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sonplatz, or upload a Jupyter notebook (.ipynb) or a .pdf file via LearnWeb.

1 GPs & Linear Regression (12 points)

(literature: Rasmussen Chapter 6, Murphy Chapter 15.4)
For a standard linear regression model the likelihood is given by

p(f∗ | x∗, (X,Y )) = N (Y | Xβ, σ2I)

With the optimal choice of parameters being β̂ = (XᵀX)−1XᵀY . A Bayesian linear regression (BLR)
model (Murphy 7.6) extends this by factoring in a prior belief about β

p(β) = N (µβ ,Σβ)

yielding the following posterior for the parameters

p(β|X, y) ∝ p(y|X,β)p(β)

= N (y | Xβ, σ2I)N (β | µβ ,Σβ) = N (β | µ′β ,Σ′β)

and subsequently the posterior predictive distribution

p(y∗ | X∗) = Eβ [p(y | β,X∗)] =

∫
p(y | X∗, β)p(β)dβ

=

∫
N (y | X∗β, σ2I)N (β | µ′β ,Σ′β)dβ

A. [4p] Show that mean and variance of p(β | X, y) are given by

µ′β = ( 1
σ2X

ᵀX + Σ−1β )−1( 1
σ2X

ᵀY + Σ−1β µβ)

Σ′β = ( 1
σ2X

ᵀX + Σ−1β )−1

Note that we have already encountered such a model before! Ridge regression can be interpreted as a
BLR model with µβ = 0,Σβ = λI.

B. [4p] Show that p(y∗ | X∗) = N (y | X∗µ′β , σ2I +X∗Σ
′
βX

ᵀ
∗ )

C. [4p] Show that the BLR is equivalent to a GP with a bi-linear kernel function

κ(x, x′) = xTΛx′

Hint: You will need the following formulae

Theorem 1. If p(x) = N (x | µx,Σx) and p(y | x) = N (y | Ax+ b,Σy), then

p(x | y) = N (x | µx|y,Σx|y) with
µx|y = Σx|y

[
AᵀΣ−1y (y − b) + Σ−1x µx

]
Σ−1x|y = Σ−1x +AᵀΣ−1y A

p(y) = N (y | Aµx + b,Σy +AΣxA
ᵀ)

(Murphy, 4.125 & 4.126)

Theorem 2. Matrix Inversion Lemma

(A + UBV)−1 = A−1 −A−1U
(
B−1 + VA−1U

)−1
VA−1

2 GP Classification (8 points)

A. [4p] Explain briefly how classification with GPs works. What are the main difficulties?

B. [4p] Explain briefly how the Laplace Approximation method works


	
	

