
Tutorial 11 – Jan. 16, 2019
Machine Learning 1

Prof. Schmidt-Thieme, Randolf Scholz 1/6

Deadline: Th. January 23th , 14:00 Drop your printed or legible handwritten submissions into the
boxes at Samelsonplatz. Alternatively upload a .pdf file via LearnWeb. (e.g. exported Jupyter notebook)

1. K Means Clustering (10 points)

x1 x2

0 0
0 1
-1 2
2 0
3 0
4 -1

Table 1

A. [2p] Compute the (squared) distance matrix Dij = disteucl.(xi, xj)
2, given the

data from Table 1.

Solution.

x1 x2 x3 x4 x5 x6
x1 0 1 5 4 9 17
x2 1 0 2 5 10 20
x3 5 2 0 12 20 34
x4 4 5 12 0 1 5
x5 9 10 20 1 0 2
x6 17 20 34 5 2 0

B. [4p] Perform K-means clustering on the dataset from Table 1. Use the first and last
datapoints as initial centers (K = 2). Given the final parameters, which cluster would
x∗ = ( 1

1 ) belong to?

Solution. (Remark)

Given a dataset X = {xn | n = 1 . . . N} of datapoints in RM , there are two ways to choose the
updated mean in K-means clustering:

1 "in-set mean": µ̂ = argmin
µ ∈ X

∑
n

disteucl.(µ, xn)2

2 "out-of-set mean": µ̂ = argmin
µ ∈ RM

∑
n

disteucl.(µ, xn)2

I.e. in the in-set variant, we require the center-point to always be chosen as one of the point of
the actual dataset. More generally, given a dataset X = {xn | n = 1 . . . N} of datapoints in X
performing K-medoids with a given similarity/dissimilarity measure s / d:

dissimilarity based similarity based
"in-set medoid": µ̂ = argmin

µ ∈ X

∑
n

d(µ, xn) µ̂ = argmax
µ ∈ X

∑
n

s(µ, xn)

"out-of-set medoid": µ̂ = argmin
µ ∈ X

∑
n

d(µ, xn) µ̂ = argmax
µ ∈ X

∑
n

s(µ, xn)

Note that in this formulation K-medoids is applicable, even when the data is not vectorized
(i.e. embedded in a vectorspace). For example, one could compute clusters of strings w.r.t. the
levensthein distance (in this case, X would be the set of all strings). We will now look at both
the in-set and out-of-set variant.

Solution. (in-set variant)

The in-set variant has the advantage that we only need to compute the distance matrix in the
beginning, and then we can use it as a lookup table for the rest of the algorithm.

iteration 1 Looking at rows of the distance matrix corresponding to the centers

x1 x2 x3 x4 x5 x6
µ1 = x1 0 1 5 4 9 17
µ2 = x6 17 20 34 5 2 0
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Then the partitions are P1 = {x1, x2, x3, x4} and P2 = {x5, x6}. To find the new cluster centers,
we sum the rows of the corresponding subtables:

x1 x2 x3 x4 Σ
x1 0 1 5 4 10
x2 1 0 2 5 8
x3 5 2 0 12 19
x4 4 5 12 0 21

 µ′1 = x2

x5 x6 Σ
x5 0 2 2
x6 2 0 2

 µ′2 = x5 or µ′2 = x6

We choose the former, µ′2 = x5

iteration 2 Looking at rows of the distance matrix corresponding to the centers

x1 x2 x3 x4 x5 x6
µ1 = x2 1 0 2 5 10 20
µ2 = x5 9 10 20 1 0 2

Then the partitions are P1 = {x1, x2, x3} and P2 = {x4, x5, x6}. To find the new cluster centers,
we sum the rows of the corresponding subtables:

x1 x2 x3 Σ
x1 0 1 5 6
x2 1 0 2 3
x3 5 2 0 7

 µ′1 = x2

x4 x5 x6 Σ
x4 0 1 5 6
x5 1 0 2 3
x6 5 2 0 7

 µ′2 = x5

The cluster centers are the same as before, so the algorithm terminates. Finally,

dist(µ1, ( 1
1 ))2 = ‖( 0

1 )− ( 1
1 )‖2 = 1 and dist(µ2, ( 1

1 ))2 = ‖( 3
0 )− ( 1

1 )‖2 = 4

So the extra point would be considered part of cluster 1.

Solution. (out-of-set variant)

In the out-of set variant we will have to compute additional distances during the algorithm.

iteration 1 Looking at rows of the distance matrix corresponding to the centers

x1 x2 x3 x4 x5 x6
µ1 = x1 0 1 5 4 9 17
µ2 = x6 17 20 34 5 2 0

Then the partitions are P1 = {x1, x2, x3, x4} and P2 = {x5, x6}. To find the new cluster centers,
we have to compute the means:

µ′1 =
1

|P1|
∑
x∈P1

= 1
4

(
( 0
0 ) + ( 0

1 ) +
(−1

2

)
+ ( 2

0 )
)

= 1
4 ( 1

3 )

µ′2 =
1

|P2|
∑
x∈P2

= 1
2

(
( 3
0 ) +

(
4
−1
))

= 1
2

(
7
−1
)

iteration 2 We compute the squared euclidean distances to the new cluster centers:

x1 x2 x3 x4 x5 x6
µ1 0.625 0.125 3.125 3.625 8.125 17.125
µ2 12.500 14.500 26.500 2.500 0.500 0.500
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Then the partitions are P1 = {x1, x2, x3} and P2 = {x4, x5, x6}. To find the new cluster centers,
we have to compute the means:

µ′1 =
1

|P1|
∑
x∈P1

= 1
3

(
( 0
0 ) + ( 0

1 ) +
(−1

2

))
= 1

3

(−1
3

)
µ′2 =

1

|P2|
∑
x∈P2

= 1
3

(
( 2
0 ) + ( 3

0 ) +
(

4
−1
))

= 1
3

(
9
−1
)

iteration 3: We compute the squared euclidean distances to the new cluster centers:

x1 x2 x3 x4 x5 x6
µ1 1.111 0.111 1.444 6.444 12.111 22.777
µ2 9.111 10.777 21.444 1.111 0.111 1.444

Then the partitions are P1 = {x1, x2, x3} and P2 = {x4, x5, x6}. As these are the same as in the
previous iteration, the algorithm terminates. Finally,

dist(µ1, ( 1
1 ))2 = ‖ 13

(−1
3

)
− ( 1

1 )‖2 = 16/9 and dist(µ2, ( 1
1 ))2 = ‖ 13

(
9
−1
)
− ( 1

1 )‖2 = 52/9

So the extra point would be considered part of cluster 1.

C. [1p] For a set of points (xn)n=1:N in Rm, show that the mean µ̂ = 1
N

∑N
n=1 xn is

the solution to the optimization problem

µ̂ = argmin
µ∈Rm

N∑
i=1

disteucl.(xn, µ)2 (1)

I.e. for a set of points, their mean can be characterized as the point which is, on average,
closest to all the other points with respect to the squared euclidean distance.

Solution.
We have:

µ̂ = argmin
µ

N∑
in=1

‖µ− xn‖22 =⇒ 0
!
=

∂

∂µ

N∑
n=1

‖µ− xn‖22 =

N∑
n=1

2(µ− xn) =⇒ µ̂ =
1

N

N∑
n=1

xn

x1 x2

-1 -1
-1 1
1 -1
1 1
10 0
Table 2

D?. [3p] For a set of points (xn)n=1:N in Rm, the geometric median is defined as the
point

µ̂ = argmin
µ∈Rm

N∑
n=1

disteucl.(xn, µ) (2)

Note that in contrast to the mean, (2) does not have a closed form solution. However,
the minimum can be found numerically by a fixed point iteration scheme (algorithm 1).
Given the dataset from Table 2 (rows are datapoints!), compute both the mean and the
geometric median. What happens to both if we change the last datapoint to ( 100

0 )?

Solution.
The mean is µ = ( 2

0 ) and µ = ( 20
0 ) respectively. The geometric median however is stable with

respect to the outlier and is equal to ( 0.6245
0 ) in either case.

Remark (multivariate median). Note that the geometric median is different from the so called
marginal median (cf. slide 10) which is defined as component wise via µ̂i = median({Xni | n =
1 . . . N}). This median is easier to compute than the geometric median, but is dependent on the
coordinate system. For example, in 2D if the coordinate system was rotated, i.e. instead of basis
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vectors e1 = ( 1
0 ) and e2 = ( 0

1 ) we chose ẽ1 =
(
cos θ
sin θ

)
and ẽ2 =

(− sin θ
cos θ

)
, then the marginal median

would change while the geometric median would stay the same.

Remark (computing the geometric median). Weizfeld’s algorithm is an application of a fixed point
iteration scheme: under certain conditions on the function f , an equation of the form x = f(x)
can be efficiently solved numerically by simply iteration the function. (cf. Banach fixed-point
theorem) I.e. one starts with a random guess x0 and then applies the function f over and over:
xt+1 = f(xt). To see that this is whats happening, note that:

0
!
=

∂

∂µ

N∑
n=1

‖µ− xn‖2 =

N∑
n=1

µ− xn
‖µ− xn‖2

⇐⇒ µ =

∑N
n=1

xn

‖µ−xn‖2∑N
n=1

1
‖µ−xn‖2

=: f(µ)

So Weizfeld’s algorithm is essentially solving the first order condition for a local minimum.

Algorithm 1 Weiszfeld’s algorithm

1: µ(0) = 1
N

∑N
n=1 xn

2: for t = 0, 1, 2 . . . , max_iter do
3: µ(t+1) =

(∑N
n=1 xn‖xn − µ(t)‖−1

) / (∑N
n=1 ‖xn − µ(t)‖−1

)
4: if converged then break

2. Gaussian Mixture Models (GMMs) (8 points)
Two datasets ("moons" and "stripes") were each clustered by 3 different methods: K-means clustering,
Gaussian-Mixture-Models and Hierarchical Clustering (single link). The results are shown in Table 3.

Dataset Method A Method B Method C

m
o
o
n
s

st
r
ip

es

Table 3: Different Clustering Methods

A. [2p] Decide which method corresponds to A, B and C. Explain your decision.

Solution.
• Model A: must be Hierachical. Neither K-means nor GMMs could split the two moons into two

seperate clusters, as the boundary between clusters in these two models is linear/quadratic.

Another way to see it is that the mean of the one moon lies as the tip of the other. So if one
whole moon was in one cluster, the tip of the other would also have to belong to that cluster
in the K-means/GMM models.

• Model C: must be the GMM, due to being able to model the elliptical clusters of the stripes
dataset (K-Means yields spherical clusters.)

• Model B: must be K-means as its the only one left

B. [6p] Given the data from Table 1, and the initial configuration π1, π2 = 1
2 , µ1 = ( 0

1 ), µ2 = ( 3
0 ),

Σ1,Σ2 = I, perform 1 iteration of the (soft partition) EM algorithm to fit a GMM. Which cluster would
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x∗ = ( 1
1 ) belong to according the initial/final parameters?

Solution.
Initial soft partition:

q ≈
[

0.9820 0.9933 0.9999 0.1192 0.0067 0.0001
0.0180 0.0067 0.0001 0.8808 0.9933 0.9999

]
Updated parameters:

π1 ≈ 0.5169 µ1 =

(
−0.2389
0.9651

)
Σ1 =

[
0.4391 −0.4144
−0.4144 0.6786

]
π2 ≈ 0.4831 µ2 =

(
3.0154
−0.3425

)
Σ2 =

[
0.7258 −0.3469
−0.3469 0.2301

]
Final soft partition

q ≈
[

1.0000 0.9967 1.0000 0.0005 0.0000 0.0000
0.0000 0.0033 0.0000 0.9995 1.0000 1.0000

]
Cluster association of ( 1

1 ):

Cluster 1 Cluster 2
Initial: 0.8808 0.1192
Final: 0.3139 0.6861

3. Hierarchical Clustering (6 points)

x1 x2

0 0
1 0
2 0

-0.5 -1
0.5 -1
0 -1.5

Table 4

A. [2p] Compute the distance matrix Dij = dist(xi, xj), using the Manhatten
distance (i.e. L1), given the data from Table 4.

Solution.

{x1} {x2} {x3} {x4} {x5} {x6}
{x1} 0 1 2 1.5 1.5 1.5
{x2} 1 0 1 2.5 1.5 2.5
{x3} 2 1 0 3.5 2.5 3.5
{x4} 1.5 2.5 3.5 0 1 1
{x5} 1.5 1.5 2.5 1 0 1
{x6} 1.5 2.5 3.5 1 1 0

B. [4p] Perform agglomerative Hierarchical Clustering using single linkage as
the cluster distance measure. Draw the associated tree (as in slides 26/27).

Solution.
We start with the individual cluster {xi}i=1:6. The lowest distance is achieved between the pairs
({x1}, {x2}), ({x2}, {x3}), ({x4}, {x5}) and ({x4}, {x6}) and ({x5}, {x6}). Since we are using
single linkage, we can immediately merge these to the clusters to ({x1, x2, x3}) and ({x4, x5, x6}).
(usually, we would merge clusters one at a time, but with single linkage we can indeed merge them
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at once.)

{x1} {x2} {x3} {x4} {x5} {x6}
{x1} 0 1 2 1.5 1.5 1.5
{x2} 1 0 1 2.5 1.5 2.5
{x3} 2 1 0 3.5 2.5 3.5
{x4} 1.5 2.5 3.5 0 1 1
{x5} 1.5 1.5 2.5 1 0 1
{x6} 1.5 2.5 3.5 1 1 0

We can write an updated distance matrix table my merging the corresponding rows/cols, each
time taking the minimal values (single linkage!) For example, merging {x1} and {x2} yields the
updated distance table:

{x1, x2} {x3} {x4} {x5} {x6}
{x1, x2} 0 1 1.5 1.5 1.5
{x3} 1 0 3.5 2.5 3.5
{x4} 1.5 3.5 0 1 1
{x5} 1.5 2.5 1 0 1
{x6} 1.5 3.5 1 1 0

Performing all the merges mentioned above, we arrive in the last iteration at:

{x1, x2, x3} {x4, x5, x6}
{x1, x2, x3} 0 1.5
{x4, x5, x6} 1.5 0

The results can be represented as a tree:

{x1, x2, x3, x4, x5, x6}

{x4, x5, x6}

{x6}

{x4, x5}

{x5}{x4}

{x1, x2, x3}

{x3}

{x1, x2}

{x2}{x1}

Figure 1: Hierarchical Clustering Tree (Dendogram)
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