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Machine Learning 2 1. GPs for Regression

Gaussian Process Model

Gaussian Processes describe

>

>

»

the vector y := (y1,...,yn)" of all targets

as a sample from a normal distribution

where targets of different instances are correlated by a kernel X:

and thus depend on the matrix X of all predictors:
y | X ~N(y | 1n(X), 2(X))
with
:U’(X)n ::m(Xn)
Y(X)nm :==k(xn, Xm), n,me{l,...,N}

with a kernel function k and mean function m (often m = 0).
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1. GPs for Regression

Kernels

predictors x, x’.

The kernel k measures how much targets y, y’ correlate given their

Example: squared exponential kernel

k(x,x') :== U%efﬁ”)ﬁx

’ | ‘2
with kernel (hyper)parameters

¢ horizontal length scale (x)
of

vertical variation (y)
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Machine Learning 2 1. GPs for Regression

Conditional Distributions of Multivariate Normals

Let ya, yg be jointly Gaussian

= (oa )~ ) 1o ) (5 5 )

then the conditional distribution is

P(ye | ya) = N(ye | 1Bja; ZB|A)
with

pBla =pB + YpaX ia(va — pa)

Ypia =88 — LBAY 4 T AB
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Machine Learning 2 1. GPs for Regression

Predictions w/o Noise

Let y, X be the training data,
X, be the test data and
Vs« be the test targets to predict.

I x V(X)) (e 2 )
(o )i ) (o e

with
p=m(X), e = m(X,)
Y =k(X,X), Z.:=k(X, X)), X :=k(X,X)
Then
P(Y* | Y) = N(Y* | fes i*)
with

fi =i + X TNy — p1)
Y, =Y, —X/y1y,
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Example w/o Noise

Without noise the data is interpolated.

[Mur12, fig. 15.2]
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Machine Learning 2 1. GPs for Regression

Predictions with Noise A
No noise:
2 =K
With noise:
Y =K+l

Then as before

p(yi | y) = N(ys | fin, Z4)
now with

fire =g+ K (K + 0517y — )

Yo=K+ opl — K] (K+ o)) 'K,
where

K =k(X,X), Ki:=k(X,X), Ku:=k(X:,X)
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Predictions with Noise, Zero Means

p(ys | y) = N(y | fis, x)

with
fls =Lt + K*T(K + J}%/)—l(y — W)
= 2 T 2y-1
Y, =K, —I—O'y/ - K, (K—I—Uy) K.
With m = 0:
P(s | y) = Ny | fis, L)
with

fi =K (K + U)z,l)*ly
Yo=K+ opl — K] (K+ o)) 'K,
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. : : s
Prediction for a single instance “

p(ye | ¥) = N(ye | fin; £)
with
fis =K (K + U)z,l)*ly
& 2 T 2\—1
Yo=K to, - K (K+o,) K

Prediction y for a single instance x:

N
P(x) =k (K + 0'}2,1)_1)/ = Za,,k(x,,,x), a:=(K+ 0'}2,1)_1)/

n=1
with

k. :=k(X,x)
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Machine Learning 2 1. GPs for Regression

Example with Noise

(E, O'f,O'y) — (1, 1701) (E, O'f,O'y) == (03,01?,000005)

[Mur12, fig. 15.3]
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Machine Learning 2 1. GPs for Regression

Example with Noise

(¢,0¢,0,) = (3,1.16,0.89)

(f’ O'f70'y) = (17 1701)

[Mur12, fig. 15.3]
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Machine Learning 2 1. GPs for Regression

. . N
Estimating Kernel Parameters “

Either treating them as hyperparameters (grid search, random search) or
maximize the marginal likelihood (empirical Bayes; grad. desc.).
Model:

Py | X) =N(y | 0. K +a}l)
negative log likelihood:
L(¢,0¢) := —log p(y | X)

1 N
:EyT(K + aﬁ)‘ly + 5 log |K + 0}2,I| + 5 log(27)

oK 1 oK
oc __ 1 219K 2y-1 2er((K + o218
50 34 (K+0y) 69(K+0y) y—|—2tr(( +ayl) 89)
1 T 2 y-1y 9K
tr((aa” — (K +020) )2
with

a:=(K+ af,)fly, 0 =1 0f
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Local Minima for Kernel Parameters

5. o a
2 +
£10 -
3
© = 1
E g
] =3
5 30
(2]
$10™
] -1
| . 2 .
0 10t -5 . 5
characteristic lengthscale input, x

lower left minimum:

(¢,0¢) = (1,0.2)

[Mur12, fig. 15.5]

[m]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Machine Learning 2 1. GPs for Regression

Local Minima for Kernel Parameters

2
= +
2 10° + +
g +
3
© = 1
g 5 +
iz g +
g 30 + 1
(2]
$10™
2 -1
| . 2 .
0 10t -5 . 5
characteristic lengthscale input, x

upper right minimum:

(¢,0¢) = (10,0.8)

[Mur12, fig. 1
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Machine Learning 2 1. GPs for Regression

Semi-parametric GPs

F(x) =BT ¢(x) + r(x)
r(x) ~GP(r | 0, k(X, X))

Assuming
B~N(B|bB), eg,b:=00B:=03l
yields just another GP
f(x) ~GP(f | ¢(X)b, k(X, X) + &(X)BH(X)T)

where

$(X) :=(o(x1). -, o(xw)) "
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Machine Learning 2 2. GPs for Classification

Model

p(y | x) =s(y f(x)),

y € {+1,—1},s := logistic
f ~GP(f | 0, K(X, X))
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Machine Learning 2 2. GPs for Classification

Inference

Two-step inference:

1. infer latent score variable:

p(ﬁk ’XLyax*)

2. infer target:

[ Pl | Xoxe Pl | X.y)of

Ty 1= p(ys =

+1] X,y, x)

/ S(E)P(E. | X,y %) df

Non Gaussians are analytically intractable.

~» Gaussian approximation (Laplace approximation)

~» Expectation Propagation (EP)
~> further methods
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Machine Learning 2 2. GPs for Classification

Posterior
p(y | fp(f | X)
FlX,y)= x Ap(f | X
p(f | X,y) oy | X) p(y | )p(f | X)
((f) =logp(y | f) +log p(f | X)
=logp(y|f)— %fTKflf— %Iog]K\ - glog%r
Vi(f)=Viogp(y | f) — K71f
V2U(f) =V logp(y | £) — K
for logistic:
1
Viegp(y | f) =5(y +1) ==
V2logp(y | f) =diag(—mo (1 — 7)) = W

at maximum:

Vif)=0 = f=KVlogp(y]|f)
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. N R
Posterior v

at maximum:
Vi(f)=0 = f=KVlogp(y]|f)
Use Newton to find a maximum:
FED =t — (V20)~tve

=) (K72 WY Y(Vlogp(y | F) — K1)
=K1+ WOy WO 1 Viog p(y | £))

eventually yielding the maximum posterior 3
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Gaussian Approximation

p(f | X,y) = q(f | X,y) =N(f| f, (K1 + W)~

using the Hessian as covariance matrix.
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Machine Learning 2 2. GPs for Classification

Predictions
exact mean

Ex(f. | X,y %) = / E(f, | £,X,x)p(F | X, y)df

:/k(x*)TK_lfp(f | X, y)df
=k(x)TKTYE(F | X, y)
approximated mean:
Eq(f* ‘ X7y7X*) :k(x*)TKil?
variance:

Varg(fe | X, y, %) =k(xe, ) — k] (K + W)Lk,
predictions:

Tu i=Eq(me | X, y, x%) = /s(f*)q(f* | X, y,x)df,

solve integral via MCMC or
probit approximation (Murphy 8.4.4.2)
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B
Algorithm (Step 1) i

input: K (covariance matrix), y (£1 targets), p(y|f) (likelihood function)
2: f:=0 initialization
repeat Newton iteration
4 W :=-VVlogp(ylf) eval. W e.g. using eq. (3.15) or (3. 16)
L := cholesky(I + W2 KW?2) B=1+W3KW?
6:  b:=Wf+ Vlogp(yl|f)
a:=b—W2LT\(L\(W2Kb)) } eq. (3.18) using eq. (3.27)
8: f:=Ka
until convergence objective: —2a'f + log p(y|f)
10: logq(y]X,0) := 7%an +logp(y|f) — >, log Li; eq. (3.32)
return: f :=f (post. mode), log ¢(y|X,6) (approx. log marg. likelihood)

Algorithm 3.1: Mode-finding for binary Laplace GPC. Commonly used convergence

[Rasmussen/Williams 20C
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B
Algorithm (Step 2) i

input: f (mode), X (inputs), y (£1 targets), k (covariance function),
p(y|f) (likelihood function), x, test input
2: W := —=VVlogp(ylf)

L := cholesky(I + W2 KW?2) B=I1+W3iKW3
4 fo= k(x*)lTVIng(y\f) eq. (3.21)
v = L\ (Wzk(x, . . .
6 V[£.] .E(k(x*,gc*))) vTv } eq. (3.24) using eq. (3.29)
7. i [ o GIN G VI dz eq. (3.25)

8: return: 7, (predlctlve class probability (for class 1))

Algorithm 3.2: Predictions for binary Laplace GPC. The posterior mode f (which
can be computed using Algorithm 3.1) is input. For multlple test inputs lines 4 —7 are
applied to each test input. Computational complexity is n®/6 operations once (line
3) plus n° operations per test case (line 5). The one-dimensional integral in line 7
can be done analytically for cumulative Gaussian likelihood, otherwise it is computed
using an approximation or numerical quadrature.

[Rasmussen/Williams 20C
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Approximation Methods for Large Datasets

See recent literature:

» Filippone, M. and Engler, R. 2015.
Enabling scalable stochastic gradient-based inference for Gaussian

processes by employing the Unbiased Llnear System SolvEr (ULISSE),

arXiv preprint arXiv:1501.05427. (2015).

» Dai, B., Xie, B., He, N., Liang, Y., Raj, A., Balcan, M.-F. and Song,
L. 2014.
Scalable Kernel Methods via Doubly Stochastic Gradients.
arXiv:1407.5599 [cs, stat]. (Jul. 2014).

» Hensman, J., Fusi, N. and Lawrence, N.D. 2013.
Gaussian processes for big data. arXiv preprint arXiv:1309.6835.
(2013).
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B
Further Readings “

» See also [Murl2, chapter 15].
» Conditioning Gaussians: [Murl2, section 4.3].

» Derivatives of inverse of a matrix etc., see, e.g., The Matrix
Cookbook, http:

//www.mit.edu/~wingated/stuff_i_use/matrix_cookbook.pdf

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

23


http://www.mit.edu/~wingated/stuff_i_use/matrix_cookbook.pdf
http://www.mit.edu/~wingated/stuff_i_use/matrix_cookbook.pdf

Machine Learning 2

Some Matrix Derivatives

X = —XxX"Hax)x 1
d(log(|X])) = tr(X*aX)

o = = = Z|= Dae
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