Deadline: Th. Mai 2, 10:00 am Drop your printed or legible handwritten submissions into the boxes at Samelsonplatz. Alternatively upload a Jupyter notebook (.ipynb) or a .pdf file via LearnWeb.

1 Gaussian Processes (programming)

(15 points)

A. [5p] Implement a GP model take can perform regression for 1-dimensional input data, (preferably in PYTHON) using the squared exponential kernel (1).

$$
\begin{equation*}
\kappa\left(x, x^{\prime}\right)=\sigma_{f}^{2} e^{-\frac{1}{2 \ell^{2}}\left\|x-x^{\prime}\right\|^{2}} \tag{1}
\end{equation*}
$$

It should be a class with at least 4 functions:

$$
\begin{array}{ll}
\operatorname{init}\left(\sigma_{f}, \sigma_{y}, \ell\right): & \text { Initialize the model with the given parameters } \\
\operatorname{fit}(X, Y): & \text { fit the model to the training data } \\
& \text { (compute } \left.K_{y}=K+\sigma_{y}^{2} I \text { and } \alpha=K_{y}^{-1} Y\right) \\
\text { predict }(X): & \text { Compute the prediction }\left(\tilde{\mu}_{*}, \tilde{\Sigma}_{*}\right) \\
\text { evaluate }(X, Y): & \text { Compute the empirical loss } L=\|Y-\hat{Y}\|^{2}
\end{array}
$$

B. [5p] Perform a GP regression on the data-set tutorial2.dat provided via LearnWeb. Use the parameters $\sigma_{f}=1, \sigma_{y}=0.5, \ell=1$. Plot the prediction, including a 2σ uncertainty margin (cf. lecture slide plots) on the interval $[-3,+3]$.
C. [5p] Implement another method:

```
optimize( }\eta\mathrm{ , maxiter, tol): Computes the optimal parameters }\mp@subsup{\sigma}{f}{},\mp@subsup{\sigma}{y}{},
```

by maximizing the marginal likelihood via Gradient Ascent

Use this function to estimate the optimal parameters $\sigma_{f}, \sigma_{y}, \ell$ for the tutorial2. dat data set. Try to achieve a tolerance of $\left\|\nabla_{\theta} \mathcal{L}\right\|<$ tol $=10^{-4}$ for the gradient of the marginal likelihood. Compute the resulting empirical loss on the training set and plot the prediction. Compare against the ground truth $f(x)=2 \sin (2 x) e^{-\frac{1}{2} x}$

2 Gaussian Processes II

A. [3p] Consider a GP with the Gaussian Kernel

$$
\begin{equation*}
\kappa\left(x, x^{\prime}\right)=\sigma_{f}^{2} e^{-\frac{1}{2 \ell^{2}}\left\|x-x^{\prime}\right\|^{2}} \tag{2}
\end{equation*}
$$

Consider the dataset consisting of the single data-point $x=0, y=0$. Plot the posterior and a $95 \%(=2 \sigma)$ confidence interval (uncertainty margin) around it. By experimenting, find how the posterior is influenced by the parameters (σ_{f}, σ_{y} and l)

Provide a geometrical interpretation for the effect these parameters have on the uncertainty margin.
B. [2p] Calculate $\tilde{\Sigma}_{*}$ (the main diagonal is enough) in two cases: $x^{\prime}=x$ and for x^{\prime} "far away" from x (i.e. $\left|x-x^{\prime}\right| \rightarrow \infty$). Does it match the results from part A?

