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Deadline: Th. April 25, 10:00 am Drop your printed or legible handwritten submissions into the boxes
at Samelsonplatz. Alternatively upload a Jupyter notebook (.ipynb) or a .pdf file via LearnWeb.

Definition 1. A probability density p(x; θ) with parameters θ belongs to the exponential family, if it can
be expressed in the form

p(x; θ) = h(x)e〈η(θ)|Φ(x)〉−A(θ) (1)

for some functions h, η,Φ, A

1 Exponential Family (10 points)

A. [3p] Show that the Gamma distribution Γ(α, β) defined by

p(x;α, β) =
βαxα−1e−βx

Γ(α)
for x > 0 and α, β > 0 (2)

belongs to the exponential family.

B. [3p] Show that the Dirichlet distribution Dir(α) defined by

p(x;α) =
1

B(α)

K∏
i=1

xαi−1
i B(α) =

∏K
i=1 Γ (αi)

Γ
(∑K

i=1 αi

) (3)

belongs to the exponential family.

C. [4p] Show that the uniform distribution 1[a,b] defined by

p(x; a, b) =

{
1
b−a : x ∈ [a, b]

0 : else
(4)

does not belong to the exponential family. Hint: For a continuous function f , its so called support is
defined as supp f = {x | f(x) 6= 0}. What is supp h(x)

Z(θ)e
φ(x)η(θ)? What is supp1[a,b]?

2 Generalized Linear Models (10 points)

A. [3p] What are the 3 components of a GLM? What is their purpose?

B. [7p] Consider a dataset (X,Y ), with x, y scalar, such that a linear change in x causes a percentage
change in y, suggesting a model of the form y ∝ exp

(
βTx

)
. Moreover it also appears that the Y data is

always non-negative. We are faced with two different modeling approaches:

• Approach A: Transform the initial data from (X,Y ) to (X, log(Y )). Then apply a standard linear
regression ( E[log y] = βTx)

• Approach B: Construct a GLM satisfying logE[y] = βTx.

What is problematic about approach A, and how is handled better by approach B? What could be an
appropriate member of the exponential family and link function for the second approach?
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3 (Bonus) Maximum Entropy Distributions (10 points)

In this problem we want to show that the Normal Distribution N (µ, σ2) is the maximum entropy
distribution on R with the side conditions E[x] = µ and V[x] = σ2 To show this we are faced with a
variational optimization problem: We want to find the function f which maximizes the entropy term

H(f) = −
∫ +∞

-∞
f(x) log f(x)dx (5)

satisfying the side conditions (using second moment instead of variance)

m0(f) =

∫ +∞

-∞
f(x)dx = 1, m1(f) =

∫ +∞

-∞
xf(x)dx = µ, m2(f) =

∫ +∞

-∞
x2f(x)dx = σ2 + µ2

To transform the constrained problem into an unconstrained one, consider the Lagrangian

L (f, λ) = H(f) + λ0(m0(f)− 1) + λ1(m1(f)− µ) + λ2(m2(f)− (µ2 + σ2)) (6)

A necessary condition for a local extrema is that the derivative of the Lagrangian is zero. Note that L
depends on a function! ( functional derivative). Equivalently, one can show that all partial derivatives
are zero. To proceed we will need the following theorem:

Theorem (Fundamental lemma of calculus of variations). If
∫ b
a
f(x)g(x)dx = 0 for all g, then f = 0

The idea now is to consider an arbitrary function g and compute the partial derivative

∂

∂ε
L (f + εg, λ)

∣∣∣∣
ε=0

= 0 (7)

Here ∂
∂ε L (f + εg, λ)

∣∣
ε=0

is the derivative of the function ε → L (f + εg, λ), evaluated at ε = 0. Note
that this function depends only on a scalar! For example, ∂

∂εH(f + εg) is equal to:

− ∂

∂ε

+∞∫
-∞

(f + εg) log(f + εg)dx = −
+∞∫

-∞

∂

∂ε
(f + εg) log(f + εg)dx = −

+∞∫
-∞

g + g log(f + εg)dx

hence ∂
∂ε H(f + εg)

∣∣
ε=0

=
∫ +∞
-∞ g(1 + log(f))dx

1. Show that ∂
∂ε L (f + εg, λ)

∣∣
ε=0

=

∫ +∞

-∞
(1 + log f(x) + λ0 + λ1x+ λ2x

2)g(x)dx

2. Apply the fundamental lemma. Conclude that f is of the form f(x) = cea(x−b)2 by substituting λ
for some appropriate (a, b, c)

3. Use the constraints and the formulas below to determine a, b, c. (The result should be the Normal
distribution!)∫ +∞

-∞
e−a(x−b)2dx =

√
π
a ,

∫ +∞

-∞
xe−a(x−b)2dx =

√
π
a b,

∫ +∞

-∞
x2e−a(x−b)2dx =

√
π
a (b2 +

1

2a
)


	
	
	

