An element X ∈ D is called transaction.

The frequency of a subset X in a data set D is (as always)

freq(X ;D) := |{Y ∈ D | X = Y }|

The support of a subset X in a data set D is the number of
transactions that contain it:

sup(X ;D) := |{Y ∈ D | X ⊆ Y }|

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 40

Note: D really is a multiset: a transaction could occur multiple times in D and then is
counted as often as it occurs in computing frequency and support.

Machine Learning 1. The Frequent Itemset Problem

Transaction Data, Frequency & Support
Let I be a set called set of items.
A subset X ⊆ I is called itemset.

Let D ⊆ P(I) be a set of subsets of I called transaction data set.
An element X ∈ D is called transaction.

The frequency of a subset X in a data set D is (as always)

freq(X ;D) := |{Y ∈ D | X = Y }|

The support of a subset X in a data set D is the number of
transactions that contain it:

sup(X ;D) := |{Y ∈ D | X ⊆ Y }|

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 40

Note: D really is a multiset: a transaction could occur multiple times in D and then is
counted as often as it occurs in computing frequency and support.

Machine Learning 1. The Frequent Itemset Problem

Transaction Data, Frequency & Support / Example

I :={1, 2, 3, 4, 5, 6, 7}

D :={ { 1, 3, 5 },
{ 1, 2, 3, 5 },
{ 1, 3, 4, 6 },
{ 1, 3, 4, 5, 7 },
{ 2, 4, 7 },
{ 1, 3, 5 },
{ 1, 5, 7 },
{ 1, 2, 3, 4, 5 } }

freq({1, 3, 5}) = 2

sup({1, 3, 5}) = 5

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

3 / 40

Machine Learning 1. The Frequent Itemset Problem

Transaction Data, Frequency & Support / Example

I :={1, 2, 3, 4, 5, 6, 7}

D :={ { 1, 3, 5 },
{ 1, 2, 3, 5 },
{ 1, 3, 4, 6 },
{ 1, 3, 4, 5, 7 },
{ 2, 4, 7 },
{ 1, 3, 5 },
{ 1, 5, 7 },
{ 1, 2, 3, 4, 5 } }

freq({1, 3, 5}) = 2

sup({1, 3, 5}) = 5

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

3 / 40

Machine Learning 1. The Frequent Itemset Problem

The Frequent Itemsets Problem

Given

I a set I (called set of items),
I a set D ⊆ P(I) of subsets of I called transaction data set, and
I a number s ∈ N called minimum support,

find i) all subsets X of I whose support exceeds the given minimum
support

sup(X ;D) := |{Y ∈ D | X ⊆ Y }| ≥ s

and ii) their support.

Such subsets X ⊆ I with sup(X) ≥ s are called frequent (w.r.t. minimum
support s in data set D).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

4 / 40

Machine Learning 1. The Frequent Itemset Problem

Subsets of Frequent Itemsets are Frequent

Obviously, the support of a subset is at least as large as the one of any
superset:

for all X ⊆ Y ⊆ I : supX ≥ supY

 For a frequent set, all its subsets are frequent.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

5 / 40

Machine Learning 1. The Frequent Itemset Problem

The Maximal Frequent Itemsets Problem

Given

I a set I (called set of items),
I a set D ⊆ P(I) of subsets of I called transaction data set, and
I a number s ∈ N called minimum support,

find i) all maximal subsets X of I whose support exceeds the given
minimum support

sup(X ;D) := |{Y ∈ D | X ⊆ Y }| ≥ s

and ii) their support.

This means, there exists no frequent superset of X ,
i.e., no set X ′ ⊆ I with

I sup(X ′;D) ≥ s and
I X (X ′

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

6 / 40

Machine Learning 1. The Frequent Itemset Problem

Surprising Frequent Itemsets

Example:
Assume item 1 occurs in 50% of all transactions and

item 2 occurs in 25% of all transactions.

I Is it surprising that itemset {1, 2} occurs in 12.5% of all transactions?

I Does a relative support of 12.5% of itemset {1, 2} signal a strong
association between both items?

p({1} ⊆ X) = 0.5, p({2} ⊆ X) = 0.25

If both items occur independently

 p({1, 2} ⊆ X) = p({1} ⊆ X)p({2} ⊆ X) = 0.125

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

7 / 40

Machine Learning 1. The Frequent Itemset Problem

Surprising Frequent Itemsets

Example:
Assume item 1 occurs in 50% of all transactions and

item 2 occurs in 25% of all transactions.

I Is it surprising that itemset {1, 2} occurs in 12.5% of all transactions?

I Does a relative support of 12.5% of itemset {1, 2} signal a strong
association between both items?

p({1} ⊆ X) = 0.5, p({2} ⊆ X) = 0.25

If both items occur independently

 p({1, 2} ⊆ X) = p({1} ⊆ X)p({2} ⊆ X) = 0.125

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

7 / 40

Machine Learning 1. The Frequent Itemset Problem

Surprising Frequent Itemsets: Lift

lift(X) :=
1
N supX∏

x∈X

1
N sup{x}

, N := |D|

I lift(X) > 1: itemset X is more frequent than expected
(positive association)

I lift(X) < 1: itemset X is less frequent than expected
(negative association)

Example:

lift({1, 2}) =
1
N sup{1, 2}

1
N sup{1} 1

N sup{2}
=

0.125

0.5 · 0.25
= 1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

8 / 40

Machine Learning 1. The Frequent Itemset Problem

Association Rules
Sometimes one is interested to extract if-then rules of the type

if a transaction contains items X , then it also contains items Y
all transactions containing X also contain Y

Find all association rules (X ,Y), X ,Y ⊆ I ,X ∩ Y = ∅ that

I are exact enough / hold in most cases:
high confidence, confidence exceeds minimum confidence c :

conf(X ,Y) :=
sup(X ∪ Y)

sup(X)
≥ c

I are general enough / occur in sufficiently many cases:
high support, support exceeds minimum support s:

sup(X ,Y) := sup(X ∪ Y) ≥ s

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

9 / 40

Note: An association rule (X ,Y) is often also written as X → Y ,
X is called the body and Y the head of the rule.

Machine Learning 1. The Frequent Itemset Problem

Association Rules
Sometimes one is interested to extract if-then rules of the type

if a transaction contains items X , then it usually also contains items Y
most transactions containing X also contain Y

Find all association rules (X ,Y), X ,Y ⊆ I ,X ∩ Y = ∅ that

I are exact enough / hold in most cases:
high confidence, confidence exceeds minimum confidence c :

conf(X ,Y) :=
sup(X ∪ Y)

sup(X)
≥ c

I are general enough / occur in sufficiently many cases:
high support, support exceeds minimum support s:

sup(X ,Y) := sup(X ∪ Y) ≥ s

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

9 / 40

Note: An association rule (X ,Y) is often also written as X → Y ,
X is called the body and Y the head of the rule.

Machine Learning 1. The Frequent Itemset Problem

Association Rules
Sometimes one is interested to extract if-then rules of the type

if a transaction contains items X , then it usually also contains items Y
most transactions containing X also contain Y

Find all association rules (X ,Y), X ,Y ⊆ I ,X ∩ Y = ∅ that

I are exact enough / hold in most cases:
high confidence, confidence exceeds minimum confidence c :

conf(X ,Y) :=
sup(X ∪ Y)

sup(X)
≥ c

I are general enough / occur in sufficiently many cases:
high support, support exceeds minimum support s:

sup(X ,Y) := sup(X ∪ Y) ≥ s

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

9 / 40

Note: An association rule (X ,Y) is often also written as X → Y ,
X is called the body and Y the head of the rule.

Machine Learning 1. The Frequent Itemset Problem

Finding All Association Rules

To find all association rules that

I exceed a given minimum confidence c and
I exceed a given minimum support s

it is sufficient

1. to find all frequent itemsets that exceed a given minimum support s
and their supports and then

2. to split each frequent itemset Z in any two subsets X ,Y s.t. the rule
(X ,Y) meets the minimum confidence requirement.

I start with rule (Z , ∅) with confidence 1,

I iteratively move one element from body to head and retain only those
rules that meet the minimum confidence requirement.

To compute confidences only the support of the itemsets (and their
subsets) are required.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

10 / 40

Machine Learning 1. The Frequent Itemset Problem

Finding All Association Rules

To find all association rules that

I exceed a given minimum confidence c and
I exceed a given minimum support s

it is sufficient

1. to find all frequent itemsets that exceed a given minimum support s
and their supports and then

2. to split each frequent itemset Z in any two subsets X ,Y s.t. the rule
(X ,Y) meets the minimum confidence requirement.

I start with rule (Z , ∅) with confidence 1,

I iteratively move one element from body to head and retain only those
rules that meet the minimum confidence requirement.

To compute confidences only the support of the itemsets (and their
subsets) are required.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

10 / 40

Machine Learning 1. The Frequent Itemset Problem

Finding All Association Rules

To find all association rules that

I exceed a given minimum confidence c and
I exceed a given minimum support s

it is sufficient

1. to find all frequent itemsets that exceed a given minimum support s
and their supports and then

2. to split each frequent itemset Z in any two subsets X ,Y s.t. the rule
(X ,Y) meets the minimum confidence requirement.

I start with rule (Z , ∅) with confidence 1,

I iteratively move one element from body to head and retain only those
rules that meet the minimum confidence requirement.

To compute confidences only the support of the itemsets (and their
subsets) are required.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

10 / 40

Machine Learning 1. The Frequent Itemset Problem

Nominal Data as Transaction Data
Data consisting of only nominal variables can be naturally represented as
transaction data.

Example:

I X1 : dom(X1) = {red, green, blue}: border color,
I X2 : dom(X2) = {red, green, blue}: area color,
I X3 : dom(X3) = {triangle, rectangle, circle}: shape,
I X4 : dom(X4) = {small,medium, large}: size.

Vector representation:

x = (green, blue, rectangle, large)

Itemset representation:

x = {border.green, area.blue, rectangle, large}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

11 / 40

Machine Learning 1. The Frequent Itemset Problem

Nominal Data as Transaction Data
Data consisting of only nominal variables can be naturally represented as
transaction data.

Example:

I X1 : dom(X1) = {red, green, blue}: border color,
I X2 : dom(X2) = {red, green, blue}: area color,
I X3 : dom(X3) = {triangle, rectangle, circle}: shape,
I X4 : dom(X4) = {small,medium, large}: size.

Vector representation:

x = (green, blue, rectangle, large)

Itemset representation:

x = {border.green, area.blue, rectangle, large}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

11 / 40

Machine Learning 1. The Frequent Itemset Problem

Numerical / Any Data as Transaction Data
To represent data with numerical variables as transaction data,
numerical variables have to be discretized to ordinal/nominal levels.

Example:

I X1 : dom(X1) = {red, green, blue}: border color,
I X2 : dom(X2) = {red, green, blue}: area color,
I X3 : dom(X3) = {triangle, rectangle, circle}: shape,
I X4 : dom(X4) = R+

0 : diameter.

Vector representation: x = (green, blue, rectangle, 15)

Itemset representation: x = {border.green, area.blue, rectangle,medium}Discretization:

I X ′4 : dom(X ′4) = {small,medium, large}: diameter.

X ′4 = small :⇔ X4 < 10
X ′4 = medium :⇔ 10 ≤ X4 < 20
X ′4 = large :⇔ 20 ≤ X4

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

12 / 40

Machine Learning 1. The Frequent Itemset Problem

Numerical / Any Data as Transaction Data
To represent data with numerical variables as transaction data,
numerical variables have to be discretized to ordinal/nominal levels.

Example:

I X1 : dom(X1) = {red, green, blue}: border color,
I X2 : dom(X2) = {red, green, blue}: area color,
I X3 : dom(X3) = {triangle, rectangle, circle}: shape,
I X4 : dom(X4) = R+

0 : diameter.

Vector representation: x = (green, blue, rectangle, 15)

Itemset representation: x = {border.green, area.blue, rectangle,medium}

Discretization:

I X ′4 : dom(X ′4) = {small,medium, large}: diameter.

X ′4 = small :⇔ X4 < 10
X ′4 = medium :⇔ 10 ≤ X4 < 20
X ′4 = large :⇔ 20 ≤ X4

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

12 / 40

Machine Learning 1. The Frequent Itemset Problem

Numerical / Any Data as Transaction Data
To represent data with numerical variables as transaction data,
numerical variables have to be discretized to ordinal/nominal levels.

Example:

I X1 : dom(X1) = {red, green, blue}: border color,
I X2 : dom(X2) = {red, green, blue}: area color,
I X3 : dom(X3) = {triangle, rectangle, circle}: shape,
I X4 : dom(X4) = R+

0 : diameter.

Vector representation: x = (green, blue, rectangle, 15)
Itemset representation: x = {border.green, area.blue, rectangle,medium}Discretization:

I X ′4 : dom(X ′4) = {small,medium, large}: diameter.

X ′4 = small :⇔ X4 < 10
X ′4 = medium :⇔ 10 ≤ X4 < 20
X ′4 = large :⇔ 20 ≤ X4

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

12 / 40

Machine Learning 1. The Frequent Itemset Problem

Discretization Schemes

I equi-range:
I split the domain of the variable in K intervals of same size

I equi-volume (w.r.t. a sample/dataset D):
I split the domain of the variable in K intervals with same

frequency (in D)

Discretization of numerical variables can be useful in many other contexts.

I e.g., discretization can be used to model non-linear dependencies.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

13 / 40

Machine Learning 2. Breadth First Search: Apriori Algorithm

Outline

1. The Frequent Itemset Problem

2. Breadth First Search: Apriori Algorithm

3. Depth First Search: Eclat Algorithm

4. Supervised Pattern Mining

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

14 / 40

Machine Learning 2. Breadth First Search: Apriori Algorithm

Naive Breadth First Search

∅

{1} {2} {3} {4} {5}

{1, 2} {1, 3} {1, 4} {1, 5} {2, 3} {2, 4} {2, 5} {3, 4} {3, 5} {4, 5}

{1, 2, 3} {1, 2, 4} . . .

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

14 / 40

Machine Learning 2. Breadth First Search: Apriori Algorithm

Naive Breadth First Search

∅

{1} {2} {3} {4} {5}

{1, 2} {1, 3} {1, 4} {1, 5} {2, 3} {2, 4} {2, 5} {3, 4} {3, 5} {4, 5}

{1, 2, 3} {1, 2, 4} . . .

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

14 / 40

Machine Learning 2. Breadth First Search: Apriori Algorithm

Naive Breadth First Search

∅

{1} {2} {3} {4} {5}

{1, 2} {1, 3} {1, 4} {1, 5} {2, 3} {2, 4} {2, 5} {3, 4} {3, 5} {4, 5}

{1, 2, 3} {1, 2, 4} . . .

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

14 / 40

Machine Learning 2. Breadth First Search: Apriori Algorithm

Naive Breadth First Search

∅

{1} {2} {3} {4} {5}

{1, 2} {1, 3} {1, 4} {1, 5} {2, 3} {2, 4} {2, 5} {3, 4} {3, 5} {4, 5}

{1, 2, 3} {1, 2, 4} . . .

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

14 / 40

Machine Learning 2. Breadth First Search: Apriori Algorithm

Naive Breadth First Search
To find all frequent itemsets, one can employ Breadth First Search:

1. start with all frequent itemsets F0 of size k := 0:

F0 := {∅}

2. for each k = 1, 2, . . . , |I | : find all frequent itemsets Fk of size k :

2.1 extend frequent itemsets Fk−1 to candidates Ck :

Ck := {X ∪ {y} | X ∈ Fk−1, y ∈ I , y 6∈ X}

2.2 count the support of all candidates

sX := sup(X ,D), X ∈ Ck

2.3 retain only frequent candidates as frequent itemsets Fk :

Fk := {X ∈ Ck | supX = sX ≥ s}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

15 / 40

Machine Learning 2. Breadth First Search: Apriori Algorithm

Naive Breadth First Search
To find all frequent itemsets, one can employ Breadth First Search:

1. start with all frequent itemsets F0 of size k := 0:

F0 := {∅}

2. for k = 1, 2, . . . , |I |, while Fk−1 6= ∅:
2.1 extend frequent itemsets Fk−1 to candidates Ck :

Ck := {X ∪ {y} | X ∈ Fk−1, y ∈ I , y 6∈ X}

2.2 count the support of all candidates

sX := sup(X ,D), X ∈ Ck

2.3 retain only frequent candidates as frequent itemsets Fk :

Fk := {X ∈ Ck | supX = sX ≥ s}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

15 / 40

Machine Learning 2. Breadth First Search: Apriori Algorithm

Improvement 1: Fewer Candidates
I k−candidates can be created from different k − 1-subsets:

{1, 3, 4, 7} = {1, 3, 4} ∪ {7} = {1, 3, 7} ∪ {4}

 add only larger items to a k − 1-subset.

I it makes no sense to add items that are themselves not frequent:

sup({1, 3, 4} ∪ {7}) ≤ min{sup{1, 3, 4}, sup{7}}

 add only frequent items from F1.

I it makes no sense to create candidates with infrequent subsets:

sup({1, 3, 4, 7}) ≤ min{ sup{1, 3, 4}, sup{1, 3, 7},
sup{1, 4, 7}, sup{3, 4, 7}}

 fuse candidates from two frequent itemsets from Fk−1,
 check all other subsets of size k − 1.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

16 / 40

Machine Learning 2. Breadth First Search: Apriori Algorithm

Improvement 1: Fewer Candidates
I k−candidates can be created from different k − 1-subsets:

{1, 3, 4, 7} = {1, 3, 4} ∪ {7} = {1, 3, 7} ∪ {4}

 add only larger items to a k − 1-subset.

I it makes no sense to add items that are themselves not frequent:

sup({1, 3, 4} ∪ {7}) ≤ min{sup{1, 3, 4}, sup{7}}

 add only frequent items from F1.

I it makes no sense to create candidates with infrequent subsets:

sup({1, 3, 4, 7}) ≤ min{ sup{1, 3, 4}, sup{1, 3, 7},
sup{1, 4, 7}, sup{3, 4, 7}}

 fuse candidates from two frequent itemsets from Fk−1,
 check all other subsets of size k − 1.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

16 / 40

Machine Learning 2. Breadth First Search: Apriori Algorithm

Improvement 1: Fewer Candidates
I k−candidates can be created from different k − 1-subsets:

{1, 3, 4, 7} = {1, 3, 4} ∪ {7} = {1, 3, 7} ∪ {4}

 add only larger items to a k − 1-subset.

I it makes no sense to add items that are themselves not frequent:

sup({1, 3, 4} ∪ {7}) ≤ min{sup{1, 3, 4}, sup{7}}

 add only frequent items from F1.

I it makes no sense to create candidates with infrequent subsets:

sup({1, 3, 4, 7}) ≤ min{ sup{1, 3, 4}, sup{1, 3, 7},
sup{1, 4, 7}, sup{3, 4, 7}}

 fuse candidates from two frequent itemsets from Fk−1,
 check all other subsets of size k − 1.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

16 / 40

Machine Learning 2. Breadth First Search: Apriori Algorithm

Improvement 1: Fewer Candidates
I k−candidates can be created from different k − 1-subsets:

{1, 3, 4, 7} = {1, 3, 4} ∪ {7} = {1, 3, 7} ∪ {4}

 add only larger items to a k − 1-subset.

I it makes no sense to add items that are themselves not frequent:

sup({1, 3, 4} ∪ {7}) ≤ min{sup{1, 3, 4}, sup{7}}

 add only frequent items from F1.

I it makes no sense to create candidates with infrequent subsets:

sup({1, 3, 4, 7}) ≤ min{ sup{1, 3, 4}, sup{1, 3, 7},
sup{1, 4, 7}, sup{3, 4, 7}}

 fuse candidates from two frequent itemsets from Fk−1,
 check all other subsets of size k − 1.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

16 / 40

Machine Learning 2. Breadth First Search: Apriori Algorithm

Improvement 1: Fewer Candidates
I k−candidates can be created from different k − 1-subsets:

{1, 3, 4, 7} = {1, 3, 4} ∪ {7} = {1, 3, 7} ∪ {4}

 add only larger items to a k − 1-subset.

I it makes no sense to add items that are themselves not frequent:

sup({1, 3, 4} ∪ {7}) ≤ min{sup{1, 3, 4}, sup{7}}

 add only frequent items from F1.

I it makes no sense to create candidates with infrequent subsets:

sup({1, 3, 4, 7}) ≤ min{ sup{1, 3, 4}, sup{1, 3, 7},
sup{1, 4, 7}, sup{3, 4, 7}}

 fuse candidates from two frequent itemsets from Fk−1,
 check all other subsets of size k − 1.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

16 / 40

Machine Learning 2. Breadth First Search: Apriori Algorithm

Improvement 1: Fewer Candidates
I k−candidates can be created from different k − 1-subsets:

{1, 3, 4, 7} = {1, 3, 4} ∪ {7} = {1, 3, 7} ∪ {4}

 add only larger items to a k − 1-subset.

I it makes no sense to add items that are themselves not frequent:

sup({1, 3, 4} ∪ {7}) ≤ min{sup{1, 3, 4}, sup{7}}

 add only frequent items from F1.

I it makes no sense to create candidates with infrequent subsets:

sup({1, 3, 4, 7}) ≤ min{ sup{1, 3, 4}, sup{1, 3, 7},
sup{1, 4, 7}, sup{3, 4, 7}}

 fuse candidates from two frequent itemsets from Fk−1,
 check all other subsets of size k − 1.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

16 / 40

Machine Learning 2. Breadth First Search: Apriori Algorithm

Ordered Itemsets, Prefix and Head
Let us fix an order on the items I (e.g., < for I ⊆ N).
Let X ⊆ I be an itemset, then

h(X) := maxX

is called the head of X and

p(X) := X \ {h(X)}
is called the prefix of X .

Example:

h({1, 3, 4, 7}) = 7

p({1, 3, 4, 7}) = {1, 3, 4}

For two k − 1-itemsets X ,Y :

X ∪ Y yields a k-candidate
that extends X by a larger item

}
⇐⇒ p(X) = p(Y) and h(X) < h(Y)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

17 / 40

Machine Learning 2. Breadth First Search: Apriori Algorithm

Ordered Itemsets, Prefix and Head
Let us fix an order on the items I (e.g., < for I ⊆ N).
Let X ⊆ I be an itemset, then

h(X) := maxX

is called the head of X and

p(X) := X \ {h(X)}
is called the prefix of X .

Example:

h({1, 3, 4, 7}) = 7

p({1, 3, 4, 7}) = {1, 3, 4}
For two k − 1-itemsets X ,Y :

X ∪ Y yields a k-candidate
that extends X by a larger item

}
⇐⇒ p(X) = p(Y) and h(X) < h(Y)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

17 / 40

Machine Learning 2. Breadth First Search: Apriori Algorithm

Improved Breadth First Search (1/2)
To find all frequent itemsets:

1. start with all frequent itemsets F0 of size k := 0:

F0 := {∅}

2. for k = 1, 2, . . . , |I |, while Fk−1 6= ∅:
2.1 extend frequent itemsets Fk−1 to candidates Ck :

C ′k := {X ∪ {h(Y)} | X ,Y ∈ Fk−1, p(X) = p(Y), h(X) < h(Y)}

2.2 retain only candidates with frequent k − 1-subsets (pruning):

Ck := {X ∈ C ′k | ∀x ∈ X : X \ {x} ∈ Fk−1}

2.3 count the support of all candidates

sX := sup(X ,D), X ∈ Ck

2.4 retain only frequent candidates as frequent itemsets Fk :

Fk := {X ∈ Ck | supX =: sX ≥ s}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

18 / 40

Machine Learning 2. Breadth First Search: Apriori Algorithm

Improvement 2: Compact Representation and Fast
Candidate Creation
I all frequent itemsets found so far and the latest candidates can be

represented compactly in a trie:

∅

1 3 4 5 7

3 4 5 7

4 7 7

4 7 7

I every node is labeled with a single item,

I every node represents the subset containing all items along the path to
the root.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

19 / 40

Machine Learning 2. Breadth First Search: Apriori Algorithm

Improvement 2: Compact Representation and Fast
Candidate Creation

I to create candidates, just add all right-side siblings as children to a
node.

∅

1 3 4 5 6 7

3 4 5 7 4 6 7 5 7 7

4 5 7 5 7 7 6 7 7 7

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

20 / 40

Machine Learning 2. Breadth First Search: Apriori Algorithm

Improvement 2: Compact Representation and Fast
Candidate Creation

I to create candidates, just add all right-side siblings as children to a
node.

∅

1 3 4 5 6 7

3 4 5 7 4 6 7 5 7 7

4 5 7 5 7 7 6 7 7 7

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

20 / 40

Machine Learning 2. Breadth First Search: Apriori Algorithm

Improvement 3: Fewer Subset Checks for Counting

I computing the support of all candidates Ck naively requires |Ck |
passes over the database D.

I instead, count each transaction X into the candidate trie:
I start at the root N: count(X , root).

I count(X ,N): count transaction X into trie rooted at N:

1. if N is a leaf node at depth k:

sN := sN + 1;

2. else for all child nodes M of N with item(M) ∈ X :

count(X ,M)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

21 / 40

Machine Learning 2. Breadth First Search: Apriori Algorithm

Example: Counting Transaction into Candidate Trie

Count {1, 3, 5, 7, 8} into the trie:

∅

1 3 4 5 6 7

3 4 5 7 4 6 7 5 7 7

4 5 7 5 7 7 6 7 7

sN 0 0 0 0 0 0

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

22 / 40

Machine Learning 2. Breadth First Search: Apriori Algorithm

Example: Counting Transaction into Candidate Trie

Count {1, 3, 5, 7, 8} into the trie:

∅

1 3 4 5 6 7

3 4 5 7 4 6 7 5 7 7

4 5 7 5 7 7 6 7 7

sN 0 0 0 0 0 0 0 0 0

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

22 / 40

Machine Learning 2. Breadth First Search: Apriori Algorithm

Example: Counting Transaction into Candidate Trie

Count {1, 3, 5, 7, 8} into the trie:

∅

1 3 4 5 6 7

3 4 5 7 4 6 7 5 7 7

4 5 7 5 7 7 6 7 7

sN 0 1 1 0 0 1 0 0 0

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

22 / 40

Machine Learning 2. Breadth First Search: Apriori Algorithm

Improved Breadth First Search (2/2): Apriori

To find all frequent itemsets with minimum support s in database D:

1. create a trie T with just the root node R without label.

2. for i ∈ I :
add a node N to T with label i and parent R.

3. for k := 1, 2, . . . , |I |, while T has nodes at depth k :

3.1 for X ∈ D:
count(X ,R). [computing N.s for nodes at depth k]

3.2 for all nodes N of T at depth k :
if N.s < s, remove node N.

3.3 for all nodes N of T at depth k :

3.3.1 for all right-side siblings M of N:
for all nodes L on the path from N to R:

check if the node representing itemset(N) \ {label(L)} ∪ {label(M)}
exists

if so, add a node K to T with the label of M and parent N.

4. return T

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

23 / 40

Machine Learning 2. Breadth First Search: Apriori Algorithm

Breadth First Search / Apriori

1 freqpat-bfs-apriori(D, s) :
2 R := new trie()
3 for i ∈ I :
4 add node(label = i , parent = R)
5 for k := 1, . . . , |I | while trie R has nodes at depth k :
6 for X ∈ D:
7 count(X ,R, k)
8 for all nodes N of trie R at depth k :
9 if N.s < s:

10 remove N from R
11 for all nodes N of trie R at depth k :
12 for all right−side siblings M of N:
13 for all nodes L on the path from N to R:
14 check if the node representing itemset(N) \ {L.label} ∪ {M.label} exists
15 if all such nodes exist ,
16 add node(label = M.label, parent = N.parent)
17 return R

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

24 / 40

Machine Learning 2. Breadth First Search: Apriori Algorithm

Breadth First Search / Apriori / Count

1 count(X ,N, k) :
2 if k = 0:
3 N.s := N.s + 1
4 else :
5 for i ∈ X :
6 if N has a child L with label i :
7 count(X , L, k − 1)

1 add node(i ,N) :
2 create new node L
3 L.label := i
4 L.parent := N
5 return L

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

25 / 40

Machine Learning 2. Breadth First Search: Apriori Algorithm

Sparse Child Arrays
I to find a child with a given label efficiently in count,

usually sparse child arrays are used.

1 count(X ,N, k) :
2 if k = 0:
3 N.s := N.s + 1
4 else :
5 for i ∈ X :
6 L := N.child[i]
7 if L 6= ∅:
8 count(X , L, k − 1)

1 add node(i ,N) :
2 create new node L
3 L.label := i
4 L.parent := N
5 L.child := new map()
6 N.child[i] := L
7 return L

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

26 / 40

Machine Learning 2. Breadth First Search: Apriori Algorithm

Apriori: Algorithmic Improvements

Scalable Apriori implementations usually employ some further
simple tricks:
I initially, sort items by decreasing frequency

I count all item frequencies

I recode items s.t. code 0 is the most frequent, code 1 the next most
frequent etc.

I remove all infrequent items from the database D.

I this automatically yields F1 and their supports.

I count C2 in a triangular matrix,
start trie from level 3 onwards.

I remove transactions from the database once they contain no frequent
itemset of Fk anymore.

I branches in the candidate trie without leaf nodes are not used for
counting and candidate generation.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

27 / 40

Machine Learning 3. Depth First Search: Eclat Algorithm

Outline

1. The Frequent Itemset Problem

2. Breadth First Search: Apriori Algorithm

3. Depth First Search: Eclat Algorithm

4. Supervised Pattern Mining

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

28 / 40

Machine Learning 3. Depth First Search: Eclat Algorithm

Naive Depth First Search

∅

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

28 / 40

Machine Learning 3. Depth First Search: Eclat Algorithm

Naive Depth First Search

∅

{1}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

28 / 40

Machine Learning 3. Depth First Search: Eclat Algorithm

Naive Depth First Search

∅

{1}

{1, 2}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

28 / 40

Machine Learning 3. Depth First Search: Eclat Algorithm

Naive Depth First Search

∅

{1}

{1, 2}

{1, 2, 3}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

28 / 40

Machine Learning 3. Depth First Search: Eclat Algorithm

Naive Depth First Search

∅

{1}

{1, 2}

{1, 2, 3}

{1, 2, 3, 4}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

28 / 40

Machine Learning 3. Depth First Search: Eclat Algorithm

Naive Depth First Search

∅

{1}

{1, 2}

{1, 2, 3} {1, 2, 4}

{1, 2, 3, 4}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

28 / 40

Machine Learning 3. Depth First Search: Eclat Algorithm

Naive Depth First Search

∅

{1}

{1, 2} {1, 3}

{1, 2, 3} {1, 2, 4}

{1, 2, 3, 4}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

28 / 40

Machine Learning 3. Depth First Search: Eclat Algorithm

Naive Depth First Search
To find all frequent itemsets, one can employ Depth First Search:

I start with the empty itemset:
F := {∅}

extend-itemset(∅)

I extend-itemset(P):
for all y ∈ I \ P:

1. extend current prefix P to candidate X :

X := P ∪ {y}

2. count the support of candidate X :

sX := sup(X ,D)

3. retain and recursively extend if candidate is frequent:

if sX ≥ s :

F := F ∪ {X}
extend-itemset(X)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

29 / 40

Machine Learning 3. Depth First Search: Eclat Algorithm

Improvement 1: Fewer Candidates
I k−candidates can be created from different k − 1-prefices:

{1, 3, 4, 7} = {1, 3, 4} ∪ {7} = {1, 3, 7} ∪ {4}

 add only larger items to a k − 1-prefix.

I it makes no sense to add items that are themselves not frequent:

sup({1, 3, 4} ∪ {7}) ≤ min{sup{1, 3, 4}, sup{7}}

 add only frequent items.

I it makes no sense to create candidates with infrequent subsets:

sup({1, 3, 4, 7}) ≤ min{ sup{1, 3, 4}, sup{1, 3, 7},
sup{1, 4, 7}, sup{3, 4, 7}}

 fuse candidates from two frequent k − 1-itemsets,
check all other subsets of size k − 1.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

30 / 40

Machine Learning 3. Depth First Search: Eclat Algorithm

Improvement 1: Fewer Candidates
I k−candidates can be created from different k − 1-prefices:

{1, 3, 4, 7} = {1, 3, 4} ∪ {7} = {1, 3, 7} ∪ {4}

 add only larger items to a k − 1-prefix.

I it makes no sense to add items that are themselves not frequent:

sup({1, 3, 4} ∪ {7}) ≤ min{sup{1, 3, 4}, sup{7}}

 add only frequent items.

I it makes no sense to create candidates with infrequent subsets:

sup({1, 3, 4, 7}) ≤ min{ sup{1, 3, 4}, sup{1, 3, 7},
sup{1, 4, 7}, sup{3, 4, 7}}

 fuse candidates from two frequent k − 1-itemsets,
check all other subsets of size k − 1.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

30 / 40

Machine Learning 3. Depth First Search: Eclat Algorithm

Improvement 1: Fewer Candidates
I k−candidates can be created from different k − 1-prefices:

{1, 3, 4, 7} = {1, 3, 4} ∪ {7} = {1, 3, 7} ∪ {4}

 add only larger items to a k − 1-prefix.

I it makes no sense to add items that are themselves not frequent:

sup({1, 3, 4} ∪ {7}) ≤ min{sup{1, 3, 4}, sup{7}}

 add only frequent items.

I it makes no sense to create candidates with infrequent subsets:

sup({1, 3, 4, 7}) ≤ min{ sup{1, 3, 4}, sup{1, 3, 7},
sup{1, 4, 7}, sup{3, 4, 7}}

 fuse candidates from two frequent k − 1-itemsets,
check all other subsets of size k − 1.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

30 / 40

Machine Learning 3. Depth First Search: Eclat Algorithm

Improvement 1: Fewer Candidates
I k−candidates can be created from different k − 1-prefices:

{1, 3, 4, 7} = {1, 3, 4} ∪ {7} = {1, 3, 7} ∪ {4}

 add only larger items to a k − 1-prefix.

I it makes no sense to add items that are themselves not frequent:

sup({1, 3, 4} ∪ {7}) ≤ min{sup{1, 3, 4}, sup{7}}

 add only frequent items.

I it makes no sense to create candidates with infrequent subsets:

sup({1, 3, 4, 7}) ≤ min{ sup{1, 3, 4}, sup{1, 3, 7},
sup{1, 4, 7}, sup{3, 4, 7}}

 fuse candidates from two frequent k − 1-itemsets,
check all other subsets of size k − 1.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

30 / 40

Machine Learning 3. Depth First Search: Eclat Algorithm

Improvement 1: Fewer Candidates
I k−candidates can be created from different k − 1-prefices:

{1, 3, 4, 7} = {1, 3, 4} ∪ {7} = {1, 3, 7} ∪ {4}

 add only larger items to a k − 1-prefix.

I it makes no sense to add items that are themselves not frequent:

sup({1, 3, 4} ∪ {7}) ≤ min{sup{1, 3, 4}, sup{7}}

 add only frequent items.

I it makes no sense to create candidates with infrequent subsets:

sup({1, 3, 4, 7}) ≤ min{ sup{1, 3, 4}, sup{1, 3, 7},
sup{1, 4, 7}, sup{3, 4, 7}}

 fuse candidates from two frequent k − 1-itemsets,
check all other subsets of size k − 1.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

30 / 40

Machine Learning 3. Depth First Search: Eclat Algorithm

Improvement 1: Fewer Candidates
I k−candidates can be created from different k − 1-prefices:

{1, 3, 4, 7} = {1, 3, 4} ∪ {7} = {1, 3, 7} ∪ {4}

 add only larger items to a k − 1-prefix.

I it makes no sense to add items that are themselves not frequent:

sup({1, 3, 4} ∪ {7}) ≤ min{sup{1, 3, 4}, sup{7}}

 add only frequent items.

I it makes no sense to create candidates with infrequent subsets:

sup({1, 3, 4, 7}) ≤ min{ sup{1, 3, 4}, sup{1, 3, 7},
sup{1, 4, 7}, sup{3, 4, 7}}

 fuse candidates from two frequent k − 1-itemsets,
check all other subsets of size k − 1.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

30 / 40

Machine Learning 3. Depth First Search: Eclat Algorithm

Checking k − 1-subsets in DFS

Checking all k − 1-subsets:
I In BFS:

I all frequent k − 1-itemsets are available from last level

I no problem

I In DFS:
I not all k − 1-itemsets have been checked yet !

I traverse extension items in decreasing item order:
I ensures that all k − 1-subsets

(i1, i2, . . . , i`−1, î`, i`+1, . . . , ik)

are checked before (i1, i2, . . . , i`−1, i`, . . . , ik−1).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

31 / 40

Machine Learning 3. Depth First Search: Eclat Algorithm

Improved Depth First Search (1/2)
I start with the empty itemset:

F := {∅}, J∅ := {x ∈ I | sup{x} ≥ s}
extend-itemset(∅, J∅)

I extend-itemset(P, J):
for all y ∈ J in decreasing order:

1. extend current prefix P to candidate X : X := P ∪ {y}
2. ensure that all k − 1-subsets are frequent:

if ∃` = 1, . . . , k − 2 : P \ {P`} ∪ {y} 6∈ F , then skip and go to next y

3. count the support of candidate X : sX := sup(X ,D)
4. retain and recursively extend if candidate is frequent:

if sX ≥ s :

F := F ∪ {X}
JX := {z ∈ J | z > y , sP∪{z} ≥ s}
extend-itemset(X , JX)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

32 / 40

Machine Learning 3. Depth First Search: Eclat Algorithm

Improvement 2: Project Data for Fast Support Counting
I counting the support of every candidate separately is very expensive

I first idea:
I do not check transactions again that do not contain the prefix P

I keep a list of transaction IDs that contain the prefix:

D = {X1, . . . ,XN} full data set

T (P) :={t ∈ {1, . . . ,N} | P ⊆ Xt} transaction cover of P

I to compute frequency of P ∪ {y},
check only P ∪ {y}

?
∈ Xt with t ∈ T (P)

I final idea:
I compute T recursively:

T (P ∪ {z} ∪ {y}) = T (P ∪ {z}) ∩ T (P ∪ {y})

I store extension items z together with T (P ∪ {z}).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

33 / 40

Machine Learning 3. Depth First Search: Eclat Algorithm

Improvement 2: Project Data for Fast Support Counting
I counting the support of every candidate separately is very expensive

I first idea:
I do not check transactions again that do not contain the prefix P

I keep a list of transaction IDs that contain the prefix:

D = {X1, . . . ,XN} full data set

T (P) :={t ∈ {1, . . . ,N} | P ⊆ Xt} transaction cover of P

I to compute frequency of P ∪ {y},
check only P ∪ {y}

?
∈ Xt with t ∈ T (P)

I final idea:
I compute T recursively:

T (P ∪ {z} ∪ {y}) = T (P ∪ {z}) ∩ T (P ∪ {y})

I store extension items z together with T (P ∪ {z}).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

33 / 40

Machine Learning 3. Depth First Search: Eclat Algorithm

Improvement 2: Project Data for Fast Support Counting
I counting the support of every candidate separately is very expensive

I first idea:
I do not check transactions again that do not contain the prefix P

I keep a list of transaction IDs that contain the prefix:

D = {X1, . . . ,XN} full data set

T (P) :={t ∈ {1, . . . ,N} | P ⊆ Xt} transaction cover of P

I to compute frequency of P ∪ {y},
check only P ∪ {y}

?
∈ Xt with t ∈ T (P)

I final idea:
I compute T recursively:

T (P ∪ {z} ∪ {y}) = T (P ∪ {z}) ∩ T (P ∪ {y})

I store extension items z together with T (P ∪ {z}).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

33 / 40

Machine Learning 3. Depth First Search: Eclat Algorithm

Improved Depth First Search (2/2): Eclat
I start with the empty itemset:

F := {∅}, J∅ := {(x ,T (x)) | x ∈ I , |T (x)| ≥ s}
extend-itemset(∅, {1, . . . ,N}, J∅)

I extend-itemset(P,TP , J):
for all (y ,Ty) ∈ J in decreasing order of y:

1. extend current prefix P to candidate X : X := P ∪ {y}
2. ensure that all k − 1-subsets are frequent:

if ∃` = 1, . . . , k − 2 : P \ {P`} ∪ {y} 6∈ F , then skip and go to next y

3. compute transaction cover of candidate X : TX := TP ∩ Ty

4. retain and recursively extend if candidate is frequent:

if |TX | ≥ s :

F := F ∪ {X}
JX := {(z ,TP∪{z}) ∈ J | (z ,Tz) ∈ J, z > y , |TP∪{z}| ≥ s}
extend-itemset(X ,TX , JX)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

34 / 40

Machine Learning 4. Supervised Pattern Mining

Outline

1. The Frequent Itemset Problem

2. Breadth First Search: Apriori Algorithm

3. Depth First Search: Eclat Algorithm

4. Supervised Pattern Mining

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

35 / 40

Machine Learning 4. Supervised Pattern Mining

Pattern Encodings
Patterns can be used to describe data instances/transactions:
I in this context, patterns are sometimes called codes,

I the list of patterns a codebook, and

I the representation of a transaction by pattern indicators as
encoding (aka vector representation, embedding).

D :={X1, . . . ,XN} large transaction database

F :={P1, . . . ,PK} frequent patterns in D
X ′n =(I(Pk ⊆ Xn))k=1,...,K representation of Xn by pattern indicators

Example:

F :={{1, 3, 5}, {2, 6}, {9, 13}}
X :={1, 2, 3, 4, 5, 6, 7}
X ′ =(1, 1, 0)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

35 / 40

Machine Learning 4. Supervised Pattern Mining

Pattern Mining as Preprocessing
Given a prediction task and

a data set Dtrain := {(x1, y1), . . . , (xN , yN)} ⊆ P(I)× Y.
Procedure:

1. mine all frequent patterns P in the predictors of Dtrain,
I e.g., using Apriori on {x1, . . . , xN} ⊆ P(I) with minimum support s.

2. encode predictors {x1, . . . , xN} by their pattern encodings

zn := (I(pk ⊆ xn))k=1:K ∈ {0, 1}K , P = {p1, . . . , pK}

3. learn a (linear) prediction model

ŷ : {0, 1}K → Y

on the latent features based on

D′train := {(z1, y1), . . . , (zN , yN)}

4. treat the minimum support s (and thus the number K of latent
dimensions) as hyperparameter.

I e.g., find optimal s using grid search.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

36 / 40

Machine Learning 4. Supervised Pattern Mining

Potential Effects of Using Pattern Encodings
For transaction data / frequent itemsets:

I patterns/itemsets represent interaction effects:

I({i1, . . . , iL} ⊆ X) =
L∏

`=1

I(i` ∈ X), i1, . . . , iL ∈ I

I possibly useful with linear models
I possibly less useful with nonlinear models that model interaction effects

on their own.

I frequency used as (naive) proxy for predictivity of an interaction.

I minimum support s treated as hyperparameter.

For structured data (sequences, graphs, images, text, etc.):

I a way to extract features from structured objects.
(i.e., to create a vector representation that can be used with any
machine learning algorithm)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

37 / 40

Machine Learning 4. Supervised Pattern Mining

Potential Effects of Using Pattern Encodings
For transaction data / frequent itemsets:

I patterns/itemsets represent interaction effects:

I({i1, . . . , iL} ⊆ X) =
L∏

`=1

I(i` ∈ X), i1, . . . , iL ∈ I

I possibly useful with linear models
I possibly less useful with nonlinear models that model interaction effects

on their own.

I frequency used as (naive) proxy for predictivity of an interaction.

I minimum support s treated as hyperparameter.

For structured data (sequences, graphs, images, text, etc.):

I a way to extract features from structured objects.
(i.e., to create a vector representation that can be used with any
machine learning algorithm)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

37 / 40

Machine Learning 4. Supervised Pattern Mining

Supervised Pattern Mining

Methods that extract not just

I frequent patterns,

I but predictive patterns:

would be useful as basis for prediction.
I but e.g., correlation of a pattern with a target variable does not have

the closed-downward property
I subsets of frequent subsets are frequent,

I but subsets of predictive subsets may not be predictive.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

38 / 40

Machine Learning 4. Supervised Pattern Mining

Outlook

I fpGrowth

I Frequent subsequences / sequential patterns
I Apriori can be easily adapted for sequential patterns.

I Eclat adapted to sequential patterns: PrefixScan.

I Additional pattern symbols: wildcards.

I Frequent subgraphs / graph patterns

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

39 / 40

Machine Learning 4. Supervised Pattern Mining

Conclusion (1/2)
I Frequent Pattern Mining searches for frequent itemsets in large

transaction data, i.e., aims to find all subsets with a given
minimum support.

I Association rules can be created by simply splitting frequent itemsets.
I As subsets of frequent sets are frequent, the result set typically is huge.

I restrict results by looking only for maximal frequent itemsets.

I rank results by other measures, e.g., lift.

I Any data can be represented as transaction data (evtl. with a
discretization loss).

I Apriori enumerates all frequent itemsets using breadth first search:
I only candidates with all subsets being frequent are checked (fusing of

k − 1-itemsets, pruning).
I every itemset can be created just once by sorting itemsets and adding

only larger items.
I all k-candidates can be represented compactly in a trie and their

support be counted efficiently in a single pass over the database.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

40 / 40

Machine Learning 4. Supervised Pattern Mining

Conclusion (2/2)

I Eclat enumerates all frequent itemsets using depth first search:
I only candidates with all subsets being frequent are checked (fusing of

k − 1-itemsets, pruning, traversal in reverse order).
I every itemset can be created just once by sorting itemsets and adding

only larger items.
I all candidates can be represented compactly in a trie and their support

be counted efficiently by intersecting itemset covers.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

40 / 40

Machine Learning

Readings

I Apriori
I Hastie et al. [2005], ch. 14.2,

I Agrawal and Srikant [1994],Borgelt [2003].

I Eclat
I Schmidt-Thieme [2004], Borgelt [2003].

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

41 / 40

Machine Learning

References

R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules. In Proc. of the 20th Int’l Conference on Very Large
Databases, 1994.

Christian Borgelt. Efficient implementations of apriori and eclat. In FIMI’03: Proceedings of the IEEE ICDM Workshop on
Frequent Itemset Mining Implementations, 2003.

Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin. The Elements of Statistical Learning: Data Mining,
Inference and Prediction, volume 27. Springer, 2005.

Lars Schmidt-Thieme. Algorithmic Features of Eclat. In FIMI, 2004.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

42 / 40

	1. The Frequent Itemset Problem
	2. Breadth First Search: Apriori Algorithm
	3. Depth First Search: Eclat Algorithm
	4. Supervised Pattern Mining
	Appendix

