Deadline: Fr. June 21 (online) or Mo. June 23, 10:00 AM (hand-in)

Drop your printed or legible handwritten submissions into the boxes at Samelsonplatz, or upload a .pdf file via LearnWeb.

Remark 1. As a complementary recourse,you can read the first 2 sections (p.1-9) of the original paper. Note that there are important differences in the notation compared to the lecture slides. (see remarks)

1 Least-Angle-Regression (theory)

A. $[2 \mathrm{p}]$ Show that $\alpha \leq 1$ in every iteration of LARS.

Hint: Think about what happens to the correlation $c_{j}, j \in A_{k}$ as $\alpha \rightarrow 1$. How did we define the selected α ?
B. $\quad[4 \mathrm{p}]$ Show that if $\alpha_{k}=1$, then $\hat{y}_{k+1}^{\mathrm{LARS}}=\hat{y}_{A_{k}}^{\mathrm{OLS}}$, where $\hat{y}_{A_{k}}^{\mathrm{OLS}}$ is the solution of the (un-regularized) ordinary least squares regression problem on the dataset $\left(X_{A_{k}}, y\right)$, i.e. when using only the predictors which are in A_{k}.
Remark. In particular, in the last iteration of LARS, by convention we will use the stepsize $\alpha=1$, so that the final predictor is the OLS-estimator again.
C. [4p] Show that the descent direction vector $u_{k}=X_{A_{k}} d_{k}$ (or equivalently $X^{(t)} \hat{\gamma}$ using the notation from the lecture slides) has the property that $\left\langle X_{i} \mid u_{k}\right\rangle=\left\langle X_{j} \mid u_{k}\right\rangle$ for all $i, j \in A_{k}$.

Moreover, if the data-matrix is column-normalized, that is $\left\|X_{j}\right\|=1$ for all j, then u_{k} is even equiangular to all the feature vectors from the active set, i.e. $\angle\left(X_{i}, u_{k}\right)=\angle\left(X_{j}, u_{k}\right)$ for all $i, j \in A_{k}$

Remark 2. This is why the method is called least angle regression - if the vector wasn't equiangular, then at least one of the angles would be bigger.)

2 Least-Angle-Regression (practice)

A. [10p] Perform 3 iterations of LARS on dataset from table 1. Start with $\beta=0$ and update using the steplength formula. In the last iteration, use $\alpha=1$.

Table 1

x_{1}	x_{2}	x_{3}	y
-1	-1	0	-1
0	1	2	0
1	-1	-2	3
2	2	1	3

Remark 3. In the slides, γ is used as the direction, we use u instead. In the paper, γ denotes the step size. We call it α instead. Use the following notation:

$$
\begin{array}{rlr}
A_{k} & =A_{k-1} \cup \underset{j \in A_{k-1}^{c}}{\operatorname{argmax}}\left|c_{k-1}\right| & \text { (active set) } \\
A_{k}^{c} & =\{1, \ldots, m\} \backslash A_{k} & \text { (complement of active set) } \\
\hat{y}_{k} & =X_{A_{k}} \beta_{A_{k}}^{(k)} & \text { (only take entries with index in active set) } \\
\beta_{A_{k}}^{(k+1)} & =\beta_{A_{k}}^{(k)}+\alpha_{k} d_{k} & \text { (update selected entries) } \\
\hat{y}_{k+1} & =\hat{y}_{k}+\alpha_{k} u_{k} & \\
r_{k} & =y-\hat{y}_{k} & \\
c & =X_{A_{k}}^{T} r_{k} & \text { (residual) } \\
\hat{c} & =\max |c| & \\
d_{k} & =\left(X_{A_{k}}^{\top} X_{A_{k}}\right)^{-1} X_{A_{k}}^{T} r_{k} & \\
u_{k} & =X_{A_{k}} d_{k} & \\
\alpha_{k} & =\min _{j \in A_{k}^{c}}+\left\{\frac{\hat{c}-c_{j}}{\hat{c}-X_{j}^{\top} u_{k}}, \frac{\hat{c}+c_{j}}{\hat{c}+X_{j}^{\top} u_{k}}\right\} &
\end{array}
$$

Note that in the paper, u is re-scaled by a factor of $\frac{A_{\mathcal{A}}}{\tilde{C}}$, hence the last formula looks different. Crucially, αu is the same, whether or not one does the re-scaling.

