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Machine Learning 2

1. Model Averaging, Voting, Stacking
Qutline

1. Model Averaging, Voting, Stacking
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Machine Learning 2 1. Model Averaging, Voting, Stacking

Model Selection

If we have several models

9o :RM 5y, ¢c=1,...,C

for the same task, so far we tried to select the best one

y :=ye+ with

= argmin {(§., D"
ce{l,...,C}

using validation data D2 and deploy it (model selection).
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Machine Learning 2 1. Model Averaging, Voting, Stacking
Model Averaging & Voting
Alternatively, having several models
Jo:RM 5y, ¢c=1,...,C
one also can combine them (model combination, ensemble), e.g.,

model averaging, for continuous outputs
(regression, classification with uncertainty):

C
00 = ¢ )
voting, for nominal outpcu_ts
(classification without uncertainty):
y(x) := y* with ny(x) maximal among all n,(x)
ny(x) = {ce{l,.... C} | Je(x) = y}|
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Machine Learning 2 1. Model Averaging, Voting, Stacking

B
Why Ensembles ? A

» an ensemble usually improves accuracy
» if component models make different types of errors
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Machine Learning 2 1. Model Averaging, Voting, Stacking

B
Weighted Model Averaging |: Bayesian Model Averaginﬁ

C
y(X) = Z ac)/}c(x)

with component model weights o € R€.
Bayesian Model Averaging:

ply | x) = /M ply | x, m, D) p(m | D)dm

MC
~ > p(y | x,me, D) p(mc | D)

c=1
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Machine Learning 2 1. Model Averaging, Voting, Stacking

B
Weighted Model Averaging |: Bayesian Model Averaginﬁ

C
y(X) = Z ac)/}c(x)

with component model weights o € R€.

Bayesian Model Averaging:

ply | x) = /M ply | x, m, D) p(m | D)dm

MC
~ » _ p(y | x,me, D) p(mc| D)

c=1

=yc(x) =Cc
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Machine Learning 2 1. Model Averaging, Voting, Stacking

Weighted Model Averaging Il: Linear Stacking

C
)’7(X) = Z ac}?c(x)
c=1

with component model weights o € R€.

Linear Stacking:
» learn a's minimizing the loss on validation data:

C
o := argmin E(Z acPe(x), D)

@ c=1
» actually a Generalized Linear Model with C features
xL(x) = Pe(x), c¢=1,...,C

and parameters .
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Machine Learning 2

1. Model Averaging, Voting, Stacking

(General) Stacking

» Build the second stage dataset
| ._
D;?\d stage

{(X,y) | 0= Je(x), e = 1,..., C, (x,y) € D™} C Y x
» Learn a second stage prediction model for the 2nd stage data set

5 . €
Y2nd stage - y-=Y

» e.g., a linear model/GLM, a SVM/SVR, a neural network etc.

[m]

=
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Machine Learning 2 1. Model Averaging, Voting, Stacking

B
(General) Stacking i

» Build the second stage dataset:
Dérawld stage - {(X,7Y) | Xé = Jc(x),c=1,...,C,(x,y) € Dval} - yC
» Learn a second stage prediction model for the 2nd stage data set

5 . €
Y2nd stage - y-=Y

» e.g., a linear model/GLM, a SVM/SVR, a neural network etc.

» to predict a new instance x,
» first, compute the predictions of the (1st stage) component models

X(/I::.),}C(X)7 C:].,...,C
» then compute the final prediction of the 2nd stage model:
y(X) '= Jond stage(X{, e 7X/C)

» non-linear second stage models can capture interactions between the
different component models.
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Machine Learning 2 1. Model Averaging, Voting, Stacking

Origins of Model Heterogeneity

Model heterogeneity can stem from different roots:
» different model families

» e.g.,, GLMs, SVMs, NNs etc.
» used to win most challenges, e.g., Netflix challenge

» different hyperparameters (for the same model family)
» e.g., regularization weights, kernels, number of nodes/layers etc.

» different variables used
» e.g., Random Forests

» trained on different subsets of the dataset
» Bagging
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Machine Learning 2 1. Model Averaging, Voting, Stacking
Bootstrap Aggregation (Bagging)

» bootstrap is a resampling method

» sample with replacement uniformly from the original sample D"
» as many instances as the original sample contains
» in effect, some instances may be missing in the resample,

others may occur twice or even more frequently

» draw C bootstrap samples from Dtin:
DN  bootstrap(D¥™"), c¢=1,...,C

» train a model y. for each of these datasets Df:'ai”.

» average these models:
1E
) i= £ 90
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Machine Learning 2 1. Model Averaging, Voting, Stacking

Random Forests

» bagging often creates datasets that are too similar to each other
» consequently, models correlate heavily and ensembling does not work
well
» to decorrelate the component models, one can train them on different
subsets of variables
» Random Forests
» use decision trees as component models

» binary splits

> regularized by minimum node size (e.g., 1, 5 etc.)

> no pruning

> sometimes using just decision tree stumps (= a single split)

» trained on bootstrap samples
» using only a random subset of variables

» actually, using a random subset of variables for each single split.
> eg. [Vm], [m/3].

» finally model averaging/voting the decision trees
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Machine Learning 2 1. Model Averaging, Voting, Stacking

NS
Bagging & Random Forests / Example (spam data) i
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Machine Learning 2 2. Boosting

Outline

2. Boosting
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Machine Learning 2 2. Boosting

Consecutive vs Joint Ensemble Learning

So far, ensembles have been constructed in two consecutive steps:
» 1st step: create heterogeneous models
» learn model parameters for each model separately
» 2nd step: combine them
» learn combination weights (stacking)
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Machine Learning 2 2. Boosting

. . . R
Consecutive vs Joint Ensemble Learning “

So far, ensembles have been constructed in two consecutive steps:
» 1st step: create heterogeneous models

» learn model parameters for each model separately
» 2nd step: combine them

» learn combination weights (stacking)

Advantages:

» simple

» trivial to parallelize
Disadvantages:

» models are learnt in isolation
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Machine Learning 2 2. Boosting

. . . R
Consecutive vs Joint Ensemble Learning “

So far, ensembles have been constructed in two consecutive steps:
» 1st step: create heterogeneous models

» learn model parameters for each model separately
» 2nd step: combine them

» learn combination weights (stacking)

Advantages:

» simple

» trivial to parallelize
Disadvantages:

» models are learnt in isolation

New idea: Learn model parameters and combination weights jointly

N C
E(thrain; e) = Zﬁ(yn, Z Oéc}A/(Xn; 9C))? 0= (a7 O1,... ,ec)
n=1 c=1
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Machine Learning 2 2. Boosting

Boosting
Idea: fit models (and their combination weights)
» sequentially, one at a time,
» relative to the ones already fitted,
» but do not consider to change the earlier ones again.
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Machine Learning 2 2. Boosting

Boosting
Idea: fit models (and their combination weights)

» sequentially, one at a time,
» relative to the ones already fitted,
» but do not consider to change the earlier ones again.

C/
V) =Y acg(xibe), Cefl....C}
c=1

=9 D(x) + acy(x;0¢)
N
E(Dtrain’ }’}(C/)) = Z E(yna },}(C,)(X”))
n=1

N
(acr,f¢r) :=argmin Z £(yn, )A/(C/_l)(x,,) + acr §(xn; 0cr))

ocr,0cr =1
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Machine Learning 2 2. Boosting

Boosting
Idea: fit models (and their combination weights)

» sequentially, one at a time,
» relative to the ones already fitted,
» but do not consider to change the earlier ones again.

C/
V) =Y acg(xibe), Cefl....C}
c=1

=9 D(x) + acy(x;0¢)
N
E(Dtrain’ }’}(C/)) = Z E(yna },}(C,)(X”))
n=1

N
(acr,f¢r) :=argmin Z £(yn, )A/(C/_l)(x,,) + acr §(xn; 0cr))
—_— —_—

acrer ,— -
=:90 =:0¥n
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Machine Learning 2 2. Boosting

Convergence & Shrinking
Models are fitted iteratively

C'=1,2,3,...

» convergence is assessed via early stopping: once the error on a
validation sample

E(,Dval?j}(C’))

does not decrease anymore over a couple of iterations, the algorithm
stops and returns the best iteration so far.

» To deaccelerate convergence to the training data, usually shrinking
the combination weights is applied:

ac i=vac, eg., withv=20.02
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Machine Learning 2 2. Boosting

L2 Loss Boosting (Least Squares Boosting)

For L2 loss

we get

E(me’,? + O‘)A/n) :g()/n - )7197 0457,,)
and thus fit the residuals

N
Ocr = ar%min Zé(y,, — 99 9(xm: 0c))
¢ p=1

oct =1
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Machine Learning 2 2. Boosting

Exponential Loss Boosting (AdaBoost)

For (weighted) exponential loss

Wy, 9,w) =we™ ye{-1,+1},7€R
we get

Uy, 90+ an, w2) = L(yn, 73, Q) €y, an, 1)
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Machine Learning 2 2. Boosting

B
Exponential Loss Boosting (AdaBoost) i

For (weighted) exponential loss

Wy, 9,w) =we™ ye{-1,+1},7€R

we get
Uy, 90+ an, w2) = L(yn, 73, w0) €(¥n, Fn, 1)
=:wp

:K(yn, ayn, Wn)
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Machine Learning 2 2. Boosting

Exponential Loss Boosting (AdaBoost)

The loss in iteration C’

N N
argmin Y U(yn, i, wp) = argmin Y U(yn, acr9(xn, 0cr),

a:}?"

c’
W,(, ))
n=1 acrfcr n=1

is minimized sequentially:

LoLeam O wf ) =y, 9D (0), Wi Y)
N !
Oc = arga min Z E(yna j}(Xnv HC')a WI(IC ))
¢ n=1

2. Learn a¢r:

N w8y # 90, )
errcr 1=
ZN—l Wr(ro)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Boosting

AdaBoost

1:
2
3
4:
5
6

N

©

Wy = %, n:=1,....N
forc:=1,...,Cdo

procedure ADABOOST(D™" = {(x1,y1),..., (xn, yn)}, C)

fit a classifier to data with case weights w:

fc := arg ming £(D™3"_ §(0), w)
Z,’Y:1 Wnd(ynZY (xn,0¢))

errc =

ac ;= log =<

Wy = Wneo‘fé(y"#f’(x”’gc)), n=1,..

return («, 6)

C number of component models

N
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Machine Learning 2 2. Boosting

. . ) B2z
Functional Gradient Descent Boosting “

So far, we have to derive the boosting equations for each loss
individually.

Idea:

» compute the gradient of the loss function for an additional additive
term and

» fit the next model that mimicks best a gradient update step

Advantage:

» works for all differentiable losses.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Boosting

. . ) B2z
Functional Gradient Descent Boosting “
Functional gradient:

Vs K(Dtram A)’ (c’'-1) = (Ze Yns ¥n ) p(c’-1)

— (55 0m 500

n=1,...,.N
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Machine Learning 2 2. Boosting

Functional Gradient Descent Boosting
Functional gradient:

Vs K(Dtram A)’ (c’'-1) = (ZE Yns ¥n ) p(c’-1)

— (55 0m 500

A functional gradient update step would do:

}A,(C’) :)A,(C 1) _

n=1,...,.N

nv E(Dtram A)
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Machine Learning 2 2. Boosting

Functional Gradient Descent Boosting
Functional gradient:

Vs K(Dtram A)’ (c’'-1) = (ZE Yns ¥n ) p(c’-1)

~(50m y“/—”(xn))>n o

A functional gradient update step would do:
)A,(C/) _p(C'-1) _

1% nv g(Dtraln A)
Boosting adds the next model:
() =D 4 ey 9(0cr)
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Machine Learning 2 2. Boosting

. . ) B2z
Functional Gradient Descent Boosting “
Functional gradient:

Vs K(Dtram A)’ (c’'-1) = (ZE Yns ¥n ) p(c’-1)

~(50m y“/—”(xn))>n o

A functional gradient update step would do:

}A,(C/) :)A,(C 1) _

Boosting adds the next model:

)A,(o) :)A,( 1) 4 acy(0cr)

To mimick the gradient update step with steplength n := 1:

nv g(Dtraln A)

N
Ocr :=arg min Z( (V oD D), (C’—l))

S —

= 9(xn,0c))?
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Machine Learning 2 2. Boosting

B
AdaBoost / Example (Decision Tree Stumps) i

[Mur12, fig. 16.10]
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Machine Learning 2 2. Boosting

Performance Comparison / Low Dimensional Data

MODEL Ist 2ND 3rRD 4tH 5TH 6TH 7TH 81H 9tH 10TH
BST-DT 0.580 0.228 0160 0.023 0.009 0.000 0.000 0.000 0.000 0.000
RF 0.390 0.525 0.084 0.001 0.000 0.000 0.000 0.000 0.000 0.000
BAG-DT 0.030 0.232 0571 0150 0.017 0.000 0.000 0.000 0.000 0.000
SVM 0.000 0.008 0148 0.574 0.240 0.029  0.001 0.000 0.000 0.000
ANN 0.000  0.007 0.035 0.230 0.606 0.22  0.000 0.000 0.000 0.000
KNN 0.000 0.000 0.000 0.009 0114 0.592 0245 0.038 0.002 0.000
Bst-stMp | 0.000  0.000 0.002 0.013 0.014 0257 0.710  0.004 0.000 0.000
DT 0.000  0.000 0.000 0.000 0.000 0.000 0.004 0.616 0.291 0.089
LOGREG 0.000  0.000 0.000 0.000 0.000 0.000 0.040 0.312 0423 0.225
NB 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.030 0.284 0.686

Table 16.3 Fraction of time each method achieved a specified rank, when sorting by mean performance
across 11 datasets and 8 metrics. Based on Table 4 of (Caruana and Niculescu-Mizil 2006). Used with kind

permission of Alexandru Niculescu-Mizil.

11 datasets, ~ 10.000 instances, 9-200 variables

[Murl2, p. 58
& = =

N,
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Machine Learning 2 2. Boosting

Performance Comparison / High Dimensional Data

TABLE 11.3. Performance of different methods. Values are average rank of test
error across the five problems (low is good), and mean computation time and
standard error of the mean, in minutes.

Screened Features

ARD Reduced Features

Method Average | Average || Average Average
Rank Time Rank Time
Bayesian neural networks 1.5 | 384(138) 1.6 600(186)
Boosted trees 34 | 3.03(2.5) 10 34.1(32.4)
Boosted neural networks 3.8 | 9.4(8.6) 2.2 35.6(33.5)
Random forests 2.7 1.9(1.7) 3.2 11.2(9.3)
Bagged neural networks 3.6 | 3.5(1.1) 4.0 6.4(4.4)

5 datasets, 100-6.000 instances, 500-100.000 variables

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 3. Mixtures of Experts

Outline

3. Mixtures of Experts
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Machine Learning 2 3. Mixtures of Experts

B
Underlying ldea “

So far, we build ensemble models where the combination weights do not
depend on the predictors:

C
y(X) = Z (075 }/}c(x)
c=1

i.e., all instances x are reconstructed from their predictions y.(x) by the
component models in the same way a.
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Machine Learning 2 3. Mixtures of Experts

B
Underlying ldea “

So far, we build ensemble models where the combination weights do not
depend on the predictors:

C
}/}(X) = Z (075 }/}C(X)
c=1

i.e., all instances x are reconstructed from their predictions y.(x) by the
component models in the same way a.

New idea: allow each instance to be reconstructed in an instance-specific
way.
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Machine Learning 2 3. Mixtures of Experts

Mixtures of Experts

xn €RM y e R c,e{l,...,C},0:=(83,027):

p(}/n ‘ Xn, Cn;‘g) ::N(y | ,BZ;X,,,JSH)
p(cn | xn; 0) :==Cat(c | S(y"x))

with softmax function

S(X)m ::Me77 x € RM

Zm’:l em’

» C component models (experts) N(y | B[ x,c2)
» each model c is expert in some region of predictor space,
defined by its component weight (gating function) S(v7x).

» a mixture model with latent nominal variable z, := ¢,.
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Machine Learning 2 3. Mixtures of Experts

Mixtures of Experts

xn €RM y e R c,e{l,...,C},0:=(83,027): l
p(}/n ‘ Xn, Cn;‘g) ::N(y | ,BZ;X,,,JSH)
p(cn | xn; 0) :==Cat(c | S(v"x)) l
with softmax function
eXm M
S(X)m =~ XE€ R

Zm’:l em’

» C component models (experts) N(y | B[ x,c2)
» each model c is expert in some region of predictor space,
defined by its component weight (gating function) S(v7x).

» a mixture model with latent nominal variable z, := ¢,.
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Machine Learning 2 3. Mixtures of Experts

NN
Mixtures of Experts/ Example “

0 58 g »

1 LUOO &) C90 OL@ 08

0 05
component models component weight mixture of experts

[Mur12, fig. 11.6]
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Machine Learning 2 3. Mixtures of Experts

Mixtures of Experts
Generic Mixtures of Experts model:
» variables: x, € X,y, €)Y

» latent variables: ¢, € {1,...,C}
» component models: p(y, | Xn, cn; 6)
» a separate model for each c: p(v, | Xn, ¢;0¥) = p(ya | xn; 6%),
with 0¥ and 67, being disjoint for ¢ # ¢’.
» combination model: p(c, | xp; 6°)

Example Mixture of Experts model:
» variables: X :=RM. ) =R
» component models: linear regression models AN'(y | 3] x, 02)
» combination model: logistic regression model Cat(c | S(v"x))

For prediction: ply | x) = Z p(y | x,c)p(c|x)

c=1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 3. Mixtures of Experts

Mixtures of Experts
Generic Mixtures of Experts model:
» variables: x, € X,y, €)Y

» latent variables: ¢, € {1,...,C}
» component models: p(y, | Xn, cn; 6)
» a separate model for each c: p(v, | Xn, ¢;0¥) = p(ya | xn; 6%),
with 0¥ and 67, being disjoint for ¢ # ¢’.
» combination model: p(c, | xp; 6°)

Example Mixture of Experts model:
» variables: X :=RM. ) =R
» component models: linear regression models AN'(y | 3] x, 02)
» combination model: logistic regression model Cat(c | S(y7x))

For prediction: p(y | x) Z y | x,c)p(c|x)
%,—’A,—’

=Je(x)  =ac(x)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 3. Mixtures of Experts

Learning Mixtures of Experts
complete data likelihood:

N
0(0”,6°,¢; D) =TT p(yalxn, cai 0 )p(calxni 6°),  cn € {1,
n=1

Cannot be computed, as ¢, is unknown.

[m]

=

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

28 / 36

.., C}



Machine Learning 2 3. Mixtures of Experts

. . N
Learning Mixtures of Experts “

complete data likelihood:
N
0(0”,6%, ¢; D) := [ | p(yalxn; cn: 0)p(cnlxni 6), €€ {1,...,C}
n=1

Cannot be computed, as ¢, is unknown.
weighted complete data likelihood:

N C
067,60 w; D) =TT T (p(yalxn: c: 67)p(clxn; 69))™,  wi € Ac
n=1c=1
N C
—log £(6”, 6, w; D) = — >~ " wi ¢ (log p(ya|xn, ¢; 6”) + log p(c|xa; 6°)

n=1 c=1

. — c c —
Note: Ac :={w €[0,1]° | >°; we = 1}.
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B
Learning Mixtures of Experts “

complete data likelihood:
N
0(0”,60%, ¢; D) = T p(yalxn, cni 0 )p(nl>ni 0),  cn€{L,...,C}
n=1

Cannot be computed, as ¢, is unknown.
weighted complete data likelihood:

N C
067,60 w; D) =TT T (p(yalxn: c: 67)p(clxn; 69))™,  wi € Ac
n=1c=1
N C
—log (67,0, w; D) = = > " " wy ¢ (log p(ya|xn, ¢; 6”) + log p(c|xn; 6°)
n=1c=1
Cannot be computed either, as w, is unknown;
but w, can be treated as parameter.
Note: Ac :={w € [0,1]¢ | =5, we = 1}.
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Learning Mixtures of Experts
minimize  — log £(6”,6°, w; D'?")
N C
==Y wac(log p(ynlxn, c; 0) + log p(c|xn; 6)), wn € Ac

n=1c=1

Block coordinate descent (EM):
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Learning Mixtures of Experts
minimize  — log £(6”,6°, w; D'?")

N C
==Y wac(log p(ynlxn, c; 0) + log p(c|xn; 6)), wn € Ac

n=1c=1
Block coordinate descent (EM):
1. Minimize w.r.t. 6”: N
» decomposes into C problems arg min — Z Wh c log p(ya|xn; 6%)
G‘V

n=1
» learn C component models for D" with case weights w;, .
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Learning Mixtures of Experts
minimize  — log £(6”,6°, w; D'?")

N C
==Y wac(log p(ynlxn, c; 0) + log p(c|xn; 6)), wn € Ac

n=1c=1
Block coordinate descent (EM):
1. Minimize w.r.t. 6”: N
» decomposes into C problems arg min — Z Wh c log p(ya|xn; 6%)
9Y

n=1
» learn C component models for D" with case weights w;, .

2. Minimize w.r.t. 0¢:

N C
> solve arg min—ZZw,,,c log p(c|xn; 6°)
OC

n=1 c=1
» learn a combination model for target ¢ on

prrainweempl . — f(x c,wne) | n=1,...,N,c=1,...,C}
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Learning Mixtures of Experts
minimize  — log £(6”, 6, w; D'?")

N C
==Y ) Wac (log p(yn|xn, c; 6”) + log p(clxn; 6°)),

n=1c=1

Block coordinate descent (EM):
3. Minimize w.r.t. wy:

» decomposes into N problems
C
argmin — Y wa.c (log p(yn | xa 0%) + log p(c | xa; 0°)),

Wn,c c=1

w, € Ac

w, € Ac
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Learning Mixtures of Experts
minimize  — log £(6”, 6, w; D'?")

N C
==Y ) Wac (log p(yn|xn, c; 6”) + log p(clxn; 6°)),

n=1c=1

Block coordinate descent (EM):
3. Minimize w.r.t. wy:

» decomposes into N problems
C

argmin — > wy ¢ (log p(yn | xn; 6Y) + log p(c | xn; 6)),

Wh c

c=1 =:a,

w, € Ac

w, € Ac
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Learning Mixtures of Experts

minimize  — log £(6”, 6, w; D'?")
N C
= - Z Z Wh,c (log p(yn|xn, c; 07) + log p(c|xn; 0°)),  wn € Ac
n=1c=1
Block coordinate descent (EM):
3. Minimize w.r.t. wy:
» decomposes into N problems
C
arg min — Z Wi c (log p(¥n | xn; 0%) + log p(c | xn;: 6°)), wn € Ac
Wh,c c=1 -
» analytical solution
ac log p(yn | xn: 0%) + log p(c | Xn; 0°)

Wnc: =

’ C C
ZC':l ac’ Ec’:l log p(yn | Xny 02//) + log p(C/ | Xn, 95)
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Machine Learning 2 3. Mixtures of Experts

Remarks

» Mixtures of experts can use any model as component model.

» Mixtures of experts can use any classification model as
combination model.
» both models need to be able to deal with case weights
» both models need to be able to output probabilities
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Remarks

» Mixtures of experts can use any model as component model.
» Mixtures of experts can use any classification model as
combination model.

» both models need to be able to deal with case weights
» both models need to be able to output probabilities

» if data is sparse, sparsity can be naturally used in both, component
and combination models.
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Machine Learning 2 3. Mixtures of Experts

Remarks

» Mixtures of experts can use any model as component model.
» Mixtures of experts can use any classification model as
combination model.

» both models need to be able to deal with case weights
» both models need to be able to output probabilities

» if data is sparse, sparsity can be naturally used in both, component
and combination models.

» Updating the three types of parameters can be interleaved.

» this way, w,  never has to be materialized
(but for a mini batch, possibly a single n)
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Machine Learning 2 3. Mixtures of Experts

Outlook: Hierarchical Mixture of Experts

() ()
(o) !
) )

mixture of experts hierarchical mixture of experts
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Machine Learning 2 4. Interpreting Ensemble Models

Outline

4. Interpreting Ensemble Models

[m]

=
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Machine Learning 2 4. Interpreting Ensemble Models

Variable Importance

Some models allow to assess the importance of single variables (or more
generally subsets of variables; variable importance), e.g.,

» linear models: the z-score

» decision trees: the number of times a variable occurs in its splits
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Machine Learning 2 4. Interpreting Ensemble Models

Variable Importance

Some models allow to assess the importance of single variables (or more
generally subsets of variables; variable importance), e.g.,

» linear models: the z-score

» decision trees: the number of times a variable occurs in its splits

Variable importance of ensembles of such models can be measured as
average variable importance in the component models:

C
1
importance(Xm, 7) = Z importance(Xm, 7c), me{l,..., M}

c=1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 4. Interpreting Ensemble Models

Variable Importance / Example
Synthetic data:

x ~uniform([0, 1]1%)
y ~N(y | 10sin(mx1x0) 4+ 20(x3 — 0.5)% 4 10x4 + 5x5, 1)

Model: Bayesian adaptive regression tree (variant of a random forest; see
[Murl2, p. 551]).

usage

000 005 010 015 020 0.25

[Murl2, fig. 16.21]

Color denotes the number C of component models.
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Machine Learning 2 4. Interpreting Ensemble Models

NN
Variable Dependence: Partial Dependence Plot “

For any model y (and thus any ensemble), the dependency of the model
on a variable X,,, can be visualized by a partial dependence plot:

plot z € range(Xp) vs.

N
N i 1 .
_ypartial(Z; Xm, Dtraln) Z:N ZY((Xn,la <o s Xnm—1,Z, Xn,m+1, - - - 7Xn,M))7
n=1

or for a subset of variables

N
N i 1 N
.Vpartial(Z; XV’Dtra n) ::N Z}/(p(x, V,Z)), 4 - {17 sy M}

n=1

m, if 4
Zme NMEY 1, M)

with p(x, V., z)m, 1=
Xm, e€lse
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35 /36



Machine Learning 2 4. Interpreting Ensemble Models

Variable Dependence / Example

Synthetic data:

x ~uniform([0, 1]1%)

y ~N(y | 10sin(mx1x2) + 20(x3 — 0.5)% + 10x4 + 5x5,1)

1 1 18 2
P

§’+
ﬁz—/

Ny Ny S B
FAVI e EUYP s T Nt Nl s Y
gt gt =k i
P AT e +,+/‘*/+ ii++»+++‘*"*’+

¥ - : S :
PR B R ] e s AT

g

®

o

[Murl2, fig. 16.20]
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Machine Learning 2

Further Readings

>

Averaging, Voting, Stacking: [Murl2, chapter 16.6], [HTFFO05,
chapter 8.8], [Bis06, chapter 14.2].

Bayesian model averaging: [Bis06, chapter 14.1], [Murl2, chapter
16.6.3], [HTFFO5, chapter 8.8].

Bagging: [Murl2, chapter 16.2.5], [HTFFO05, chapter 8.7], [Bis06,
chapter 14.2].

Random Forests: [HTFFO05, chapter 15], [Murl2, chapter 16.2.5],
[Bis06, chapter 14.3].

Boosting: [Murl2, chapter 16.4], [HTFFO05, chapter 10], [Bis06,
chapter 14.3].

Mixtures of Experts: [Bis06, chapter 14.5]. [Murl2, chapter 11.2.4,
11.4.3], [HTFFO5, chapter 9.5].
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