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Machine Learning 2 1. The LDA Model

. . N
Documents / Finite Discrete Sequences i

» instances x, € A* are discrete sequences
» A:={1,..., A} called dictionary / alphabet (A € N),
where a € A denotes the a-th word / symbol / token.

» A% = Ule‘:1 A? called documents / finite A-sequences.
» M, = |x,| := £ called length (for x, € A").
> Xp,m called m-th word of x,.

» if there are no sequential effects (order does not matter),
documents can be described by their word frequencies
(bag of words):

Opai=Kle{1,....[xal} [ Xn0 = a}

[m] = = =
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Machine Learning 2 1. The LDA Model

Bz
The LDA Model i

p(Xn,m | Znm = k, $) := Cat(xpm | ¢k), n=1,...,Nom=1,..., M,
P(znm | ™) == Cat(zam | ), n=1,....N,m=1,... M,

p(¢k | B) :== Dir(¢x | Bla), k=1,....K

p(mn | v) := Dir(mp | v1k), n=1,...,N

v

zpm € {1,..., K}: topic the m-th word of document n belongs to.
dx € AA: word probabilities of topic k.

v

v

7n € AK: topic probabilities of document n.
B,v € RT: priors of ¢ and .

v
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Machine Learning 2 1. The LDA Model

The LDA Model

P(Xn,m | Znm = k, #) == Cat(xo,m | d«),
P(znm \ 7n) = Cat(znm | 7).
p(¢« | B) := Dir(¢x | B1a),
p(mn | 7) == Dir(my | v1k),
,

> z,m € {1,...,K}: topic the m-th word of document n belongs to.
» ¢, € A?: word probabilities of topic k.
> € AK: topic probabilities of document n.
» 3,7 € RT: priors of ¢ and .

[Mur12, fig. 27.2
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1. The LDA Model

Example

Topic 77 Topic 82 Topic 166
word  prob. word  prob. word  prob.
MUSIC .090 LITERATURE .031 PLAY .136
DANCE .034 POEM .028 BALL .129
SONG .033 POETRY .027 GAME .065
PLAY .030 POET .020 PLAYING .042
SING .026 PLAYS .019 HIT .032
SINGING  .026 POEMS .019 PLAYED .031
BAND .026 PLAY .015 BASEBALL .027
PLAYED .023 LITERARY .013 GAMES .025
SANG .022 WRITERS .013 BAT .019
SONGS .021 DRAMA  .012 RUN .019
DANCING .020 WROTE .012 THROW .016
PIANO .017 POETS .011 BALLS .015
PLAYING .016 WRITER .011 TENNIS .011
RHYTHM .015 SHAKESPEARE .010 HOME .010
ALBERT .013 WRITTEN .009 CATCH .010
MUSICAL .013 STAGE _.009 FIELD .010
[Mur12, fig

. 27.4]
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v

Example
Document #29795
age® fifteen®®’ sat'’ slope®™ bluff®™® overlooking®’ 1= mississippi®*” river**’
listening®” 10 music®’” coming®® passing®*® music®”’ captured™ 1< heart'®’
ear''® jazz"" music®”’ lessons”’. -~ showed™ promise**
piano®”’ parents”® hoped®®® consider*'® concert”’ pianist”””
interested®®® kind®® o music®” - wanted®® (0 [play” wanted®® 0 play®”] jazz"""...
Document #1883
simple®™ reason'® periods®”® theater®® western®*®
things®® actors®®?
actors®®? audiences®® remember?®
plays®? exist'*? performed®”’ 1ot merely®™® read®* read®™* - play™ try?®®
perform?®® put'™ stage””® soon®® performed®®
kind'? o1 theatrical®®...
Document #21359
Jim?%® ame™® book?* Jim?* reads®™* 1 book®* Jim?® sees™ - game'® Jim?® plays'® ame'®®
1296 |3 081 166 166 254 081 :: 296 180 040 Y 038 1
Jim?® likes game game™®® ook helps® jim*® Don*® comes house®® Don'®
jim?® read®™* i1- game® book®* boys"® game'®® boys™® game'®®
boys"® game®® boys®° game'® Meg®? comes™? house?® Meg?®?
don™® 21! jim?® read®* 11> book®* game™®® Meg?® =1 don'® 2l jim?®® play™] - game®

[Mur12, fig. 27.5]
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Machine Learning 2 2. Learning LDA via Gibbs Sampling
. . ) 2
Learning via Parameter Sampling “
The loglikelihood
p(6| D) o p(D | 0)
describes the distribution of the parameters given the data

If we can sample parameters from this distribution

017927"'795 ~ p(9 ’ D)
we can

» estimate expected parameter values and their variances from this
parameter sample:

S S
~ 1 1
0:=E@|D)~ ¢y b V(OID)~ 1> (0 -
s=1

5—1521

» predict targets for new instances x via model averaging

E(9 | D))?

ply | x,615) = 5Zpy|><9
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Sampling

» for most closed-form distributions p(x) there exist efficient sampling
methods

» categorical, normal, ...

» but most loglikelihoods are not closed-form distributions.
» but for example products thereof.
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Machine Learning 2 2. Learning LDA via Gibbs Sampling

Gibbs Sampling

» task: sample from p(xi,...,xn)
» problem:
» assume sampling from the joint distribution p(x,...,xy) is difficult.
» assume sampling from marginals p(x,) or partial conditionals
p(xn | some x,/) is also difficult.
» assume sampling from all full conditionals p(x, | x_,) is easy.
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Machine Learning 2 2. Learning LDA via Gibbs Sampling

Gibbs Sampling

» task: sample from p(xi,...,xn)
» problem:
» assume sampling from the joint distribution p(x,...,xy) is difficult.

» assume sampling from marginals p(x,) or partial conditionals
p(xn | some x,) is also difficult.
» assume sampling from all full conditionals p(x, | x_,) is easy.

Gibbs sampling: given last sample x°, sample x**1 one variable at a time:

X15+1 ~ p(x1 | Xy = X5.)
3T~ PO | 1 = x4 3w = X

s+1 _ s+l S
Xn ~ p(Xn | X1:n—1 = X{.p—15 Xn+1:N = Xn+1;N)

s+1 _Us+1
Xy o P(X/V | XI:N—-1 = X{.n21

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Machine Learning 2 2. Learning LDA via Gibbs Sampling
Gibbs Sampling

» the distribution created by the Gibbs sampler eventually will converge
to p(x1,.-.,xn)

» start Gibbs sampling with an arbitrary x°

» but ensure that p(x°) >0 !
» also consider restarts.

» throw away the first examples (burn in; 100-10,000).
» only after a while the chain has converged to the stationary distribution

p(X17 o aXN)'
» typical are 100-10,000 examples

» sometimes some variables can be marginalized out,
improving the performance of the Gibbs sampler
(collapsed Gibbs sampling, Rao-Blackwellisation)
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NN
Gibbs Sampling for LDA “

p(Xn,m | Znm = k,¢) = Cat(Xn,m | d)k) = ¢k,x,,7m

p(znm | mn) == Cat(znm | 7n) = Tn,zpm

p(¢x | B) := Dir(¢x | B1a) ~ H¢Ba—1

p(mn | ) := Dir(m, | v 1k) % H Tk !
Full conditionals:

P(Zn,m =k | ¢77Tn) X p(Xn,m ’ Zn,m = k, ¢)P(Zn,m =k ’ 7Tn) = d)k,x,,,mﬂ'n,k
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Machine Learning 2 2. Learning LDA via Gibbs Sampling

Gibbs Sampling for LDA
P(Xn.m | Zn,m = k, @) := Cat(xnm | dk) = Dk xom

p(znm | mn) := Cat(zp,m | 7n) = Tn,20m

p(ox | B) = Dir(¢k | 1a) x Hqﬁﬁa_l

K
p(mn | ) := Dir(my | v 1k) x H Ll
Full conditionals: M,
p(7rn ‘ Znyd)) X p(ﬂ—n ‘ ’Y) H p(zn,m =k | 7Tn)
m=1
< T T[T
m=1 k=1
M
= Dir((yk + Y _ 6(znm = k))k=1:K)

m=1
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Machine Learning 2 2. Learning LDA via Gibbs Sampling

Gibbs Sampling for LDA

p(Xn,m ‘ Znm = k7¢) = Cat(Xn,m ’ ¢k) = ¢k7Xn,m

p(zn,m ‘ 71_”) = Cat(Zn’m ‘ ﬂ-n) = Tn »Zn,m

p(¢k | B) = Dir(¢x | B1a) x H oyt

p(mn | ) == Dir(m, | v 1k) x H Ll
Full conditionals:
N M,
p(ow | z.m) o< T] T p(zom = k | 70) p(¢k | B)
n=1m=1

N M
= Dir((B, + Z Z 0(Xn,m = @, Znm = k))a=1:4)

n=1m=1
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Machine Learning 2 3. Learning LDA via Collapsed Gibbs Sampling

Counts

Mhn
Cn,ak = Z 5(Xn,m =a,Zpm = k)

m=1
A

Cnk = g Cn,a,k
a=1
N

Cak ‘= g Cn,ak
n=1

A N
Ck = E g Cn,a,k

a=1 n=1

] = =
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Machine Learning 2 3. Learning LDA via Collapsed Gibbs Sampling

Marginals over 7 and ¢

M, M,
ple 19)= 11 / (I Cattzom | m)D(rn [ 13,

:< KV)) an;win;j)’ﬁ

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
14 / 21



Machine Learning 2 3. Learning LDA via Collapsed Gibbs Sampling

Marginals over 7 and ¢

M, M,
ple 19)= 11 / (I Cattzom | m)D(rn [ 13,

< KV)) an;win;j)’ﬁ

p(x | z,) = H / Cat(xnm | 64))Dir(ex | BLi)d

(n,m):zp, m=k

) H Ha 15 Cak + B)
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Machine Learning 2 3. Learning LDA via Collapsed Gibbs Sampling

Marginals over 7 and ¢

p(zmm | Zf(nym)7X7/877) =

p(z | x,0,7) p(x | 2, B)
p(z—(n,m) | X_(n,m)> 677) p(X—(n,m) | Z—(n,m)7ﬁ)

[m]

=
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Machine Learning 2 3. Learning LDA via Collapsed Gibbs Sampling

NUE
Marginals over 7 and ¢ VA

p(z | x,8,7) p(x| z, B)
P\Zn,m | Z—(n,m X, Byy) =
( | (mm) ) p(z—(n,m) | X_(n,m)> 557) p(X—(n,m) | Z—(n,m)76)

Now let Cpak be the counts for the leave-one-out sample X n,m)> Z—(n,m)

(all but m-th word of document n).

_ Cnak — 1, for Xo.m = a,Znm = k
Cn,a,k -

Cn,a,ks else

» all terms other than for x, m = a, z, m = k cancel out.

» terms for X, m = a, 2z, m = k can be simplified via I'(x + 1)/T(x) = x
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Machine Learning 2 3. Learning LDA via Collapsed Gibbs Sampling

NUE
Marginals over 7 and ¢ VA

p(z | x,8,7) p(x| z, B)
P\Zn,m | Z—(n,m X, Byy) =
( | (mm) ) p(z—(n,m) | X_(n,m)> ﬁa’Y) p(X—(n,m) | Z—(n,m)76)

Now let Cpak be the counts for the leave-one-out sample X n,m)> Z—(n,m)

(all but m-th word of document n).

_ Cnak — 1, for Xo.m = a,Znm = k
Cn,a,k -

Cn,a,ks else
» all terms other than for x, m = a, z, m = k cancel out.
» terms for X, m = a, 2z, m = k can be simplified via I'(x + 1)/T(x) = x

(zom =k | z x, )_an’m’k+7 o+
P\Zn,m = —(n,m)s X, P, Y) = ¢, + Ay My+ KB
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Machine Learning 2 3. Learning LDA via Collapsed Gibbs Sampling

Collapsed LDA Implementation

» assign all z, , randomly
» compute Cp 5k
» fors:=1,...,S:
» forn:=1,....N, m:=1,...,M,:

Cxn, msZn,m
Cn7zn,m '_Cnyzn,m - 1

Conm =Copm — 1

7 =k~ mmk T Cp T B
n,m o+ Ay M, + K§
CxomsZom = CxomyZom T 1

C"7zn,m ::Cnyzn‘m + 1

Cpm =Czppm T 1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 3. Learning LDA via Collapsed Gibbs Sampling

LDA vs Collapsed LDA

[Mur12, fig.
[m] = = =
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Machine Learning 2 3. Learning LDA via Collapsed Gibbs Sampling

s
Collapsed LDA / Example “

J—Dher . Stream ___Bank - Money o Loan River Stream Bank Money Loan
2 i 00800 eseese0 eoce 1 [l [l 00000
3 | 0008000 08080 @000 2 [ cod [ eeand L ooed
4 ! 00000 098000 000 3 000000 o000 oooe
5 | 0000080 © 800000 4 essssee esesee o0
6 | Ceeceeee® O8O coee 5 [ ecoed [ s00000e
7| o 1 oeee 000080 0oee0 6 o0s0ccece  eo0 Poaed
8| e | c® 008008 ) 000 K o000 [ ooand [ oead
9l e i co® oococe cee ce 8 o © 900000 [ oed oo
10| e ! e80 ©00000 ° eoce 9| o 000 ecesee [ [
11| c® | 0008800 =y . 10| 000 Oceeeee . )
12| oco | 000080 eceece o 11] 000 0008000 Ll .
13| cccese | 080 eccose < 12| oo 000000 oceceee .
14| oo | 08000008 000800 13| ooooco 00 ®00000 .
15| ceee | 8060080 60808 14| 00000000 000000
16| _eceec | ®80000e 15| cocoo 0000000 00000

16|_ocooo 0000000 0000

[Mur12, fig. 27.8]
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Machine Learning 2 4. Learning LDA via Variational Inference

Variational Inference via Mean Field Approximation
To solve the inference problem

compute p(x1,...,xy)

for intractable p, approximate p with a fully factorized density g

N
pOxt, . xn) & q(xa, . xn | 0) =[] qn(xa | )
n=1

A good approximation should minimize the KL divergence of p and g:
(61,...,0n) := arg min KL(q]|p)

01,....00
= x)lo M
KL(allp) = E a()log 5 )

which can be solved via coordinate descent:

log gn(xn | 0n) = Ex_1~q_,(P(x1,...,xn)) + const

where p can be an unnormalized version of p.
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Machine Learning 2 4. Learning LDA via Variational Inference

Learning LDA via Mean Field Approximation

Mean field approximation
q(mn | 7n) := Dir(mn | Tn)
q(zn,m | En.m) = Cat(Zn,m ‘ 2n,m)
in the E-step of EM leads to

E-step:
Zn,m,k = 7Tn k) - 5 7"'n k’

%n,k =7+ Z En,m,k
m
M-step:

éa,k = /8 + Z Zzn,m,ké(xn,m = a)

Note: E | ~pir(#, ) (108 Tnk) = W(Fn) —

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Further Readings

» L1 regularization: [Murl2, chapter 13.3-5], [HTFFO05, chapter 3.4,
3.8, 4.4.4], [Bis06, chapter 3.1.4].
» LAR, LARS: [HTFFO05, chapter 3.4.4], [Murl2, chapter 13.4.2],

» Non-convex regularizers: [Murl2, chapter 13.6].

» Automatic Relevance Determination (ARD): [Murl2, chapter 13.7],
[HTFFO5, chapter 11.9.1], [Bis06, chapter 7.2.2].

» Sparse Coding: [Murl2, chapter 13.8].
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