

# Machine Learning 2 8. Latent Dirichlet Allocation (LDA)

#### Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim, Germany

《日》《聞》《臣》《臣》 된言 '오오오

## Outline



- 1. The LDA Model
- 2. Learning LDA via Gibbs Sampling
- 3. Learning LDA via Collapsed Gibbs Sampling
- 4. Learning LDA via Variational Inference
- 5. Supervised LDA

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□

# Syllabus



|             |                                                            | A. Advanced Supervised Learning                      |  |  |
|-------------|------------------------------------------------------------|------------------------------------------------------|--|--|
| Tue. 9.12.  | (1)                                                        | A.1 Generalized Linear Models                        |  |  |
| Wed. 10.12. | (2)                                                        | A.2 Gaussian Processes                               |  |  |
| Tue. 16.12. | (3)                                                        | A.3 Advanced Support Vector Machines                 |  |  |
| Wed. 17.12. | (4)                                                        | A.4 Neural Networks                                  |  |  |
| Tue. 6.1.   | (5)                                                        | A.5 Ensembles                                        |  |  |
| Wed. 7.1.   | Wed. 7.1. (6) A.5b Ensembles (ctd.)                        |                                                      |  |  |
| Tue. 13.1.  | ie. 13.1. (7) A.6 Sparse Linear Models — L1 regularization |                                                      |  |  |
| Wed. 14.1.  | (8)                                                        | A.6b Sparse Linear Models — L1 regularization (ctd.) |  |  |
| Tue. 20.1.  | (9)                                                        | A.7. Sparse Linear Models — Further Methods          |  |  |
|             |                                                            | B. Complex Predictors                                |  |  |
| Wed. 21.1.  | (10)                                                       | B.1 Latent Dirichlet Allocation (LDA)                |  |  |
| Tue. 27.1.  | (11)                                                       | B.1b Latent Dirichlet Allocation (LDA; ctd.)         |  |  |
| Wed. 28.1.  | (12)                                                       | _                                                    |  |  |
| Tue. 3.2.   | (13)                                                       |                                                      |  |  |
| Wed. 4.2.   | (14)                                                       |                                                      |  |  |

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

## Outline



#### 1. The LDA Model

- 2. Learning LDA via Gibbs Sampling
- 3. Learning LDA via Collapsed Gibbs Sampling
- 4. Learning LDA via Variational Inference
- 5. Supervised LDA

・ロト・四ト・王ト・王ト 別に ろくの

## Documents / Finite Discrete Sequences

Juniversiter Hildeshein

- ► instances  $x_n \in A^*$  are **discrete sequences** 
  - A := {1,..., A} called dictionary / alphabet (A ∈ N), where a ∈ A denotes the a-th word / symbol / token.
  - $\mathcal{A}^* := \bigcup_{\ell=1}^{L} \mathcal{A}^{\ell}$  called **documents** / finite  $\mathcal{A}$ -sequences.
  - $M_n := |x_n| := \ell$  called length (for  $x_n \in \mathcal{A}^{\ell}$ ).
  - $x_{n,m}$  called *m*-th word of  $x_n$ .
- if there are no sequential effects (order does not matter), documents can be described by their word frequencies (bag of words):

$$\Phi_{n,a} := |\{\ell \in \{1, \dots, |x_n|\} \mid x_{n,\ell} = a\}$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少々で

### The LDA Model



$$p(x_{n,m} | z_{n,m} = k, \phi) := Cat(x_{n,m} | \phi_k), \quad n = 1, ..., N, m = 1, ..., M_n$$

$$p(z_{n,m} | \pi_n) := Cat(z_{n,m} | \pi_n), \quad n = 1, ..., N, m = 1, ..., M_n$$

$$p(\phi_k | \beta) := Dir(\phi_k | \beta 1_A), \quad k = 1, ..., K$$

$$p(\pi_n | \gamma) := Dir(\pi_n | \gamma 1_K), \quad n = 1, ..., N$$

- ►  $z_{n,m} \in \{1, ..., K\}$ : topic the *m*-th word of document *n* belongs to.
- $\phi_k \in \Delta^A$ : word probabilities of topic k.
- $\pi_n \in \Delta^K$ : topic probabilities of document *n*.
- $\beta, \gamma \in \mathbb{R}^+$ : priors of  $\phi$  and  $\pi$ .

《日》《國》《王》《王》 法正 ろくの

## The LDA Model

$$p(x_{n,m} \mid z_{n,m} = k, \phi) := \operatorname{Cat}(x_{n,m} \mid \phi_k),$$

$$p(z_{n,m} \mid \pi_n) := \operatorname{Cat}(z_{n,m} \mid \pi_n),$$

$$p(\phi_k \mid \beta) := \operatorname{Dir}(\phi_k \mid \beta \mathbf{1}_A),$$

$$p(\pi_n \mid \gamma) := \operatorname{Dir}(\pi_n \mid \gamma \mathbf{1}_K),$$

- ►  $z_{n,m} \in \{1, ..., K\}$ : topic the *m*-th word of document *n* belongs to.
- $\phi_k \in \Delta^A$ : word probabilities of topic k.
- $\pi_n \in \Delta^K$ : topic probabilities of document *n*.
- $\beta, \gamma \in \mathbb{R}^+$ : priors of  $\phi$  and  $\pi$ .

[Mur12, fig. 27.2] 《마》《문》《문》 문》 분들 것으(~

Topic 77

### Example



word

MUSIC

MUSICAL

prob.

.090

.013

Topic 166

| prob. | word     | prob. |
|-------|----------|-------|
| .031  | PLAY     | .136  |
| .028  | BALL     | .129  |
| .027  | GAME     | .065  |
| .020  | PLAYING  | .042  |
| .019  | HIT      | .032  |
| .019  | PLAYED   | .031  |
| .015  | BASEBALL | .027  |
| .013  | GAMES    | .025  |
| .013  | BAT      | .019  |
| .012  | RUN      | .019  |
| .012  | THROW    | .016  |
| .011  | BALLS    | .015  |
| .011  | TENNIS   | .011  |
| .010  | HOME     | .010  |
| .009  | CATCH    | .010  |
| .009  | FIELD    | .010  |

| POEM        | .034 | DANCE   |
|-------------|------|---------|
| POETRY      | .033 | SONG    |
| POET        | .030 | PLAY    |
| PLAYS       | .026 | SING    |
| POEMS       | .026 | SINGING |
| PLAY        | .026 | BAND    |
| LITERARY    | .023 | PLAYED  |
| WRITERS     | .022 | SANG    |
| DRAMA       | .021 | SONGS   |
| WROTE       | .020 | DANCING |
| POETS       | .017 | PIANO   |
| WRITER      | .016 | PLAYING |
| SHAKESPEARE | .015 | RHYTHM  |
| WRITTEN     | .013 | ALBERT  |

Topic 82

word pro

LITERATURE

[Mur12, fig. 27.4] Sac

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

STAGE

### Example



#### Document #29795

Bix beiderbecke, at age<sup>660</sup> fifteen<sup>207</sup>, sat<sup>174</sup> on the slope<sup>071</sup> of a bluff<sup>055</sup> overlooking<sup>027</sup> the mississippi<sup>137</sup> river<sup>137</sup>. He was listening<sup>077</sup> to music<sup>077</sup> coming<sup>009</sup> from a passing<sup>043</sup> riverboat. The music<sup>077</sup> had already captured<sup>006</sup> his heart<sup>157</sup> as well as his eart<sup>19</sup>. It was jazz<sup>077</sup>. Bix beiderbecke had already had music<sup>077</sup> lessons<sup>077</sup>. He showed<sup>002</sup> promise<sup>134</sup> on the piano<sup>077</sup>, and his parents<sup>335</sup> hoped<sup>268</sup> he might consider<sup>118</sup> becoming a concert<sup>077</sup> pianist<sup>077</sup>. But bix was interested<sup>268</sup> in another kind<sup>050</sup> of music<sup>077</sup>. He wanted<sup>268</sup> to play<sup>077</sup> he cornet. And he wanted<sup>268</sup> to play<sup>077</sup>.

#### Document #1883

There is a simple<sup>050</sup> reason<sup>106</sup> why there are so few periods<sup>078</sup> of really great theater<sup>082</sup> in our whole western<sup>046</sup> world. Too many things<sup>300</sup> have to come right at the very same time. The dramatists must have the right actors<sup>082</sup>, the actors<sup>082</sup> must have the right playhouses, the playhouses must have the right audiences<sup>082</sup>. We must remember<sup>288</sup> that plays<sup>082</sup> exist<sup>143</sup> to be performed<sup>077</sup>, not merely<sup>050</sup> to be read<sup>254</sup>. (even when you read<sup>254</sup> a play<sup>082</sup> to yourself, try<sup>288</sup> to perform<sup>062</sup> it, to put<sup>174</sup> it on a stage<sup>078</sup>, as you go along.) as soon<sup>028</sup> as a play<sup>082</sup> has to be performed<sup>082</sup>, then some kind<sup>126</sup> of theatrical<sup>082</sup>...

#### Document #21359

Jim<sup>296</sup> has a game<sup>166</sup> book<sup>254</sup>. Jim<sup>296</sup> reads<sup>254</sup> the book<sup>254</sup>. Jim<sup>296</sup> sees<sup>081</sup> a game<sup>166</sup> for one. Jim<sup>296</sup> plays<sup>166</sup> the game<sup>166</sup>. Jim<sup>296</sup> likes<sup>081</sup> the game<sup>166</sup> for one. The game<sup>166</sup> book<sup>254</sup> helps<sup>081</sup> jim<sup>296</sup> Don<sup>180</sup> comes<sup>040</sup> into the house<sup>038</sup>. Don<sup>180</sup> and jim<sup>296</sup> read<sup>254</sup> the game<sup>166</sup> for two. The boys<sup>020</sup> play<sup>166</sup> the game<sup>166</sup>. The boys<sup>020</sup> play<sup>166</sup> the game<sup>166</sup> for two. The boys<sup>020</sup> like the game<sup>166</sup>. Meg<sup>282</sup> comes<sup>040</sup> into the house<sup>282</sup>. Meg<sup>282</sup> and don<sup>180</sup> and jim<sup>296</sup> read<sup>254</sup> the book<sup>254</sup>. They see a game<sup>166</sup> for three. Meg<sup>282</sup> and don<sup>180</sup> and jim<sup>296</sup> jlay<sup>166</sup> the game<sup>166</sup>. They play<sup>166</sup> the game<sup>166</sup>.

#### [Mur12, fig. 27.5]

### Outline



#### 1. The LDA Model

#### 2. Learning LDA via Gibbs Sampling

- 3. Learning LDA via Collapsed Gibbs Sampling
- 4. Learning LDA via Variational Inference
- 5. Supervised LDA

・ロト ・部ト ・王ト ・王ト シスペ



# Learning via Parameter Sampling The loglikelihood

$$\mathit{p}( heta \mid \mathcal{D}) \propto \mathit{p}(\mathcal{D} \mid heta)$$

describes the **distribution of the parameters given the data**. If we can **sample parameters** from this distribution

$$\theta_1, \theta_2, \dots, \theta_S \sim p(\theta \mid D)$$

we can

estimate expected parameter values and their variances from this parameter sample:

$$\hat{\theta} := E(\theta \mid \mathcal{D}) \approx \frac{1}{S} \sum_{s=1}^{S} \theta_s, \qquad V(\theta \mid \mathcal{D}) \approx \frac{1}{S-1} \sum_{s=1}^{S} (\theta_s - E(\theta \mid \mathcal{D}))^2$$

predict targets for new instances x via model averaging:

$$p(y \mid x, \theta_{1:S}) = \frac{1}{S} \sum_{s=1}^{S} p(y \mid x, \theta_s)$$

Sampling



- ▶ for most closed-form distributions p(x) there exist efficient sampling methods
  - categorical, normal, ...
- but most loglikelihoods are not closed-form distributions.
  - but for example products thereof.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□

# Gibbs Sampling

- task: sample from  $p(x_1, \ldots, x_N)$
- ► problem:
  - assume sampling from the joint distribution  $p(x_1, \ldots, x_N)$  is difficult.
  - ► assume sampling from marginals p(x<sub>n</sub>) or partial conditionals p(x<sub>n</sub> | some x<sub>n'</sub>) is also difficult.
  - ▶ assume sampling from all **full conditionals**  $p(x_n | x_n)$  is easy.

◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少々で



# Gibbs Sampling

- task: sample from  $p(x_1, \ldots, x_N)$
- ► problem:
  - assume sampling from the joint distribution  $p(x_1, \ldots, x_N)$  is difficult.
  - ► assume sampling from marginals p(x<sub>n</sub>) or partial conditionals p(x<sub>n</sub> | some x<sub>n'</sub>) is also difficult.
  - ▶ assume sampling from all **full conditionals**  $p(x_n | x_{-n})$  is easy.

**Gibbs sampling:** given last sample  $x^s$ , sample  $x^{s+1}$  one variable at a time:

$$\begin{aligned} x_1^{s+1} &\sim p(x_1 \mid x_{2:N} = x_{2:N}^s) \\ x_2^{s+1} &\sim p(x_2 \mid x_{1:1} = x_{1:1}^{s+1}, x_{3:N} = x_{3:N}^s) \\ &\vdots \\ x_n^{s+1} &\sim p(x_n \mid x_{1:n-1} = x_{1:n-1}^{s+1}, x_{n+1:N} = x_{n+1:N}^s) \\ &\vdots \\ x_N^{s+1} &\sim p(x_N \mid x_{1:N-1} = x_{1:N-1}^{s+1}) \end{aligned}$$



# Gibbs Sampling



- ► the distribution created by the Gibbs sampler eventually will converge to p(x<sub>1</sub>,...,x<sub>N</sub>)
- start Gibbs sampling with an arbitrary  $x^0$ 
  - but ensure that  $p(x^0) > 0$  !
  - also consider restarts.
- ► throw away the first examples (**burn in**; 100-10,000).
  - only after a while the chain has converged to the stationary distribution  $p(x_1, \ldots, x_N)$ .
  - ► typical are 100-10,000 examples
- sometimes some variables can be marginalized out, improving the performance of the Gibbs sampler (collapsed Gibbs sampling, Rao-Blackwellisation)

## Gibbs Sampling for LDA

$$p(x_{n,m} \mid z_{n,m} = k, \phi) := \operatorname{Cat}(x_{n,m} \mid \phi_k) \qquad = \phi_{k,x_{n,m}}$$

$$p(z_{n,m} \mid \pi_n) := \operatorname{Cat}(z_{n,m} \mid \pi_n) \qquad = \pi_{n,z_{n,m}}$$

$$p(\phi_k \mid \beta) := \operatorname{Dir}(\phi_k \mid \beta \mathbf{1}_A) \qquad \propto \prod_{a=1}^A \phi_{k,a}^{\beta_a - 1}$$

$$p(\pi_n \mid \gamma) := \operatorname{Dir}(\pi_n \mid \gamma \mathbf{1}_K) \qquad \propto \prod_{k=1}^K \pi_{n,k}^{\gamma_k - 1}$$

Full conditionals:

$$p(z_{n,m} = k \mid \phi, \pi_n) \propto p(x_{n,m} \mid z_{n,m} = k, \phi) p(z_{n,m} = k \mid \pi_n) = \phi_{k,x_{n,m}} \pi_{n,k}$$





# Gibbs Sampling for LDA

$$p(x_{n,m} \mid z_{n,m} = k, \phi) := \operatorname{Cat}(x_{n,m} \mid \phi_k)$$
$$p(z_{n,m} \mid \pi_n) := \operatorname{Cat}(z_{n,m} \mid \pi_n)$$

$$p(\phi_k \mid \beta) := \mathsf{Dir}(\phi_k \mid \beta \mathbf{1}_A)$$

$$p(\pi_n \mid \gamma) := \mathsf{Dir}(\pi_n \mid \gamma \mathbf{1}_K)$$



Full conditionals:

$$p(\phi_k \mid z, \pi) \propto \prod_{n=1}^N \prod_{m=1}^{M_n} p(z_{n,m} = k \mid \pi_n) p(\phi_k \mid \beta)$$
$$= \operatorname{Dir}((\beta_a + \sum_{n=1}^N \sum_{m=1}^M \delta(x_{n,m} = a, z_{n,m} = k))_{a=1:A})$$



### Outline



1. The LDA Model

2. Learning LDA via Gibbs Sampling

#### 3. Learning LDA via Collapsed Gibbs Sampling

4. Learning LDA via Variational Inference

5. Supervised LDA

《日》《聞》《臣》《臣》 王曰 '오�?'

#### Counts



$$c_{n,a,k} := \sum_{m=1}^{M_n} \delta(x_{n,m} = a, z_{n,m} = k)$$

$$c_{n,k} := \sum_{a=1}^{A} c_{n,a,k}$$

$$c_{a,k} := \sum_{n=1}^{N} c_{n,a,k}$$

$$c_k := \sum_{a=1}^{A} \sum_{n=1}^{N} c_{n,a,k}$$

シック 비門 《파》《파》《西》《日》



#### Marginals over $\pi$ and $\phi$

$$p(z \mid \beta) = \prod_{n=1}^{M_n} \int (\prod_{m=1}^{M_n} \operatorname{Cat}(z_{n,m} \mid \pi_n)) \operatorname{Dir}(\pi_n \mid \gamma \mathbf{1}_K) d\pi_n$$
$$= \left(\frac{\Gamma(K\gamma)}{\Gamma(\gamma)^K}\right)^N \prod_{n=1}^N \frac{\prod_{k=1}^K \Gamma(c_{n,k} + \gamma)}{\Gamma(M_n + K\gamma)}$$

シック 正則 スポッスポッス モッ



#### Marginals over $\pi$ and $\phi$

$$p(z \mid \beta) = \prod_{n=1}^{M_n} \int (\prod_{m=1}^{M_n} \operatorname{Cat}(z_{n,m} \mid \pi_n)) \operatorname{Dir}(\pi_n \mid \gamma \mathbf{1}_K) d\pi_n$$
$$= \left(\frac{\Gamma(K\gamma)}{\Gamma(\gamma)^K}\right)^N \prod_{n=1}^N \frac{\prod_{k=1}^K \Gamma(c_{n,k} + \gamma)}{\Gamma(M_n + K\gamma)}$$

$$p(x \mid z, \beta) = \prod_{k=1}^{K} \int (\prod_{(n,m):z_{n,m}=k} \operatorname{Cat}(x_{n,m} \mid \phi_{k})) \operatorname{Dir}(\phi_{k} \mid \beta 1_{K}) d\phi_{k}$$
$$= \left(\frac{\Gamma(A\beta)}{\Gamma(\beta)^{A}}\right)^{K} \prod_{k=1}^{K} \frac{\prod_{a=1}^{A} \beta(c_{a,k} + \beta)}{\Gamma(c_{k} + A\beta)}$$

・ロト < 団ト < 三ト < 三ト < 三ト < ロト</li>

### Shiversiter Hildeshein

### Marginals over $\pi$ and $\phi$

$$p(z_{n,m} \mid z_{-(n,m)}, x, \beta, \gamma) = \frac{p(z \mid x, \beta, \gamma) \, p(x \mid z, \beta)}{p(z_{-(n,m)} \mid x_{-(n,m)}, \beta, \gamma) \, p(x_{-(n,m)} \mid z_{-(n,m)}, \beta)}$$

◇▷▷ 비로 《토》《토》 《팀》 ◇□ >

## Marginals over $\pi$ and $\phi$



$$p(z_{n,m} \mid z_{-(n,m)}, x, \beta, \gamma) = \frac{p(z \mid x, \beta, \gamma) p(x \mid z, \beta)}{p(z_{-(n,m)} \mid x_{-(n,m)}, \beta, \gamma) p(x_{-(n,m)} \mid z_{-(n,m)}, \beta)}$$

Now let  $c_{n,a,k}^{-}$  be the counts for the leave-one-out sample  $x_{(n,m)}, z_{-(n,m)}$  (all but *m*-th word of document *n*).

$$c_{n,a,k}^{-} = \begin{cases} c_{n,a,k} - 1, & \text{for } x_{n,m} = a, z_{n,m} = k \\ c_{n,a,k}, & \text{else} \end{cases}$$

- ▶ all terms other than for  $x_{n,m} = a, z_{n,m} = k$  cancel out.
- ► terms for  $x_{n,m} = a, z_{n,m} = k$  can be simplified via  $\Gamma(x+1)/\Gamma(x) = x$

(今夕) 비로 《王》《王》《臣》《曰》

## Marginals over $\pi$ and $\phi$



$$p(z_{n,m} \mid z_{-(n,m)}, x, \beta, \gamma) = \frac{p(z \mid x, \beta, \gamma) p(x \mid z, \beta)}{p(z_{-(n,m)} \mid x_{-(n,m)}, \beta, \gamma) p(x_{-(n,m)} \mid z_{-(n,m)}, \beta)}$$

Now let  $c_{n,a,k}^{-}$  be the counts for the leave-one-out sample  $x_{(n,m)}, z_{-(n,m)}$  (all but *m*-th word of document *n*).

$$c_{n,a,k}^{-} = \begin{cases} c_{n,a,k} - 1, & \text{for } x_{n,m} = a, z_{n,m} = k \\ c_{n,a,k}, & \text{else} \end{cases}$$

- ▶ all terms other than for  $x_{n,m} = a, z_{n,m} = k$  cancel out.
- ► terms for  $x_{n,m} = a, z_{n,m} = k$  can be simplified via  $\Gamma(x+1)/\Gamma(x) = x$

$$p(z_{n,m} = k \mid z_{-(n,m)}, x, \beta, \gamma) = \frac{c_{x_{n,m},k} + \gamma}{c_k^- + A\gamma} \frac{c_{n,k}^- + \beta}{M_n + K\beta}$$

# Collapsed LDA Implementation

- assign all  $z_{n,m}$  randomly
- compute  $c_{n,a,k}$
- for  $s := 1, \ldots, S$ :
  - for n := 1, ..., N,  $m := 1, ..., M_n$ :

 $\begin{aligned} c_{x_{n,m},z_{n,m}} &:= c_{x_{n,m},z_{n,m}} - 1 \\ c_{n,z_{n,m}} &:= c_{n,z_{n,m}} - 1 \\ c_{z_{n,m}} &:= c_{z_{n,m}} - 1 \\ z_{n,m} &:= k \sim \frac{c_{x_{n,m},k}^{-} + \gamma}{c_{k}^{-} + A\gamma} \frac{c_{n,k}^{-} + \beta}{M_{n} + K\beta} \\ c_{x_{n,m},z_{n,m}} &:= c_{x_{n,m},z_{n,m}} + 1 \\ c_{n,z_{n,m}} &:= c_{n,z_{n,m}} + 1 \\ c_{z_{n,m}} &:= c_{z_{n,m}} + 1 \end{aligned}$ 





## LDA vs Collapsed LDA





### Collapsed LDA / Example



|    | River   | Stream   | Bank      | Money      | Loan    |
|----|---------|----------|-----------|------------|---------|
| 1  |         | 1        | 0000      | 000000     | 000000  |
| 2  |         | 1        | 00000     | 0000000    | 0000    |
| 3  |         |          | 00000000  | 00000      | 0000    |
| 4  |         | 1        | 0000000   | 000000     | 000     |
| 5  |         |          | 0000000   | <b>e</b> 0 | 0000000 |
| 6  |         | 1        | 000000000 | 080        | 0000    |
| 7  | 0       |          | 0000      | 660060     | 00000   |
| 8  | •       | 0        | 000000    | 0000       | 660     |
| 9  |         | 000      | 000000    | 0000       | 0       |
| 10 |         |          | 000000    | •          | 0000    |
| 11 |         | 000      | 00000000  |            | •       |
| 12 | 000     | 0000000  | 000000    | 0          | 1       |
| 13 | 0000000 | 000      | 000000    |            | 0       |
| 14 | 00      | 00000000 | 000000    | !          | 1       |
| 15 | 0000    | 6000000  | 00000     |            | i       |
| 16 | 00000   | 000000   | 0000      |            | 1       |

| River                                                                                                                                                                                                                                                                                                                                                                                                                   | Stream                                                          | Bank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Money                                                           | Loan |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>0<br>8<br>0<br>0<br>10<br>0<br>0<br>11<br>0<br>0<br>12<br>0<br>0<br>12<br>0<br>0<br>12<br>0<br>0<br>12<br>0<br>0<br>12<br>0<br>0<br>12<br>0<br>0<br>12<br>0<br>0<br>12<br>0<br>0<br>12<br>0<br>0<br>12<br>0<br>0<br>12<br>0<br>0<br>0<br>0<br>12<br>0<br>0<br>0<br>12<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>12<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 00<br>000<br>000<br>000<br>000000<br>0000000<br>0000000<br>0000 | Contraction     Contracti | 000000<br>000000<br>000000<br>000<br>000<br>000<br>0000<br>0000 |      |

[Mur12, fig. 27.8] イロトイクトイミトイミト ミニ クヘベ

#### Outline



- 1. The LDA Model
- 2. Learning LDA via Gibbs Sampling
- 3. Learning LDA via Collapsed Gibbs Sampling

#### 4. Learning LDA via Variational Inference

#### 5. Supervised LDA

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ● ◆○



# Variational Inference via Mean Field Approximation To solve the inference problem

compute 
$$p(x_1, \ldots, x_N)$$

for intractable p, approximate p with a fully factorized density q

$$p(x_1,\ldots,x_N) \approx q(x_1,\ldots,x_N \mid \theta) := \prod_{n=1}^N q_n(x_n \mid \theta_n)$$

A good approximation should minimize the KL divergence of p and q:

which can be solved via coordinate descent:

$$\log q_n(x_n \mid \theta_n) = E_{x_{-1} \sim q_{-n}}(\tilde{p}(x_1, \ldots, x_N)) + \text{const}$$

where  $\tilde{p}$  can be an unnormalized version of p.



## Learning LDA via Mean Field Approximation Mean field approximation

$$q(\pi_n \mid \tilde{\pi}_n) := \mathsf{Dir}(\pi_n \mid \tilde{\pi}_n)$$
  
 $q(z_{n,m} \mid \tilde{z}_{n,m}) := \mathsf{Cat}(z_{n,m} \mid \tilde{z}_{n,m})$ 

in the E-step of EM leads to

E-step:

$$\tilde{z}_{n,m,k} = \Psi(\tilde{\pi}_{n,k}) - \Psi(\sum_{k'} \tilde{\pi}_{n,k'})$$
$$\tilde{\pi}_{n,k} = \gamma + \sum_{m} \tilde{z}_{n,m,k}$$

M-step:

$$\hat{\phi}_{a,k} = \beta + \sum_{n} \sum_{m} \tilde{z}_{n,m,k} \delta(x_{n,m} = a)$$

Note:  $E_{\pi_{n,k} \sim \text{Dir}(\tilde{\pi}_{n,k})}(\log \pi_{n,k}) = \Psi(\tilde{\pi}_{n,k}) - \Psi(\sum_{k'} \tilde{\pi}_{n,k'})$  with  $\Psi_{\alpha} = \bigoplus_{k \in \mathcal{D}} \bigoplus_$ 

## Outline



- 1. The LDA Model
- 2. Learning LDA via Gibbs Sampling
- 3. Learning LDA via Collapsed Gibbs Sampling
- 4. Learning LDA via Variational Inference
- 5. Supervised LDA

ィロト イラト イラト イラト ショー シークへで Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Machine Learning 2 5. Supervised LDA

. . .



## Further Readings



- ► L1 regularization: [Mur12, chapter 13.3–5], [HTFF05, chapter 3.4, 3.8, 4.4.4], [Bis06, chapter 3.1.4].
  - ► LAR, LARS: [HTFF05, chapter 3.4.4], [Mur12, chapter 13.4.2],
- ► Non-convex regularizers: [Mur12, chapter 13.6].
- ► Automatic Relevance Determination (ARD): [Mur12, chapter 13.7], [HTFF05, chapter 11.9.1], [Bis06, chapter 7.2.2].
- ► Sparse Coding: [Mur12, chapter 13.8].

- 《日》 《日》 《日》 《日》 《日》

### References





Christopher M. Bishop.

Pattern recognition and machine learning, volume 1. springer New York, 2006.



Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin.

The elements of statistical learning: data mining, inference and prediction, volume 27. Springer, 2005.



Kevin P. Murphy.

*Machine learning: a probabilistic perspective.* The MIT Press, 2012.