
Machine Learning 2

Machine Learning 2
5. Ensembles

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science

University of Hildesheim, Germany

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 36



Machine Learning 2

Syllabus

A. Advanced Supervised Learning
Tue. 5.4. (1) A.1 Generalized Linear Models

Tue. 12.4. (2) A.2 Gaussian Processes
Tue. 19.4. (3) A.2b Gaussian Processes (ctd.)
Tue. 26.4. (4) A.3 Advanced Support Vector Machines
Tue. 3.5. (5) A.4 Neural Networks

Tue. 10.5. (6) A.5 Ensembles
Tue. 17.5. — — Pentecoste Break —
Tue. 24.5. (7) A.5b Ensembles (ctd.)
Tue. 31.5. (8) A.6 Sparse Linear Models — L1 regularization
Tue. 7.6. (9) A.6b Sparse Linear Models — L1 regularization (ctd.)

Tue. 14.6. (10) A.7. Sparse Linear Models — Further Methods

B. Complex Predictors
Tue. 21.6. (11) B.1 Latent Dirichlet Allocation (LDA)
Tue. 28.6. (12) B.2 Deep Learning
Tue. 5.7. (13) Questions and Answers

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 36



Machine Learning 2

Outline

1. Model Averaging, Voting, Stacking

2. Boosting

3. Mixtures of Experts

4. Interpreting Ensemble Models

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

3 / 36



Machine Learning 2 1. Model Averaging, Voting, Stacking

Outline

1. Model Averaging, Voting, Stacking

2. Boosting

3. Mixtures of Experts

4. Interpreting Ensemble Models

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 36



Machine Learning 2 1. Model Averaging, Voting, Stacking

Model Selection

If we have several models

ŷc : RM → Y, c = 1, . . . ,C

for the same task, so far we tried to select the best one

ŷ :=ŷc∗ with

c∗ := arg min
c∈{1,...,C}

`(ŷc ,Dval)

using validation data Dval and deploy it (model selection).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 36



Machine Learning 2 1. Model Averaging, Voting, Stacking

Model Averaging & Voting
Alternatively, having several models

ŷc : RM → Y, c = 1, . . . ,C

one also can combine them (model combination, ensemble), e.g.,

model averaging, for continuous outputs
(regression, classification with uncertainty):

ŷ(x) :=
1

C

C∑

c=1

ŷc(x)

voting, for nominal outputs
(classification without uncertainty):

ŷ(x) := y∗ with ny∗(x) maximal among all ny (x)

ny (x) := |{c ∈ {1, . . . ,C} | ŷc(x) = y}|

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

3 / 36



Machine Learning 2 1. Model Averaging, Voting, Stacking

Why Ensembles ?

I an ensemble usually improves accuracy
I if component models make different types of errors

X
ŷ1

ŷ2

ŷ3

ŷ4

ŷ5

ŷ

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

4 / 36



Machine Learning 2 1. Model Averaging, Voting, Stacking

Weighted Model Averaging I: Bayesian Model Averaging

ŷ(x) :=
C∑

c=1

αc ŷc(x)

with component model weights α ∈ RC .

Bayesian Model Averaging:

p(y | x) :=

∫

M
p(y | x ,m,D) p(m | D)dm

MC≈
C∑

c=1

p(y | x ,mc ,D)︸ ︷︷ ︸
=ŷc (x)

p(mc | D)︸ ︷︷ ︸
=αc

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

5 / 36



Machine Learning 2 1. Model Averaging, Voting, Stacking

Weighted Model Averaging I: Bayesian Model Averaging

ŷ(x) :=
C∑

c=1

αc ŷc(x)

with component model weights α ∈ RC .

Bayesian Model Averaging:

p(y | x) :=

∫

M
p(y | x ,m,D) p(m | D)dm

MC≈
C∑

c=1

p(y | x ,mc ,D)︸ ︷︷ ︸
=ŷc (x)

p(mc | D)︸ ︷︷ ︸
=αc

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

5 / 36



Machine Learning 2 1. Model Averaging, Voting, Stacking

Weighted Model Averaging II: Linear Stacking

ŷ(x) :=
C∑

c=1

αc ŷc(x)

with component model weights α ∈ RC .

Linear Stacking:
I learn α’s minimizing the loss on validation data:

α := arg min
α

`(
C∑

c=1

αc ŷc(x),Dval)

I actually a Generalized Linear Model with C features

x ′c(x) := ŷc(x), c = 1, . . . ,C

and parameters α.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

6 / 36



Machine Learning 2 1. Model Averaging, Voting, Stacking

(General) Stacking
I Build the second stage dataset:

Dval
2nd stage := {(x ′, y) | x ′c := ŷc(x), c = 1, . . . ,C , (x , y) ∈ Dval} ⊆ YC ×Y

I Learn a second stage prediction model for the 2nd stage data set

ŷ2nd stage : YC → Y

I e.g., a linear model/GLM, a SVM/SVR, a neural network etc.

I to predict a new instance x ,
I first, compute the predictions of the (1st stage) component models

x ′c := ŷc(x), c = 1, . . . ,C

I then compute the final prediction of the 2nd stage model:

ŷ(x) := ŷ2nd stage(x ′1, . . . , x
′
C )

I non-linear second stage models can capture interactions between the
different component models.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

7 / 36



Machine Learning 2 1. Model Averaging, Voting, Stacking

(General) Stacking
I Build the second stage dataset:

Dval
2nd stage := {(x ′, y) | x ′c := ŷc(x), c = 1, . . . ,C , (x , y) ∈ Dval} ⊆ YC ×Y

I Learn a second stage prediction model for the 2nd stage data set

ŷ2nd stage : YC → Y

I e.g., a linear model/GLM, a SVM/SVR, a neural network etc.

I to predict a new instance x ,
I first, compute the predictions of the (1st stage) component models

x ′c := ŷc(x), c = 1, . . . ,C

I then compute the final prediction of the 2nd stage model:

ŷ(x) := ŷ2nd stage(x ′1, . . . , x
′
C )

I non-linear second stage models can capture interactions between the
different component models.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

7 / 36



Machine Learning 2 1. Model Averaging, Voting, Stacking

Origins of Model Heterogeneity

Model heterogeneity can stem from different roots:
I different model families

I e.g., GLMs, SVMs, NNs etc.
I used to win most challenges, e.g., Netflix challenge

I different hyperparameters (for the same model family)
I e.g., regularization weights, kernels, number of nodes/layers etc.

I different variables used
I e.g., Random Forests

I trained on different subsets of the dataset
I Bagging

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

8 / 36



Machine Learning 2 1. Model Averaging, Voting, Stacking

Bootstrap Aggregation (Bagging)

I bootstrap is a resampling method
I sample with replacement uniformly from the original sample Dtrain

I as many instances as the original sample contains
I in effect, some instances may be missing in the resample,

others may occur twice or even more frequently

I draw C bootstrap samples from Dtrain:

Dtrain
c ∼ bootstrap(Dtrain), c = 1, . . . ,C

I train a model ŷc for each of these datasets Dtrain
c .

I average these models:

ŷ(x) :=
1

C

C∑

c=1

ŷc(x)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

9 / 36



Machine Learning 2 1. Model Averaging, Voting, Stacking

Random Forests

I bagging often creates datasets that are too similar to each other
I consequently, models correlate heavily and ensembling does not work

well

I to decorrelate the component models, one can train them on different
subsets of variables

I Random Forests
I use decision trees as component models

I binary splits
I regularized by minimum node size (e.g., 1, 5 etc.)
I no pruning
I sometimes using just decision tree stumps (= a single split)

I trained on bootstrap samples
I using only a random subset of variables

I actually, using a random subset of variables for each single split.
I e.g., b

√
mc, bm/3c.

I finally model averaging/voting the decision trees

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

10 / 36



Machine Learning 2 1. Model Averaging, Voting, Stacking

Bagging & Random Forests / Example (spam data)

15.2 Definition of Random Forests 589

Typically values for m are
√
p or even as low as 1.

After B such trees {T (x; Θb)}B1 are grown, the random forest (regression)
predictor is

f̂B
rf (x) =

1

B

B∑

b=1

T (x; Θb). (15.2)

As in Section 10.9 (page 356), Θb characterizes the bth random forest tree in
terms of split variables, cutpoints at each node, and terminal-node values.
Intuitively, reducing m will reduce the correlation between any pair of trees
in the ensemble, and hence by (15.1) reduce the variance of the average.

0 500 1000 1500 2000 2500

0.
04

0
0.

04
5

0.
05

0
0.

05
5

0.
06

0
0.

06
5

0.
07

0

Spam Data

Number of Trees

T
es

t E
rr

or

Bagging
Random Forest
Gradient Boosting (5 Node)

FIGURE 15.1. Bagging, random forest, and gradient boosting, applied to the
spam data. For boosting, 5-node trees were used, and the number of trees were
chosen by 10-fold cross-validation (2500 trees). Each “step” in the figure corre-
sponds to a change in a single misclassification (in a test set of 1536).

Not all estimators can be improved by shaking up the data like this.
It seems that highly nonlinear estimators, such as trees, benefit the most.
For bootstrapped trees, ρ is typically small (0.05 or lower is typical; see
Figure 15.9), while σ2 is not much larger than the variance for the original
tree. On the other hand, bagging does not change linear estimates, such
as the sample mean (hence its variance either); the pairwise correlation
between bootstrapped means is about 50% (Exercise 15.4).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

11 / 36

[HTFF05, fig. 15.1]



Machine Learning 2 2. Boosting

Outline

1. Model Averaging, Voting, Stacking

2. Boosting

3. Mixtures of Experts

4. Interpreting Ensemble Models

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

12 / 36



Machine Learning 2 2. Boosting

Consecutive vs Joint Ensemble Learning
So far, ensembles have been constructed in two consecutive steps:

I 1st step: create heterogeneous models
I learn model parameters for each model separately

I 2nd step: combine them
I learn combination weights (stacking)

Advantages:
I simple
I trivial to parallelize

Disadvantages:
I models are learnt in isolation

New idea: Learn model parameters and combination weights jointly

`(Dtrain; Θ) :=
N∑

n=1

`(yn,
C∑

c=1

αc ŷ(xn; θc)), Θ := (α, θ1, . . . , θC )

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

12 / 36



Machine Learning 2 2. Boosting

Consecutive vs Joint Ensemble Learning
So far, ensembles have been constructed in two consecutive steps:

I 1st step: create heterogeneous models
I learn model parameters for each model separately

I 2nd step: combine them
I learn combination weights (stacking)

Advantages:
I simple
I trivial to parallelize

Disadvantages:
I models are learnt in isolation

New idea: Learn model parameters and combination weights jointly

`(Dtrain; Θ) :=
N∑

n=1

`(yn,
C∑

c=1

αc ŷ(xn; θc)), Θ := (α, θ1, . . . , θC )

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

12 / 36



Machine Learning 2 2. Boosting

Consecutive vs Joint Ensemble Learning
So far, ensembles have been constructed in two consecutive steps:

I 1st step: create heterogeneous models
I learn model parameters for each model separately

I 2nd step: combine them
I learn combination weights (stacking)

Advantages:
I simple
I trivial to parallelize

Disadvantages:
I models are learnt in isolation

New idea: Learn model parameters and combination weights jointly

`(Dtrain; Θ) :=
N∑

n=1

`(yn,
C∑

c=1

αc ŷ(xn; θc)), Θ := (α, θ1, . . . , θC )

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

12 / 36



Machine Learning 2 2. Boosting

Boosting
Idea: fit models (and their combination weights)

I sequentially, one at a time,
I relative to the ones already fitted,
I but do not consider to change the earlier ones again.

y (C ′)(x) :=
C ′∑

c=1

αc ŷ(x ; θc), C ′ ∈ {1, . . . ,C ′}

=ŷ (C ′−1)(x) + αC ′ ŷ(x ; θC ′)

`(Dtrain, ŷ (C ′)) =
N∑

n=1

`(yn, ŷ
(C ′)(xn))

(αC ′ , θC ′) := arg min
αC ′ ,θC ′

N∑

n=1

`(yn, ŷ
(C ′−1)(xn)︸ ︷︷ ︸

=:ŷ0
n

+ αC ′ ŷ(xn; θC ′)︸ ︷︷ ︸
=:αŷn

)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

13 / 36



Machine Learning 2 2. Boosting

Boosting
Idea: fit models (and their combination weights)

I sequentially, one at a time,
I relative to the ones already fitted,
I but do not consider to change the earlier ones again.

y (C ′)(x) :=
C ′∑

c=1

αc ŷ(x ; θc), C ′ ∈ {1, . . . ,C ′}

=ŷ (C ′−1)(x) + αC ′ ŷ(x ; θC ′)

`(Dtrain, ŷ (C ′)) =
N∑

n=1

`(yn, ŷ
(C ′)(xn))

(αC ′ , θC ′) := arg min
αC ′ ,θC ′

N∑

n=1

`(yn, ŷ
(C ′−1)(xn)︸ ︷︷ ︸

=:ŷ0
n

+ αC ′ ŷ(xn; θC ′)︸ ︷︷ ︸
=:αŷn

)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

13 / 36



Machine Learning 2 2. Boosting

Boosting
Idea: fit models (and their combination weights)

I sequentially, one at a time,
I relative to the ones already fitted,
I but do not consider to change the earlier ones again.

y (C ′)(x) :=
C ′∑

c=1

αc ŷ(x ; θc), C ′ ∈ {1, . . . ,C ′}

=ŷ (C ′−1)(x) + αC ′ ŷ(x ; θC ′)

`(Dtrain, ŷ (C ′)) =
N∑

n=1

`(yn, ŷ
(C ′)(xn))

(αC ′ , θC ′) := arg min
αC ′ ,θC ′

N∑

n=1

`(yn, ŷ
(C ′−1)(xn)︸ ︷︷ ︸

=:ŷ0
n

+ αC ′ ŷ(xn; θC ′)︸ ︷︷ ︸
=:αŷn

)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

13 / 36



Machine Learning 2 2. Boosting

Convergence & Shrinking
Models are fitted iteratively

C ′ := 1, 2, 3, . . .

I convergence is assessed via early stopping: once the error on a
validation sample

`(Dval, ŷ (C ′))

does not decrease anymore over a couple of iterations, the algorithm
stops and returns the best iteration so far.

I To deaccelerate convergence to the training data, usually shrinking
the combination weights is applied:

αC ′ := ν αC ′ , e.g., with ν = 0.02

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

14 / 36



Machine Learning 2 2. Boosting

L2 Loss Boosting (Least Squares Boosting)

For L2 loss

`(y , ŷ) :=(y − ŷ)2

we get

`(yn, ŷ
0
n + αŷn) =`(yn − ŷ0

n , αŷn)

and thus fit the residuals

θC ′ := arg min
θC ′

N∑

n=1

`(yn − ŷ0
n , ŷ(xn; θC ′))

αC ′ :=1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

15 / 36



Machine Learning 2 2. Boosting

Exponential Loss Boosting (AdaBoost)

For (weighted) exponential loss

`(y , ŷ ,w) :=w e−yŷ , y ∈ {−1,+1}, ŷ ∈ R
we get

`(yn, ŷ
0
n + αŷn,w

0
n ) = `(yn, ŷ

0
n ,w

0
n )︸ ︷︷ ︸

=:wn

`(yn, αŷn, 1)

=`(yn, αŷn,wn)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

16 / 36



Machine Learning 2 2. Boosting

Exponential Loss Boosting (AdaBoost)

For (weighted) exponential loss

`(y , ŷ ,w) :=w e−yŷ , y ∈ {−1,+1}, ŷ ∈ R
we get

`(yn, ŷ
0
n + αŷn,w

0
n ) = `(yn, ŷ

0
n ,w

0
n )︸ ︷︷ ︸

=:wn

`(yn, αŷn, 1)

=`(yn, αŷn,wn)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

16 / 36



Machine Learning 2 2. Boosting

Exponential Loss Boosting (AdaBoost)

The loss in iteration C ′

arg min
α,ŷn

N∑

n=1

`(yn, αŷn,wn) = arg min
αC ′ ,θC ′

N∑

n=1

`(yn, αC ′ ŷ(xn, θC ′),w
(C ′)
n )

is minimized sequentially:

1. Learn θC ′ : w
(C ′)
n :=`(yn, ŷ

(C ′−1)(xn),w
(C ′−1)
n )

θ̂C ′ := arg min
θC ′

N∑

n=1

`(yn, ŷ(xn, θC ′),w
(C ′)
n )

2. Learn αC ′ :

errC ′ :=

∑N
n=1 w

(C ′)
n δ(yn 6= ŷ(xn, θC ′))
∑N

n=1 w
(C ′)
n

αC ′ :=
1

2
log

1− errC ′

errC ′

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

17 / 36



Machine Learning 2 2. Boosting

AdaBoost

1: procedure adaboost(Dtrain = {(x1, y1), . . . , (xN , yN)},C )
2: wn := 1

N , n := 1, . . . ,N
3: for c := 1, . . . ,C do
4: fit a classifier to data with case weights w :
5: θc := arg minθ `(Dtrain, ŷ(θ),w)

6: errC :=
∑N

n=1 wnδ(yn 6=ŷ(xn,θc ))∑N
n=1 wn

7: αc := log 1−errc
errc

8: wn := wne
αcδ(yn 6=ŷ(xn,θc )), n = 1, . . . ,N

9: return (α, θ)

C number of component models

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

18 / 36



Machine Learning 2 2. Boosting

Functional Gradient Descent Boosting

So far, we have to derive the boosting equations for each loss
individually.

Idea:

I compute the gradient of the loss function for an additional additive
term and

I fit the next model that mimicks best a gradient update step

Advantage:

I works for all differentiable losses.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

19 / 36



Machine Learning 2 2. Boosting

Functional Gradient Descent Boosting
Functional gradient:

∇ŷ `(Dtrain, ŷ)|ŷ (C ′−1) =∇ŷ

(
N∑

n=1

`(yn, ŷn)

)
|ŷ (C ′−1)

=

(
∂`

∂ŷ
(yn, ŷ

(C ′−1)(xn))

)

n=1,...,N

A functional gradient update step would do:

ŷ (C ′) =ŷ (C ′−1) − η∇ŷ `(Dtrain, ŷ)

Boosting adds the next model:

ŷ (C ′) =ŷ (C ′−1) + αC ′ ŷ(θC ′)

To mimick the gradient update step with steplength η := 1:

θC ′ := arg min
θC ′

N∑

n=1

(−
(
∇ŷ `(Dtrain, ŷ)|ŷ (C ′−1)

)
n
− ŷ(xn, θC ′))2

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

20 / 36



Machine Learning 2 2. Boosting

Functional Gradient Descent Boosting
Functional gradient:

∇ŷ `(Dtrain, ŷ)|ŷ (C ′−1) =∇ŷ

(
N∑

n=1

`(yn, ŷn)

)
|ŷ (C ′−1)

=

(
∂`

∂ŷ
(yn, ŷ

(C ′−1)(xn))

)

n=1,...,N

A functional gradient update step would do:

ŷ (C ′) =ŷ (C ′−1) − η∇ŷ `(Dtrain, ŷ)

Boosting adds the next model:

ŷ (C ′) =ŷ (C ′−1) + αC ′ ŷ(θC ′)

To mimick the gradient update step with steplength η := 1:

θC ′ := arg min
θC ′

N∑

n=1

(−
(
∇ŷ `(Dtrain, ŷ)|ŷ (C ′−1)

)
n
− ŷ(xn, θC ′))2

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

20 / 36



Machine Learning 2 2. Boosting

Functional Gradient Descent Boosting
Functional gradient:

∇ŷ `(Dtrain, ŷ)|ŷ (C ′−1) =∇ŷ

(
N∑

n=1

`(yn, ŷn)

)
|ŷ (C ′−1)

=

(
∂`

∂ŷ
(yn, ŷ

(C ′−1)(xn))

)

n=1,...,N

A functional gradient update step would do:

ŷ (C ′) =ŷ (C ′−1) − η∇ŷ `(Dtrain, ŷ)

Boosting adds the next model:

ŷ (C ′) =ŷ (C ′−1) + αC ′ ŷ(θC ′)

To mimick the gradient update step with steplength η := 1:

θC ′ := arg min
θC ′

N∑

n=1

(−
(
∇ŷ `(Dtrain, ŷ)|ŷ (C ′−1)

)
n
− ŷ(xn, θC ′))2

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

20 / 36



Machine Learning 2 2. Boosting

Functional Gradient Descent Boosting
Functional gradient:

∇ŷ `(Dtrain, ŷ)|ŷ (C ′−1) =∇ŷ

(
N∑

n=1

`(yn, ŷn)

)
|ŷ (C ′−1)

=

(
∂`

∂ŷ
(yn, ŷ

(C ′−1)(xn))

)

n=1,...,N

A functional gradient update step would do:

ŷ (C ′) =ŷ (C ′−1) − η∇ŷ `(Dtrain, ŷ)

Boosting adds the next model:

ŷ (C ′) =ŷ (C ′−1) + αC ′ ŷ(θC ′)

To mimick the gradient update step with steplength η := 1:

θC ′ := arg min
θC ′

N∑

n=1

(−
(
∇ŷ `(Dtrain, ŷ)|ŷ (C ′−1)

)
n
− ŷ(xn, θC ′))2

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

20 / 36



Machine Learning 2 2. Boosting

AdaBoost / Example (Decision Tree Stumps)

C ′ = 1 C ′ = 3 C ′ = 120

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

21 / 36

[Mur12, fig. 16.10]



Machine Learning 2 2. Boosting

Performance Comparison / Low Dimensional Data

582 Chapter 16. Adaptive basis function models

model 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
bst-dt 0.580 0.228 0.160 0.023 0.009 0.000 0.000 0.000 0.000 0.000
rf 0.390 0.525 0.084 0.001 0.000 0.000 0.000 0.000 0.000 0.000
bag-dt 0.030 0.232 0.571 0.150 0.017 0.000 0.000 0.000 0.000 0.000
svm 0.000 0.008 0.148 0.574 0.240 0.029 0.001 0.000 0.000 0.000
ann 0.000 0.007 0.035 0.230 0.606 0.122 0.000 0.000 0.000 0.000
knn 0.000 0.000 0.000 0.009 0.114 0.592 0.245 0.038 0.002 0.000
bst-stmp 0.000 0.000 0.002 0.013 0.014 0.257 0.710 0.004 0.000 0.000
dt 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.616 0.291 0.089
logreg 0.000 0.000 0.000 0.000 0.000 0.000 0.040 0.312 0.423 0.225
nb 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.030 0.284 0.686

Table 16.3 Fraction of time each method achieved a specified rank, when sorting by mean performance
across 11 datasets and 8 metrics. Based on Table 4 of (Caruana and Niculescu-Mizil 2006). Used with kind
permission of Alexandru Niculescu-Mizil.

which is a convex combination of base models, as follows:

p(y|x,π) =
∑

m∈M
πmp(y|x,m) (16.107)

In principle, we can now perform Bayesian inference to compute p(π|D); we then make pre-
dictions using p(y|x,D) =

∫
p(y|x,π)p(π|D)dπ. However, it is much more common to use

point estimation methods for π, as we saw above.

16.7 Experimental comparison

We have described many different methods for classification and regression. Which one should
you use? That depends on which inductive bias you think is most appropriate for your domain.
Usually this is hard to assess, so it is common to just try several different methods, and
see how they perform empirically. Below we summarize two such comparisons that were
carefully conducted (although the data sets that were used are relatively small). See the website
mlcomp.org for a distributed way to perform large scale comparisons of this kind. Of course,
we must always remember the no free lunch theorem (Section 1.4.9), which tells us that there is
no universally best learning method.

16.7.1 Low-dimensional features

In 2006, Rich Caruana and Alex Niculescu-Mizil (Caruana and Niculescu-Mizil 2006) conducted
a very extensive experimental comparison of 10 different binary classification methods, on 11
different data sets. The 11 data sets all had 5000 training cases, and had test sets containing
∼ 10, 000 examples on average. The number of features ranged from 9 to 200, so this is much
lower dimensional than the NIPS 2003 feature selection challenge. 5-fold cross validation was
used to assess average test error. (This is separate from any internal CV a method may need to
use for model selection.)

11 datasets, ∼ 10.000 instances, 9-200 variables

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

22 / 36

[Mur12, p. 582]



Machine Learning 2 2. Boosting

Performance Comparison / High Dimensional Data

414 Neural Networks

TABLE 11.3. Performance of different methods. Values are average rank of test
error across the five problems (low is good), and mean computation time and
standard error of the mean, in minutes.

Screened Features ARD Reduced Features
Method Average Average Average Average

Rank Time Rank Time

Bayesian neural networks 1.5 384(138) 1.6 600(186)
Boosted trees 3.4 3.03(2.5) 4.0 34.1(32.4)
Boosted neural networks 3.8 9.4(8.6) 2.2 35.6(33.5)
Random forests 2.7 1.9(1.7) 3.2 11.2(9.3)
Bagged neural networks 3.6 3.5(1.1) 4.0 6.4(4.4)

and linear combinations of features work better. However the impressive
performance of random forests is at odds with this explanation, and came
as a surprise to us.

Since the reduced feature sets come from the Bayesian neural network
approach, only the methods that use the screened features are legitimate,
self-contained procedures. However, this does suggest that better methods
for internal feature selection might help the overall performance of boosted
neural networks.

The table also shows the approximate training time required for each
method. Here the non-Bayesian methods show a clear advantage.

Overall, the superior performance of Bayesian neural networks here may
be due to the fact that

(a) the neural network model is well suited to these five problems, and

(b) the MCMC approach provides an efficient way of exploring the im-
portant part of the parameter space, and then averaging the resulting
models according to their quality.

The Bayesian approach works well for smoothly parametrized models like
neural nets; it is not yet clear that it works as well for non-smooth models
like trees.

11.10 Computational Considerations

WithN observations, p predictors,M hidden units and L training epochs, a
neural network fit typically requires O(NpML) operations. There are many
packages available for fitting neural networks, probably many more than
exist for mainstream statistical methods. Because the available software
varies widely in quality, and the learning problem for neural networks is
sensitive to issues such as input scaling, such software should be carefully
chosen and tested.

5 datasets, 100–6.000 instances, 500-100.000 variables

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

23 / 36

[HTFF05, p. 414]



Machine Learning 2 3. Mixtures of Experts

Outline

1. Model Averaging, Voting, Stacking

2. Boosting

3. Mixtures of Experts

4. Interpreting Ensemble Models

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

24 / 36



Machine Learning 2 3. Mixtures of Experts

Underlying Idea

So far, we build ensemble models where the combination weights do not
depend on the predictors:

ŷ(x) :=
C∑

c=1

αc ŷc(x)

i.e., all instances x are reconstructed from their predictions ŷc(x) by the
component models in the same way α.

New idea: allow each instance to be reconstructed in an instance-specific
way.

ŷ(x) :=
C∑

c=1

αc(x) ŷc(x)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

24 / 36



Machine Learning 2 3. Mixtures of Experts

Underlying Idea

So far, we build ensemble models where the combination weights do not
depend on the predictors:

ŷ(x) :=
C∑

c=1

αc ŷc(x)

i.e., all instances x are reconstructed from their predictions ŷc(x) by the
component models in the same way α.

New idea: allow each instance to be reconstructed in an instance-specific
way.

ŷ(x) :=
C∑

c=1

αc(x) ŷc(x)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

24 / 36



Machine Learning 2 3. Mixtures of Experts

Mixtures of Experts

xn ∈ RM , yn ∈ R, cn ∈ {1, . . . ,C}, θ := (β, σ2, γ) :

p(yn | xn, cn; θ) :=N (y | βTcnxn, σ2
cn)

p(cn | xn; θ) :=Cat(c | S(γT x))

with softmax function

S(x)m :=
exm

∑M
m′=1 e

xm′
, x ∈ RM

I C component models (experts) N (y | βTc x , σ2
c )

I each model c is expert in some region of predictor space,
defined by its component weight (gating function) S(γT x)c

I a mixture model with latent nominal variable zn := cn.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

25 / 36



Machine Learning 2 3. Mixtures of Experts

Mixtures of Experts

xn ∈ RM , yn ∈ R, cn ∈ {1, . . . ,C}, θ := (β, σ2, γ) :

p(yn | xn, cn; θ) :=N (y | βTcnxn, σ2
cn)

p(cn | xn; θ) :=Cat(c | S(γT x))

with softmax function

S(x)m :=
exm

∑M
m′=1 e

xm′
, x ∈ RM

I C component models (experts) N (y | βTc x , σ2
c )

I each model c is expert in some region of predictor space,
defined by its component weight (gating function) S(γT x)c

I a mixture model with latent nominal variable zn := cn.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

25 / 36

yn

cn

xn



Machine Learning 2 3. Mixtures of Experts

Mixtures of Experts/ Example

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5
expert predictions, fixed mixing weights=0

component models

−1 −0.5 0 0.5 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

gating functions, fixed mixing weights=0

component weight

−1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5
predicted mean and var, fixed mixing weights=0

mixture of experts

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

26 / 36

[Mur12, fig. 11.6]



Machine Learning 2 3. Mixtures of Experts

Mixtures of Experts
Generic Mixtures of Experts model:

I variables: xn ∈ X , yn ∈ Y
I latent variables: cn ∈ {1, . . . ,C}
I component models: p(yn | xn, cn; θy )

I a separate model for each c : p(yn | xn, c ; θy ) = p(yn | xn; θyc ),
with θyc and θyc′ being disjoint for c 6= c ′.

I combination model: p(cn | xn; θc)

Example Mixture of Experts model:

I variables: X := RM ,Y := R
I component models: linear regression models N (y | βTc x , σ2

c )
I combination model: logistic regression model Cat(c | S(γT x))

For prediction: p(y | x) =
C∑

c=1

p(y | x , c)︸ ︷︷ ︸
=ŷc (x)

p(c | x)︸ ︷︷ ︸
=αc (x)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

27 / 36



Machine Learning 2 3. Mixtures of Experts

Mixtures of Experts
Generic Mixtures of Experts model:

I variables: xn ∈ X , yn ∈ Y
I latent variables: cn ∈ {1, . . . ,C}
I component models: p(yn | xn, cn; θy )

I a separate model for each c : p(yn | xn, c ; θy ) = p(yn | xn; θyc ),
with θyc and θyc′ being disjoint for c 6= c ′.

I combination model: p(cn | xn; θc)

Example Mixture of Experts model:

I variables: X := RM ,Y := R
I component models: linear regression models N (y | βTc x , σ2

c )
I combination model: logistic regression model Cat(c | S(γT x))

For prediction: p(y | x) =
C∑

c=1

p(y | x , c)︸ ︷︷ ︸
=ŷc (x)

p(c | x)︸ ︷︷ ︸
=αc (x)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

27 / 36



Machine Learning 2 3. Mixtures of Experts

Learning Mixtures of Experts

complete data likelihood:

`(θy , θc , c ;Dtrain) :=
N∏

n=1

p(yn|xn, cn; θy )p(cn|xn; θc), cn ∈ {1, . . . ,C}

Cannot be computed, as cn is unknown.

weighted complete data likelihood:

`(θy , θc ,w ;Dtrain) :=
N∏

n=1

C∏

c=1

(p(yn|xn, c ; θy )p(c |xn; θc))wn,c , wn ∈ ∆C

− log `(θy , θc ,w ;Dtrain) =−
N∑

n=1

C∑

c=1

wn,c (log p(yn|xn, c ; θy ) + log p(c |xn; θc)) , wn ∈ ∆C

Cannot be computed either, as wn is unknown;
but wn can be treated as parameter.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

28 / 36



Machine Learning 2 3. Mixtures of Experts

Learning Mixtures of Experts

complete data likelihood:

`(θy , θc , c ;Dtrain) :=
N∏

n=1

p(yn|xn, cn; θy )p(cn|xn; θc), cn ∈ {1, . . . ,C}

Cannot be computed, as cn is unknown.

weighted complete data likelihood:

`(θy , θc ,w ;Dtrain) :=
N∏

n=1

C∏

c=1

(p(yn|xn, c ; θy )p(c |xn; θc))wn,c , wn ∈ ∆C

− log `(θy , θc ,w ;Dtrain) =−
N∑

n=1

C∑

c=1

wn,c (log p(yn|xn, c ; θy ) + log p(c |xn; θc)) , wn ∈ ∆C

Cannot be computed either, as wn is unknown;
but wn can be treated as parameter.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

28 / 36

Note: ∆C := {w ∈ [0, 1]C |
∑C

c=1 wc = 1}.



Machine Learning 2 3. Mixtures of Experts

Learning Mixtures of Experts

complete data likelihood:

`(θy , θc , c ;Dtrain) :=
N∏

n=1

p(yn|xn, cn; θy )p(cn|xn; θc), cn ∈ {1, . . . ,C}

Cannot be computed, as cn is unknown.

weighted complete data likelihood:

`(θy , θc ,w ;Dtrain) :=
N∏

n=1

C∏

c=1

(p(yn|xn, c ; θy )p(c |xn; θc))wn,c , wn ∈ ∆C

− log `(θy , θc ,w ;Dtrain) =−
N∑

n=1

C∑

c=1

wn,c (log p(yn|xn, c ; θy ) + log p(c |xn; θc)) , wn ∈ ∆C

Cannot be computed either, as wn is unknown;
but wn can be treated as parameter.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

28 / 36

Note: ∆C := {w ∈ [0, 1]C |
∑C

c=1 wc = 1}.



Machine Learning 2 3. Mixtures of Experts

Learning Mixtures of Experts

minimize − log `(θy , θc ,w ;Dtrain)

= −
N∑

n=1

C∑

c=1

wn,c (log p(yn|xn, c ; θy ) + log p(c |xn; θc)) , wn ∈ ∆C

Block coordinate descent (EM):

1. Minimize w.r.t. θy :
I decomposes into C problems arg min

θyc

−
N∑

n=1

wn,c log p(yn|xn; θyc )

I learn C component models for Dtrain with case weights wn,c .

2. Minimize w.r.t. θc :
I solve arg min

θc
−

N∑

n=1

C∑

c=1

wn,c log p(c |xn; θc)

I learn a combination model for target c on

Dtrain,wcompl := {(xn, c ,wn,c) | n = 1, . . . ,N, c = 1, . . . ,C}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

29 / 36



Machine Learning 2 3. Mixtures of Experts

Learning Mixtures of Experts

minimize − log `(θy , θc ,w ;Dtrain)

= −
N∑

n=1

C∑

c=1

wn,c (log p(yn|xn, c ; θy ) + log p(c |xn; θc)) , wn ∈ ∆C

Block coordinate descent (EM):
1. Minimize w.r.t. θy :

I decomposes into C problems arg min
θyc

−
N∑

n=1

wn,c log p(yn|xn; θyc )

I learn C component models for Dtrain with case weights wn,c .

2. Minimize w.r.t. θc :
I solve arg min

θc
−

N∑

n=1

C∑

c=1

wn,c log p(c |xn; θc)

I learn a combination model for target c on

Dtrain,wcompl := {(xn, c ,wn,c) | n = 1, . . . ,N, c = 1, . . . ,C}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

29 / 36



Machine Learning 2 3. Mixtures of Experts

Learning Mixtures of Experts

minimize − log `(θy , θc ,w ;Dtrain)

= −
N∑

n=1

C∑

c=1

wn,c (log p(yn|xn, c ; θy ) + log p(c |xn; θc)) , wn ∈ ∆C

Block coordinate descent (EM):
1. Minimize w.r.t. θy :

I decomposes into C problems arg min
θyc

−
N∑

n=1

wn,c log p(yn|xn; θyc )

I learn C component models for Dtrain with case weights wn,c .

2. Minimize w.r.t. θc :
I solve arg min

θc
−

N∑

n=1

C∑

c=1

wn,c log p(c |xn; θc)

I learn a combination model for target c on

Dtrain,wcompl := {(xn, c ,wn,c) | n = 1, . . . ,N, c = 1, . . . ,C}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

29 / 36



Machine Learning 2 3. Mixtures of Experts

Learning Mixtures of Experts

minimize − log `(θy , θc ,w ;Dtrain)

= −
N∑

n=1

C∑

c=1

wn,c (log p(yn|xn, c ; θy ) + log p(c |xn; θc)) , wn ∈ ∆C

Block coordinate descent (EM):

3. Minimize w.r.t. wn,c :
I decomposes into N problems

arg min
wn,c

−
C∑

c=1

wn,c (log p(yn | xn; θyc ) + log p(c | xn; θc))︸ ︷︷ ︸
=:ac

, wn ∈ ∆C

I analytical solution

wn,c =
ac∑C

c′=1 ac′
=

log p(yn | xn; θyc ) + log p(c | xn; θc)
∑C

c′=1 log p(yn | xn; θyc′) + log p(c ′ | xn; θc)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

30 / 36



Machine Learning 2 3. Mixtures of Experts

Learning Mixtures of Experts

minimize − log `(θy , θc ,w ;Dtrain)

= −
N∑

n=1

C∑

c=1

wn,c (log p(yn|xn, c ; θy ) + log p(c |xn; θc)) , wn ∈ ∆C

Block coordinate descent (EM):

3. Minimize w.r.t. wn,c :
I decomposes into N problems

arg min
wn,c

−
C∑

c=1

wn,c (log p(yn | xn; θyc ) + log p(c | xn; θc))︸ ︷︷ ︸
=:ac

, wn ∈ ∆C

I analytical solution

wn,c =
ac∑C

c′=1 ac′
=

log p(yn | xn; θyc ) + log p(c | xn; θc)
∑C

c′=1 log p(yn | xn; θyc′) + log p(c ′ | xn; θc)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

30 / 36



Machine Learning 2 3. Mixtures of Experts

Learning Mixtures of Experts

minimize − log `(θy , θc ,w ;Dtrain)

= −
N∑

n=1

C∑

c=1

wn,c (log p(yn|xn, c ; θy ) + log p(c |xn; θc)) , wn ∈ ∆C

Block coordinate descent (EM):

3. Minimize w.r.t. wn,c :
I decomposes into N problems

arg min
wn,c

−
C∑

c=1

wn,c (log p(yn | xn; θyc ) + log p(c | xn; θc))︸ ︷︷ ︸
=:ac

, wn ∈ ∆C

I analytical solution

wn,c =
ac∑C

c′=1 ac′
=

log p(yn | xn; θyc ) + log p(c | xn; θc)
∑C

c′=1 log p(yn | xn; θyc′) + log p(c ′ | xn; θc)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

30 / 36



Machine Learning 2 3. Mixtures of Experts

Remarks

I Mixtures of experts can use any model as component model.
I Mixtures of experts can use any classification model as

combination model.
I both models need to be able to deal with case weights
I both models need to be able to output probabilities

I if data is sparse, sparsity can be naturally used in both, component
and combination models.

I Updating the three types of parameters can be interleaved.
I this way, wn,c never has to be materialized

(but for a mini batch, possibly a single n)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

31 / 36



Machine Learning 2 3. Mixtures of Experts

Remarks

I Mixtures of experts can use any model as component model.
I Mixtures of experts can use any classification model as

combination model.
I both models need to be able to deal with case weights
I both models need to be able to output probabilities

I if data is sparse, sparsity can be naturally used in both, component
and combination models.

I Updating the three types of parameters can be interleaved.
I this way, wn,c never has to be materialized

(but for a mini batch, possibly a single n)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

31 / 36



Machine Learning 2 3. Mixtures of Experts

Remarks

I Mixtures of experts can use any model as component model.
I Mixtures of experts can use any classification model as

combination model.
I both models need to be able to deal with case weights
I both models need to be able to output probabilities

I if data is sparse, sparsity can be naturally used in both, component
and combination models.

I Updating the three types of parameters can be interleaved.
I this way, wn,c never has to be materialized

(but for a mini batch, possibly a single n)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

31 / 36



Machine Learning 2 3. Mixtures of Experts

Outlook: Hierarchical Mixture of Experts

yn

cn

xn

mixture of experts

yn

c2
n

c1
n

xn

hierarchical mixture of experts

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

32 / 36



Machine Learning 2 4. Interpreting Ensemble Models

Outline

1. Model Averaging, Voting, Stacking

2. Boosting

3. Mixtures of Experts

4. Interpreting Ensemble Models

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

33 / 36



Machine Learning 2 4. Interpreting Ensemble Models

Variable Importance

Some models allow to assess the importance of single variables (or more
generally subsets of variables; variable importance), e.g.,

I linear models: the z-score

I decision trees: the number of times a variable occurs in its splits

Variable importance of ensembles of such models can be measured as
average variable importance in the component models:

importance(Xm, ŷ) :=
1

C

C∑

c=1

importance(Xm, ŷc), m ∈ {1, . . . ,M}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

33 / 36



Machine Learning 2 4. Interpreting Ensemble Models

Variable Importance

Some models allow to assess the importance of single variables (or more
generally subsets of variables; variable importance), e.g.,

I linear models: the z-score

I decision trees: the number of times a variable occurs in its splits

Variable importance of ensembles of such models can be measured as
average variable importance in the component models:

importance(Xm, ŷ) :=
1

C

C∑

c=1

importance(Xm, ŷc), m ∈ {1, . . . ,M}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

33 / 36



Machine Learning 2 4. Interpreting Ensemble Models

Variable Importance / Example
Synthetic data:

x ∼uniform([0, 1]10)

y ∼N (y | 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5, 1)

Model: Bayesian adaptive regression tree (variant of a random forest; see
[Mur12, p. 551]).

1

1 1

1

1

1 1 1 1 1

2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

us
ag

e

2

2

2

2

2

2 2 2 2 2

3 3
3

3

3

3 3 3 3 3

4
4

4

4

4

4 4 4 4 4

5
5 5

5

5

5 5 5 5 5

Color denotes the number C of component models.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

34 / 36

[Mur12, fig. 16.21]



Machine Learning 2 4. Interpreting Ensemble Models

Variable Dependence: Partial Dependence Plot
For any model ŷ (and thus any ensemble), the dependency of the model
on a variable Xm can be visualized by a partial dependence plot:

plot z ∈ range(Xm) vs.

ŷpartial(z ;Xm,Dtrain) :=
1

N

N∑

n=1

ŷ((xn,1, . . . , xn,m−1, z , xn,m+1, . . . , xn,M)),

or for a subset of variables

ŷpartial(z ;XV ,Dtrain) :=
1

N

N∑

n=1

ŷ(ρ(x ,V , z)), V ⊆ {1, . . . ,M}

with ρ(x ,V , z)m :=

{
zm, if m ∈ V

xm, else
, m ∈ {1, . . . ,M}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

35 / 36



Machine Learning 2 4. Interpreting Ensemble Models

Variable Dependence / Example
Synthetic data:

x ∼uniform([0, 1]10)

y ∼N (y | 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5, 1)

0.2 0.4 0.6 0.8

8
10

12
14

16
18

20

x1

pa
rt

ia
l d

ep
en

de
nc

e

0.2 0.4 0.6 0.8

8
10

12
14

16
18

20

x2

0.2 0.4 0.6 0.8

8
10

12
14

16
18

20
x3

0.2 0.4 0.6 0.8 1.0

8
10

12
14

16
18

20

x4

0.2 0.4 0.6 0.8

8
10

12
14

16
18

20

x5

0.2 0.4 0.6 0.8

8
10

12
14

16
18

20

x6

pa
rt

ia
l d

ep
en

de
nc

e

0.2 0.4 0.6 0.8 1.0

8
10

12
14

16
18

20

x7

0.2 0.4 0.6 0.8

8
10

12
14

16
18

20

x8

0.2 0.4 0.6 0.8

8
10

12
14

16
18

20

x9

0.2 0.4 0.6 0.8

8
10

12
14

16
18

20

x10

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

36 / 36

[Mur12, fig. 16.20]



Machine Learning 2

Further Readings

I Averaging, Voting, Stacking: [Mur12, chapter 16.6], [HTFF05,
chapter 8.8], [Bis06, chapter 14.2].

I Bayesian model averaging: [Bis06, chapter 14.1], [Mur12, chapter
16.6.3], [HTFF05, chapter 8.8].

I Bagging: [Mur12, chapter 16.2.5], [HTFF05, chapter 8.7], [Bis06,
chapter 14.2].

I Random Forests: [HTFF05, chapter 15], [Mur12, chapter 16.2.5],
[Bis06, chapter 14.3].

I Boosting: [Mur12, chapter 16.4], [HTFF05, chapter 10], [Bis06,
chapter 14.3].

I Mixtures of Experts: [Bis06, chapter 14.5]. [Mur12, chapter 11.2.4,
11.4.3], [HTFF05, chapter 9.5].

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

37 / 36



Machine Learning 2

References

Christopher M. Bishop.

Pattern recognition and machine learning, volume 1.
springer New York, 2006.

Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin.

The elements of statistical learning: data mining, inference and prediction, volume 27.
Springer, 2005.

Kevin P. Murphy.

Machine learning: a probabilistic perspective.
The MIT Press, 2012.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

38 / 36


	1. Model Averaging, Voting, Stacking
	2. Boosting
	3. Mixtures of Experts
	4. Interpreting Ensemble Models
	Appendix

