

Machine Learning 2 0. Overview

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim, Germany

《日》《聞》《臣》《臣》 王曰 '오�?'

Outline

1. Lecture Overview

2. Organizational Stuff

シック 三川 ヘボット・ボット・ 山マ

Machine Learning 2 1. Lecture Overview

Outline

1. Lecture Overview

2. Organizational Stuff

シック 三川川 スポット 山下 トーマー

Syllabus

		A. Advanced Supervised Learning
Tue. 5.4.	(1)	A.1 Generalized Linear Models
Tue. 12.4.	(2)	A.2 Gaussian Processes
Tue. 19.4.	(3)	A.3 Advanced Support Vector Machines
Tue. 26.4.	(4)	A.4 Neural Networks
Tue. 3.5.	(5)	A.5 Ensembles
Tue. 10.5.	(6)	A.5b Ensembles (ctd.)
Tue. 17.5.	(7)	A.6 Sparse Linear Models — L1 regularization
Tue. 24.5.	—	— Pentecoste Break —
Tue. 31.5.	(8)	A.6b Sparse Linear Models — L1 regularization (ctd.)
Tue. 7.6.	(9)	A.7. Sparse Linear Models — Further Methods
		B. Complex Predictors
Tue. 14.6.	(10)	B.1 Latent Dirichlet Allocation (LDA)
Tue. 21.6.	(11)	B.1b Latent Dirichlet Allocation (LDA; ctd.)
Tue. 28.6.	(12)	B.2 Deep Learning
Tue. 5.7.	(13)	Questions and Answers

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Candidate Topics

A. Advanced Supervised Learning
A.1 Generalized Linear Models (Mur. 9)
A.2 Gaussian Processes (Mur 15)
A.3 Support vector regression and fast SVM/SVR learning
A.4 Neural Networks (Mur 16.5)
A.5? Generalized Additive Models (Mur 16.3)
A.6 Ensembles (Voting, Stacking) (Mur 16.6)
A.7 Fast Learning Algorithms for L1 regularization (Murphy 13.4.2+3+4; L1 regularized logistic regression)

B. Complex Data (Relations, Images, Text, ...) B.1 Statistical relational learning / Factorization models B.2 Deep Learning / Representation Learning (Convolutional Neural Networks) (Mur. 28) B.3 Topic Models (Latent Dirichlet Allocation) (Mur. 27)

C. Complex Decisions

C.1 Ranking (Learning to rank) (Mur. 9.7)

C.2 Bayesian Regression & Classification (i.e., with uncertainties; variational methods; Gibbs sampling, MCMC) (Bishop 3.3, 4.5)

C.3 Sequential Classification (Conditional Random Fields/CRFs) (Mur. 19.6)

C.4 Structured Prediction

D. Problem Characteristics

D.1 Learning with additional unlabeled data (Semi-supervised Learning)

D.2 Controlling data acquisition (Active Learning)

D.3? Learning with missing values (imputation, EM)

D.4? Learning with imbalanced class distributions

Ε.

E.1 Hyperparameter Learning

F. Learning theory

Machine Learning 2 2. Organizational Stuff

Outline

1. Lecture Overview

2. Organizational Stuff

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆○

Character of the Lecture

This is an advanced lecture:

- ► I will assume good knowledge of Machine Learning I.
- ► Slides will contain major keywords, not the full story.
- ► For the full story, you need to read the referenced chapters in one of the books.

Exercises and Tutorials

- There will be a weekly sheet with 2 exercises handed out each Tuesday in the lecture.
 1st sheet will be handed out next week, Tue. 12.4.
- Solutions to the exercises can be submitted until next Tuesday noon 1st sheet is due Tue. 17.4.
- Exercises will be corrected.
- Tutorials each Wednesday 2pm-4pm, 1st tutorial this week, Wed. 6.4.
- Successful participation in the tutorial gives up to 10% bonus points for the exam.

Exam and Credit Points

- There will be a written exam at end of term (2h, 4 problems).
- ► The course gives 6 ECTS (2+2 SWS).
- ► The course can be used in
 - ► IMIT MSc. / Informatik / Gebiet KI & ML
 - Wirtschaftsinformatik MSc / Informatik / Gebiet KI & ML
 Wirtschaftsinformatik MSc / Wirtschaftsinformatik / Gebiet BI
 - ► as well as in both BSc programs.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少々で

- Kevin P. Murphy (2012): Machine Learning, A Probabilistic Approach, MIT Press.
- Trevor Hastie, Robert Tibshirani, Jerome Friedman (²2009): The Elements of Statistical Learning, Springer.

Also available online as PDF at http://www-stat.stanford.edu/~tibs/ElemStatLearn/

- Christopher M. Bishop (2007): Pattern Recognition and Machine Learning, Springer.
- Richard O. Duda, Peter E. Hart, David G. Stork (²2001): Pattern Classification, Springer.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少々で

Further Readings

- ► For a general introduction: [JWHT13, chapter 1&2], [Mur12, chapter 1], [HTFF05, chapter 1&2].
- ► For linear regression: [JWHT13, chapter 3], [Mur12, chapter 7], [HTFF05, chapter 3].

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少々で

References

Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin.

The elements of statistical learning: data mining, inference and prediction, volume 27. Springer, 2005.

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani.

An introduction to statistical learning. Springer, 2013.

Kevin P. Murphy.

Machine learning: a probabilistic perspective. The MIT Press, 2012.