Machine Learning 2 Exercise Sheet 5

Prof. Dr. Dr. Lars Schmidt-Thieme, Brad Baker Information Systems and Machine Learning Lab University of Hildesheim

May 17th, 2016

Submission until May 24th, 8:00 AM by learnweb. Please put your name in all filenames. Non-pdf submissions for non-programming exercises will not be graded.

Exercise 9: Basic Network Topologies(10 Points)

a) 2 points Consider the binary linear regression model

 $\hat{y} := \sigma(\beta^T x)$

, where σ is the logistic sigmoid. Show how this model is equivalent to a simple neural network. What kind of topology does this network have? (e.g. Recurrent, Feed-Forward, Hopfield) (Bonus point if you can illustrate the connection of this model to GLMs)

b) 5 points Let w_1 and w_2 be the weights of a perceptron (i.e. simple neural network) with two inputs x_1 and x_2 . Let $AND(x_1, x_2)$ be the "logical and" function, let $OR(x_1, x_2)$ be the "logical or" function. Design two single-layer perceptrons which correspond to the logical AND and OR functions.

x_2	у
0	0
1	0
0	0
1	1
	$egin{array}{c} x_2 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{array}$

Table 1: AND function

x_1	x_2	у
0	0	0
0	1	1
1	0	1
1	1	1

Table 2: OR function

c) **3 points** Consider the $XOR(x_1, x_2)$ function, which models the behavior of the logical Exclusive Or. For two inputs we have

x_1	x_2	у
0	0	0
0	1	1
1	0	1
1	1	0

Table 3: OR function

Show that a single-layer model cannot correctly model the XOR function, and then design a multi-layer perceptron does correctly model the function.

Exercise 10: Back-Propogation (10 Points)

For this question, it will help immensely if you go through the worked example on page 20 of this tutorial PDF https://www.fer.unizg.hr/_download/repository/BP_chapter3_-_bp.pdf.

a) 2 points Briefly describe the steps involved in backpropogation for multi-layer neural networks.

b) 6 points Suppose you have been given the following single-layer network

- Perform a forward pass on the network.
- Perform a reverse pass with (y = 1.0).
- Perform a further forward pass and comment on the result.

c) **2 points** Identify two potential pitfalls with the Backprogation algorithm, and suggest solutions which can remedy those problems.

1 Bonus 5: Implementing Recurrent Neural Networks

a) **10 points** Do exercise 16.1 from Murphy chapter 16. Doing only part C will earn you 6 points.