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Deadline: Fr. June 14, 14:00 Drop your printed or legible handwritten submissions into the boxes at
Samelsonplatz, or a .pdf file via LearnWeb.

1 Mixture of Experts (Theory) (8+2 points)

In this exercise, we want to fit a mixture of experts

p(y | x) =
∑
c

p(y | x, c)p(c | x) (1)

using Linear Regression models and softmax gating:

p(y | x, c) = N (y | βTc x, σ2) =
exp

(
− (y−βT

c x)
2

2σ2

)
√
2πσ2

p(c | x) = sc(x) =
exp
(
γTc x

)∑
c′ exp

(
γTc′x

)
We derive the necessary formulas to perform the EM-algorithm.
In the E-step, we need to compute the weights

wn,c = p(c | yn, xn) (2)

In the M -step we need to minimize the expected negative complete data log likelihood

L = − log ` = −
N∑
n=1

C∑
c=1

wn,c
(
log p(yn|xn, c) + log p(c|xn)

)
(3)

with respect to the parameters (β, γ, σ2) of our model.

A. [2p] Show that the weight update is given by

wn,c =
exp

(
γTc xn − 1

2σ2 (yn − βTc xn)2
)∑

c′ exp
(
γTc′xn −

1
2σ2 (yn − βTc′xn)2

) (4)

Hint: Bayes Theorem

B. [2p] Show that the optimal βc satisfies the normal equation

(XTWcX)βc = XTWcy (5)

where Wc = diag(wc), wc = (wn,c)n. I.e. the optimal choice of parameters for the c-th expert is precisely
given by finding the optimal parameters w.r.t. the weighted L2 loss induced by the gating mechanism.

C. [2p] Show that the optimal σ2 is given by

σ2 =
1

N

C∑
c=1

∥∥W 1
2
c (y −Xβc)

∥∥2
2

(6)

D. [2p] Show that the Gradient of L w.r.t. γc is given by

∇γcL = XT (wc − sc(X)) (7)

Hint: Use the Lemma ∂
∂γi

sj(x) = (δij − si(x))sj(x)x

E. (Bonus) [2p] Show that the Hessian of L w.r.t. γc is given by

∇2
γcL = −XTSX (8)

where S = diag(sc(X)� (1− sc(x))).
Hint: This formula should remind you of the Newton update for Logistic Regression.
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2 Mixtures of Experts (Applied) (8 points)

A. [4p] Implement the EM-algorithm using the formulas from part 1. Use Newton-steps to update the
γ parameters.

B. [2p] Fit a mixture of two linear regression experts to the dataset heights1.dat. Provide the learned
parameters of the experts and the gating function. Plot the weighted average of the expert models
ŷ(x) = E[p(y | x)] =

∑
c ŷc(x)sc(x)

C. [2p] The dataset heights2.dat contains age and median height of both male and female subjects.
Unfortunately the indicator variable is missing. Predict the median height of a (wo-)man at age 21
by fitting a mixture of 3 linear regression experts to the data and checking what the different experts
individually predict. Provide the learned parameters of the experts and the gating function.
Hints:

• Don’t forget the bias term.

• To avoid singular matrices, use L2-regularization, i.e. add λI to XTWcX and XTSX

• A lot of the involved formulas can be vectorized using Einstein Summation. For example all βc can
be computed simultaneously via

XWX = np.einsum(’ni, cn, nj -> cij’, X, W, X) # CxMxM tensor
XWy = np.einsum(’ni, cn, n -> ci’ , X, W, Y) # CxM tensor
Beta = solve(XWX+lam*np.eye(m), XWy) # CxM tensor

In the last line, we also made smart use of broadcasting: λI gets added to all slices of XWX across
the first dimension. (i.e. for each c)

• It is theoretically guaranteed that L decreases after each iteration. If if doesn’t then there is a bug
in your code!

• Your algorithm may end up converging to a sub-optimal local minimum. Tweak the initialization in
this case and try multiple restarts. If nothing works, initialize with an educated guess!

• If the Newton Method does not converge reduce the learn-rate. If it converges too slow one can
speed up by using the Armijo rule for step size selection.

3 Variable Dependence (6 points)

Given data (x, y)1:N generated from y = f(x, z) + ε with ε iid∼ N (0, σ), with features x ∈ Rn and z ∈ R.
Consider the partial dependence plot (pdp) w.r.t. z, i.e. the function g(z) = 1

N

∑N
i=1 f(xi, z).

A. [3p] Show that:

1. If f is independent of z, then g is constant

2. If f depends linearly on z, then g is linear

3. If f depends non-linearly on z, then g is not necessarily non-linear

B. [3p] On the converse, what can we conclude about f ’s dependence on z, if g is

1. constant

2. linear (but not constant)

3. non-linear

Note: All the above statements should be understood in an approximate sense, i.e. when say g is linear
we mean that it is approximately linear, up to some small error.

https://en.wikipedia.org/wiki/Einstein_notation
https://en.wikipedia.org/wiki/Wolfe_conditions

	
	
	

