Machine Learning 2

Machine Learning 2
6. Sparse Linear Models

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science
University of Hildesheim, Germany

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Sil



Machine Learning 2

Outline

1. Homotopy Methods: Least Angle Regression
2. Proximal Gradient Methods

3. Laplace Priors

[m]

=

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Machine Learning 2

Syllabus

Tue.

Tue.
Wed.
Tue.
Wed.
Tue.
Wed.

9.12.
Wed. 10.12.
Tue. 16.12.
Wed. 17.12.

Tue. 6.1.

Wed. 7.1.
13.1.
14.1.
20.1.
21.1.
27.1.
28.1.
Tue. 3.2.
Wed. 4.2.

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

(9)
(10)
(11)
(12)
(13)
(14)

A. Advanced Supervised Learning
A.1 Generalized Linear Models

A.2 Gaussian Processes

A.3 Advanced Support Vector Machines
A.4 Neural Networks

A.5 Ensembles

A.5b Ensembles (ctd.)

A.6 Sparse Linear Models

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

31



Machine Learning 2

1. Homotopy Methods: Least Angle Regression
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

Sparse Models so far

» Variable subset selection
» forward search, backward search

» L1 regularization / Lasso
» Coordinate descent (shooting algorithm)
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

L1 Regularization

min. £(9) == 0y, 9(6, X)) +A/101]x

§ e RP

is equivalent to

min. f(@A) = E(y,f/(é, X))
10 < B
6 ¢ RP

with
B :=|6*|2

=] (=)
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

Homotopy Methods

min. f(0) := €(y,(8,X)) + A|0|lx
or equivalently
min. £(8) := 4(y,7(8, X))
191 < B

» start with a solution for large A(©) (or equiv. B := 0)
> then §© = 0.

» stepwise decrease A\(t) (or equiv. increase B)

» learn A starting from A(t=1) (warmstart).
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

Least Angle Regression (LAR)
in step t:

1. choose the predictors with largest correlation with the residuum
(active predictors):

C(t—l) ::XT(}/ _ j}(t—l))
A :— arg max | C(t71)|

2. regress these predictors on the residuum:

x(1) .— A(t)

A8 .= argmin ||y — (1 — X0y
Y

:(X(f) TX(t))—lx(t) T(y _ }A/(t_l))
3. update parameters in this direction:
B =1 4 g A5
Note: Agz,k =1 for Alt) .=

={mi,mp,...,mg}, Am)k := 0 otherwise.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

31



Machine Learning 2 1. Homotopy Methods: Least Angle Regression

. B2
Least Angle Regression (LAR): step length “
Residuum correlations after the update

CO=XT(y = §) = XT(y = Xp) = XT(y = X(5¢ + aalD51)
=Cc(t=1) — o XT X A®3(0)
=c(t=1) _ o xT x(03(1)

are uniformly reduced for active predictors:
CO| i =C g9 — aXOTXOFO = (1 — a) D) 4
and may also change for non-active predictors:

i =Y —axT x40

Note: Maybe a mistake somewhere here. Final formula for « differs from the one in_the
pap

aper.
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression
Least Angle Regression (LAR): step length (2/2)
Reduce until another predictor has same (max) residuum correlation:
P =cli D —axT xW50 L (1 - a)clsY
Chac? — i
Chiad) — X T X(93()

or for negative correlations:

o =

cl) _cle=1) aX,:I,—nX(t)’AY(t) L —(1- a)C&ta_xl)
Gl + i

o =
C&ta;l) —+—X,:’,-,7X(t)’?(t)

yielding

max

me{l,...,M}\ A
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

Example
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FIGURE 3.14. Progression of the absolute correlations during each step of the
LAR procedure, using a simulated data set with siz predictors. The labels at the
top of the plot indicate which variables enter the active set at each step. The step
length are measured in units of Ly arc length.
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

Example

Least Angle Regression
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

Remarks

» algorithm can be used two ways:

1. Estimate parameters for all A (regularization path)
2. Estimate parameters for a specific A (Homotopy method)

» start with large A, stop once A(Y) < X reached.

» not straightforward to extend from regression to GLMs

» LAR can be modified to solve the LASSO:

» if the parameter Bf,f) for an active predictor m becomes 0 or changes
sign, drop it from the active set.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

Example
Least Angle Regression Lasso
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Machine Learning 2 2. Proximal Gradient Methods

Proximal Problem

» find x with minimal f in a vicinity of a given x

0.

0 . 1 012

proxs(x") :=argmin f(x) + §||x —x'|5
X

[m]
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Machine Learning 2 2. Proximal Gradient Methods

Proximal Problem
» find x with minimal f in a vicinity of a given x°:
1
proxs(x°) := arg min f(x) + §\|x — x|
X
Can be solved analytically for some typical (possibly non-differentiable)

regularization functions: 1

0y _ 0
IS\ proxe(x7) =53 7%
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Machine Learning 2 2. Proximal Gradient Methods

Proximal Problem

» find x with minimal f in a vicinity of a given x°:
1
proxs(x°) := arg min f(x) + §\|x — x|
X

Can be solved analytically for some typical (possibly non-differentiable)
regularization functions: 0 1
> o= )\|x|[3: prox(x ):2>\7+1X

» = Ax||1:

0

proxs(x°) =soft(x®, \) := (soft(x2, A\))n=1...n

soft(z, \) := sign(z)(|z| — Ao
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Machine Learning 2 2. Proximal Gradient Methods

Proximal Problem

» find x with minimal f in a vicinity of a given x°:
1
proxs(x°) := arg min f(x) + §\|x — x|
X

Can be solved analytically for some typical (possibly non-differentiable)
regularization functions: 0 1
> o= )\|x|[3: prox(x ):2>\7+1X

» = Ax||1:

0

proxs(x°) =soft(x®, \) := (soft(x2, A\))n=1...n

soft(z, \) := sign(z)(|z| — Ao
> = Ax|lo:

proxs(x°) =hard(x%, ) := (hard(x2, \))n=1..._n,
hard(z,\) :=d(|z| > \) z
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Machine Learning 2 2. Proximal Gradient Methods

More Analytical Solutions for the Proximal Problem

» find x with minimal f in a vicinity of a given x°:

1
proxf(xo) :=argmin f(x) + EHX — XOHE
X

0, ifxeC

f := ¢ for a convex set C and I¢(x) := {
oo, else

proxe(x) = arg min [x — x°|[3 =: projc(x°)
xeC
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Machine Learning 2 2. Proximal Gradient Methods

More Analytical Solutions for the Proximal Problem

» find x with minimal f in a vicinity of a given x°:

1
PFOXf(XO) :=argmin f(x) + EHX — XOH%
0 if C
f := Ic for a convex set C and Ic(x) := { X €
oo, else

proxe(x) = arg min [x — x°|[3 =: projc(x°)
xeC

» rectangles / box constraints C := [l u1] X [k, up] X -+ X [In, un]:

prox(x°) =clip(x®, C)  with clip(x®, C), := min{max{x%, I}, u,}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

More Analytical Solutions for the Proximal Problem

» find x with minimal f in a vicinity of a given x°:

1
proxf(xo) :=argmin f(x) + EHX — XOHE
X

0 if C
f := ¢ for a convex set C and I¢(x) := { X E
oo, else

proxe(x) = arg min [x — x°|[3 =: projc(x°)
xeC

» rectangles / box constraints C := [l u1] X [k, up] X -+ X [In, un]:
prox(x°) =clip(x®, C)  with clip(x®, C), := min{max{x%, I}, u,}

» euclidean balls C := {x | ||x||> < 1}:
0

T if [[x0]], > 1
proxs(x%) = { X2 EdiP
X07 else

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

More Analytical Solutions for the Proximal Problem

» find x with minimal f in a vicinity of a given x°:

1
prox,c(xo) :=argmin f(x) + EHX — XOHE

f:=Ic for
» L1 balls C := {x | ||x]]1 < 1}:

soft(x?, \), if [|x0] > 1

prox¢(x°) ={ .

xY, else

N
for A with " (x2 — Al)o = 1

n=1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

Generalized Gradient Descent

min g(x) + h(x), g, h convex, g differentiable
Generalized Gradient Descent:

x(tH1) . — proxa(t)h(x(t) — v g(x(1)))

1
with proxs(x°) := argmin f(x) + §||x — X912
X

» two-step approach:

1. minimize component g via gradient descent
2. minimize component h via prox operator

> requires control of step size a(t)

» generalizes gradient descent to objective functions with
non-differentiable additive components

» convergence rate O(1/t).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

Application to Regularized Loss Minimization

min  £(0) :=£(0) + R(6)

» / loss, convex and differentiable
» e.g., RSS.

» R regularization, convex, but possibly not differentiable

0, 9eC
> eg., ||9||1 or /C(H) = {oo clse
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Machine Learning 2 2. Proximal Gradient Methods

Application to Regularized Loss Minimization
Minimizing
0(+1) = arg min R(6) + £(6)
0

using a Taylor expansion around previous estimate 6(1):
000D =000 + Vo0 T (0 — 68)) + (6 — 0T H (6 — (1))
and diagonal approximation of the Hessian H =~ alt]
~ 00 + V20T (6 — 61) 4+ D)6 — 6|3

1
veE )3

olt)

o« a®||o — (0 —

yields a proximal problem

1 1 1
in — 21 — (o) — (AN
argemln 5 R(0) + 5 1|16 — (6 NG WA

1
— (1) _ (1)
= proxhl(t) r(0 NG Ve(6'))

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

Special Cases

1
0+ = prox_1_ (01 — —<ve(9M))

N E) alt)

1 1 1
_ - g (plt) _ _—
= arggmln 0 R(6) + 2]|9 (¢ Vv

alt)
1. R = 0 yields gradient descent:

o+ — g0 _ L g
alt)

2. R = I¢ yields projected gradient descent:

ng(g(t)))

+1) _ e
00+ = proj (01 — NG

(0113

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

18 / 31



Machine Learning 2 2. Proximal Gradient Methods

Special Cases: Projected Gradient Descent

Feasible Set

[Mur12, fig. 13.11]
[m] = = =

DA
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Machine Learning 2 2. Proximal Gradient Methods

Special Cases

1
t+1) .__
9( ) = pr0X2a1(t)R(0(t) — m Cﬁ(ﬁ(t)))
1 1 1
= in — e — (p(t) _ ()12
argemln 5ol R(9) + 2H9 (0 NG \WACSMIIE

3. R = \||0]|]1 yields iterative soft thresholding:

1 A
(t+1) _ (t) _ () ~
0 = soft(f nG) Ve(6'), 2a(t))

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

NN
Stepsizes alt) “

a7 (80 — g(t=1y & 1 (9O — =) = vo(p®) — ve(gt-D)

alt) .= arg min Ha(t)(e() (= 1)) (Vé(e(t) vg(g(t—l)))

_ (01 — 0D T(v(60) — Vet 1))
(0 — =) T((r) — g(t-1))

called Barzilai-Borwein stepsize or spectral stepsize.
» does not guarantee decreasing objective values.

» can be used with any gradient descent method.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

NN
Iterative Shrinkage and Thresholding Algorithm(ISTA) “

» proximal gradient descent for L1 regularization
» iterative soft thresholding

» Barzilai-Borwein stepsize

» in outer loop, homotopy on A
» i.e., gradually reducing A(Y) to X

Note: This algorithm is called Sparse Reconstruction by Separable Approximation
L(SpaRSA in the literature

ars Schmidt. Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

Algorithm

Algorithm 13.2: Iterative Shrinkage-Thresholding Algorithm (ISTA)

1
2
3
4
5
6
7
8
9

10
1

—

2

Input: X € RV*P |y ¢ RV, parameters A >0, M > 1,0 < s < 1;
Initialize g = 0, a = 1, r =y, A\g = o
repeat
At = max(s||X7r||o, A) // Adapt the regularizer ;
repeat
g =VL(0);
u=0-_g
0 = soft(u, %),
Update o using BB stepsize in Equation 13.82 ;
until f(0) increased too much within the past M steps;
r =y — X6 // Update residual ;
until \; = )\;

[Mur12, p. 44
5 = =

o,

[m]
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Machine Learning 2 2. Proximal Gradient Methods

Nesterov's Accelerated Generalized Gradient Descent

min g(x) + h(x), g, h convex, g differentiable
X

Generalized Gradient Descent:
0, =2
t+1

D) = o, o (x (<) — x(1)) — a7 g (x1))
with prox;(x%) := argmin f(x) + %Hx — X2

added momentum term

v

v

works also for vanilla gradient descent (h = 0)

» convergence rate O(1/t2)!

v

beware, there are at least 3 versions of Nesterov’s method.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

NE
Fast Iterative Shrinkage and Thresholding Alg. (FISTA)A

t—1

1
Qa(t) t + 2

alt)

(0(8) — p(t=1)) — V(o))

for R = A||||1 yields iterative soft thresholding:

oD = of(p(0 L

- 200 gt RN

alt)

A
@)

using Nesterov’s Accelerated Generalized Gradient Descent.

[m] = = =
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25 /31



Machine Learning 2 2. Proximal Gradient Methods

FISTA vs ISTA

10°

2000 4000 6000

8000 10000

Figure 5. Comparison of function value errors F(xy) — F(x*) of ISTA, MTWIST, and FISTA.

[BTO09, p. 19]
& = =
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Machine Learning 2 3. Laplace Priors

Laplace Priors correspond to L1 regularization

L2 regularization:
F(6) = lly = X813 + 8113

Gaussian priors:
p()’n ’ xn,ﬁ,az) =N Yn | X,;I'B’JZ)
p(B) == N(B]0,7%)

(7_2)—M/2 672‘%2 8

P\

<

using negative loglikelihood as objective function:

f(8) = —logp(y | X, )

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 3. Laplace Priors

Laplace Priors correspond to L1 regularization

L2 regularization: L1 regularization:
F(0) = Ily — XI5+ AlIBlI3 F(0) = [ly — XB[5 + Allg|
Gaussian priors: Laplace priors:
P(Yn | Xn. B,0%) := N(yn | %] B,0%)  P(yn | X, B:0%) := N(yn | X B,07)
p(B) = N(80,7%) p(Bm) := Lap(Bm | 0.1/7)
x (r2) M2 e —52878 = %e’”'ﬁm‘

using negative loglikelihood as objective function:

f(8) == —logp(y | X, )

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 3. Laplace Priors

Laplace as Gaussian Scale Mixture

2

Lap(Bm | 0,1/7) = / N (Bm | 0,72) Exp(

;2 g
with exponential distribution

Exp(x | A) := e ™™

[m]

=

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 3. Laplace Priors

Laplace Prior as Gaussian Scale Mixture

p()/n ’ Xmﬁvgz) = N(Yn | Xr;rﬂaa2)
P(Bm | 7)== N (Bm | 0,77)

2
p(r2) = Exp(7} | %)

p(c?) == 1G(c? | a5, bs)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 3. Laplace Priors

Laplace Prior as Gaussian Scale Mixture

p(yn | Xn, B,0%) := N(yn | x] 8,0?) I

p(Bm | 7'31) = N(Bm | 077'31) O
2
o Y
p(Tr%"l) " EXp(Tz ?) ()w]-D
p(c?) == 1G(c? | a5, bs)
O——0Qu
" N

o = = E|=



Machine Learning 2 3. Laplace Priors

Laplace Prior as Gaussian Scale Mixture

p(yn | Xn, B,0%) := N(yn | x] 8,0?) I

p(ﬂm | 7_37) = N(Bm ’ OaTri) O
2 2 72
p(Tm) = EXp(T ?) () u]D
P(Uz) = IG(U2 | ag, by)
NLL: O——Qv
1 1 72 M ;
(8,7%) = = 5 3lly = XBl2 = 58" A8+ mzjzm_
1 1 1
A :=diag(—=, >, —)
22

[Mur12, p. 446]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 3. Laplace Priors

EM for Laplace Prior

NLL:
1 1 2 M
2y _ 2 T 0 2
f(/BvT)_ _20_2H}/_X6H2_§,8 A/B'i‘? Tm
m=1
1 1 1
N =diag(—, —=,...,—=

1. Expectaction of 72:

[ ~2
p(1/72 | B) = InverseGaussian( ;—,72)

B/ 8)=

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 3. Laplace Priors

EM for Laplace Prior

NLL:
1 1 2
£ 2y _ _ B 2 1T 72 2
(ﬁaT) 20_2Hy Xﬂ||2 2ﬁ AB_‘_ 2 mile
1 1 1
A :=diag(—, —5,..., —

2. Expectaction of 02:

p(0% | B) = 16(ay + 5. by + 2 (y — XB) T (y — XB))
as + %

o+ 3(y = XB)T(y — XB)

E(1/o* | 8)= -

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 3. Laplace Priors

EM for Laplace Prior

NLL:
1 1 2 U
£ 2y _ _ _ 2 LT 2
(3.7%) = = gally =XBlB =8NS+ 5 3o
11
A = diag(—=s, ;... —

3. Maximizing (: ridge regression
B=(* N+ XTX)IXTy

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 3. Laplace Priors

Why Laplace Prior?

v

Bayesian Lasso
» provides posterior distribution, not just point estimates

v

Can be generalized to other models / losses

v

Motivates to experiment with other types of priors, too

v

Less scalable than the other methods, though.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2

Further Readings

» L1 regularization: [Murl2, chapter 13.3-5], [HTFFO05, chapter 3.4,
3.8, 4.4.4], [Bis06, chapter 3.1.4].
» LAR, LARS: [HTFFO05, chapter 3.4.4], [Murl2, chapter 13.4.2],

» Non-convex regularizers: [Murl2, chapter 13.6].

» Automatic Relevance Determination (ARD): [Murl2, chapter 13.7],
[HTFFO5, chapter 11.9.1], [Bis06, chapter 7.2.2].

» Sparse Coding: [Murl2, chapter 13.8].

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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