Deadline: Fr. June 21 (online) or Mo. June 23, 10:00 AM (hand-in)

Drop your printed or legible handwritten submissions into the boxes at Samelsonplatz, or upload a .pdf file via LearnWeb.

Remark 1. As a complementary recourse, you can read the first 2 sections (p.1-9) of the original paper. Note that there are important differences in the notation compared to the lecture slides. (see remarks)

1 Least-Angle-Regression (theory)

A. [2p] Show that $\alpha \leq 1$ in every iteration of LARS.

Hint: Think about what happens to the correlation $c_j, j \in A_k$ as $\alpha \to 1$. How did we define the selected α ?

B. [4p] Show that if $\alpha_k = 1$, then $\hat{y}_{k+1}^{\text{LARS}} = \hat{y}_{A_k}^{\text{OLS}}$, where $\hat{y}_{A_k}^{\text{OLS}}$ is the solution of the (un-regularized) ordinary least squares regression problem on the dataset (X_{A_k}, y) , i.e. when using only the predictors which are in A_k

Remark. In particular, in the last iteration of LARS, by convention we will use the stepsize $\alpha = 1$, so that the final predictor is the OLS-estimator again.

C. [4p] Show that the descent direction vector $u_k = X_{A_k} d_k$ (or equivalently $X^{(t)} \hat{\gamma}$ using the notation from the lecture slides) has the property that $\langle X_i | u_k \rangle = \langle X_j | u_k \rangle$ for all $i, j \in A_k$.

Moreover, if the data-matrix is column-normalized, that is $||X_j|| = 1$ for all j, then u_k is even equiangular to all the feature vectors from the active set, i.e. $\angle(X_i, u_k) = \angle(X_j, u_k)$ for all $i, j \in A_k$

Remark 2. This is why the method is called least angle regression – if the vector wasn't equiangular, then at least one of the angles would be bigger.)

2 Least-Angle-Regression (practice)

A. [10p] Perform 3 iterations of LARS on dataset from table 1. Start with $\beta = 0$ and update using the steplength formula. In the last iteration, use $\alpha = 1$.

Table 1			
x_1	x_2	x_3	y
-1	-1	0	-1
0	1	2	0
1	-1	-2	3
2	2	1	3

(10 points)

(10 points)

2/2

Remark 3. In the slides, γ is used as the direction, we use u instead. In the paper, γ denotes the step size. We call it α instead. Use the following notation:

$$\begin{aligned} A_{k} &= A_{k-1} \cup \underset{j \in A_{k-1}^{c}}{\operatorname{argmax}} |c_{k-1}| & (\text{active set}) \\ A_{k}^{c} &= \{1, \dots, m\} \setminus A_{k} & (\text{complement of active set}) \\ \hat{y}_{k} &= X_{A_{k}} \beta_{A_{k}}^{(k)} & (\text{only take entries with index in active set}) \\ \hat{y}_{k+1}^{(k+1)} &= \beta_{A_{k}}^{(k)} + \alpha_{k} d_{k} & (\text{update selected entries}) \\ \hat{y}_{k+1} &= \hat{y}_{k} + \alpha_{k} u_{k} & (\text{residual}) \\ c &= X_{A_{k}}^{T} r_{k} & (\text{correlation terms}) \\ \hat{c} &= \max |c| \\ d_{k} &= (X_{A_{k}}^{\mathsf{T}} X_{A_{k}})^{-1} X_{A_{k}}^{T} r_{k} \\ u_{k} &= X_{A_{k}} d_{k} & \\ \alpha_{k} &= \min_{j \in A_{k}^{c}}^{+} \left\{ \frac{\hat{c} - c_{j}}{\hat{c} - X_{j}^{\mathsf{T}} u_{k}}, \frac{\hat{c} + c_{j}}{\hat{c} + X_{j}^{\mathsf{T}} u_{k}} \right\} \end{aligned}$$

Note that in the paper, u is re-scaled by a factor of $\frac{A_A}{\hat{C}}$, hence the last formula looks different. Crucially, αu is the same, whether or not one does the re-scaling.