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Deadline: Fr. Mai 10 Drop your printed or legible handwritten submissions into the boxes at Samel-
sonplatz, or upload a Jupyter notebook (.ipynb) or a .pdf file via LearnWeb.

1 GPs & Linear Regression (12 points)

(literature: Rasmussen Chapter 6, Murphy Chapter 15.4)
For a standard linear regression model the likelihood is given by

p(f« ‘ ‘T*v(X7Y)) :N(Y | Xﬁ7021)

With the optimal choice of parameters being 8 = (XTX)"1XTY. A Bayesian linear regression (BLR)
model (Murphy 7.6) extends this by factoring in a prior belief about J

p(B) = N (s, Xp)

yielding the following posterior for the parameters

p(B1X,y) o< p(y|X, B)p(B)
:N(y | X/BaUQI)N(B | Mﬂvzﬂ) :N(ﬁ | H%’Z/ﬁ)

and subsequently the posterior predictive distribution
Py | ) = Balply | 5.X.)) = [ ply | X..9)p(5)d5
— [ N1 X5, DN | sy, Z5)d5

A. [4p] Show that mean and variance of p(8 | X,y) are given by
iy = (HXTX 4550 (L XTY + 57 0)
Sh = (2 XTX+351)7!
Note that we have already encountered such a model before! Ridge regression can be interpreted as a
BLR model with ug = 0,35 = Al
B. [4p| Show that p(y. | X.) = N(y | Xuply, 01 + X2, XT)

C. [4p] Show that the BLR is equivalent to a GP with a bi-linear kernel function

rk(z,2') = 2T Aa’

Hint: You will need the following formulae
Theorem 1. If p(z) = N (2 | pa, 2z) and p(y | ) = N(y | Ax +b,%,), then
p(l‘ | y) :N(‘T | |y s E:6|y) with

p(y) =N(y | Ape +0,%, + AD,AT)
(Murphy, 4.125 & 4.126)

Theorem 2. Matriz Inversion Lemma

(A+UBV) ' =A'—A"'UB'+VA'U) ' VA

2 GP Classification (8 points)

A. [4p] Explain briefly how classification with GPs works. What are the main difficulties?

B. |[4p] Explain briefly how the Laplace Approximation method works



	
	

