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Machine Learning 2 1. The Prediction Problem / Supervised Learning

The Prediction Problem Formally

Let X3, Xo,..., Xy be random variables called predictors
(aka inputs, covariates, features),
X1,X>5,..., X be their domains.

X := (X1, Xz, ..., Xum) the vector of random predictor variables and
X=X xXyx---x Xp its domain.

Y be a random variable called target (or output, response),
Y be its domain.

D C X x ) be a (multi)set of instances of the unknown joint
distribution p(X, Y) of predictors and target called data.
D is often written as enumeration

D = {(x1,51), (x2,¥2), - - -, (xn; yn)}

Y = R: regression, ) a set of nominal values: classification.
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NS
The Prediction Problem Formally / Test Set Formulatioh‘z'

Let X' be any set (called predictor space),
Y be any set (called target space), e.g., and
p: X xY — R{ be a joint distribution / density.
Given
» asample DN C X x ) (called training set), drawn from p,
» a loss function £: )Y x Y — R that measures how bad it is to predict
value y if the true value is y,
compute a model
y:xXx =Y
s.t. for another sample D™t C X x ) (called test set) drawn from the
same distribution p, not available during training, the test error

N 1 .
e”(y; DteSt) = |Dtest| Z E(y’ y(X))
7y GDteSt

is minimal.
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Machine Learning 2 1. The Prediction Problem / Supervised Learning

_ : : K
The Prediction Problem Formally / Risk Formulation i
Let X be any set (called predictor space),

Y be any set (called target space), and

p: XXY— Rar be a joint distribution / density.
Given a sample Dt C X x Y (called training set), drawn from p,

a loss function £ : ) x Y — R that measures how bad it is to predict
value y if the true value is y,

compute a model

with minimal risk yix=Yy

risk(¥; p) ZZ/Xny(y,ﬁ)P(X,Y) d(x,y)

Explanation: risk(y; p) can be estimated by the empirical risk

. ~ es 1 ~
risk(9; D) = 1Dt Z Uy, 9(x))
(X,y)E'DtSSt
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Machine Learning 2 2. The Exponential Family

NN
Definition Exponential Family a

A parametric pdf p(x|@) belongs to the exponential family if it is of the
form

h(x . o
p(x|0)= ZEG)) o(m(0),0(x)) _ h(x)e<n(0),¢( ))—A(8) (1)

1 are called natural or canonical parameters

1(0) is a reparametrization

Z(0) = / h(x)e"®)®X) dx is called partition function
X

Al

0) = log Z(0) is called log partition or cumulant function
h(x) is a scaling factor called base measure

®(x) is called sufficient statistic
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NN
Subfamilies v

» dim(@) < dimn(0): curved exponential family.
(more sufficient statistics than parameters)

» 1(0) = 6: canonical form

pl(x | 6) h(x)e(®-*¢)-A4©)
» ®(x) = x: natural exponential family.

p(x | @) =h(x)eln(@)x—A®)
P> natural exponential family in canonical form:

plx | 6) =h(x)e(®~A®
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Examples: Bernoulli

X ={0,1}  Ber(x|p)=p (1 —p)
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Machine Learning 2 2. The Exponential Family

Examples: Bernoulli

X=1{0,1}  Ber(x| )= p (1 — )

e log(1)+(1—x) log(1—p)

¢(x)=<1fx)

10 = ogres) ) @

A(0) =0
A(n) =0
curved
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Machine Learning 2 2. The Exponential Family

Examples: Bernoulli

X ={0,1}

e log(1)+(1—x) log(1—p)

0=p
9(x) = ( L )

log 6
n(0) = ( Iog(olg— 0)
A6) =0
A(n) =0
curved

Ber(x | 1)

)

= (1 — p)
xlog e +Iog(1 )
0=np
P(x) = x
n(0) = logit(0) = log % (2)
0 = logistic(n) = +1
A(f) = — log(1 — 0)
A(n) = log(1 + €")
natural
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Machine Learning 2 2. The Exponential Family

Examples: Multinoulli / Categorical

L
X::{l 2, Ly={xe{0,1}' | x=1}, pen,
=1
Cat(x | p) : HMXZ — eXim xelog pe

:ezezl x¢ log pue+(1— 32571 xe) (1= pe)

L—1
Xp Iogi (1=32021 o)
—e -5 g — on(0) x=A(n(6))

d(x) =x1.1-1, 0= pa:0-1

0(0) = (Iog ”) 0(n) = ()
1- Zé’_:ll O =1, -1 ’ 1+ Zé’ 16" J

L-1
A(n) :=log(1 + Z e'lt)

(=1 xn
Note: A; = {u € [0,1]F | S, 1y = 1} simplex, softmax(x) := (Z,\,ei)nzl ,,,,, N

eXn
n=
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) ) . P2
Examples: Univariate Gaussian 4
X =R
)2
N(X | M70-2) ::%ei( 20‘5)
(2mo2?)2
1 X2 XU ‘u,z T
T et a2 = O H)-AMmO)
(2mo?)2

20>
2
m 1 1
A(n) ==~ - — 5 log(=212) — 3 log(2
(n) a2 og(—212) > og(2m)
1
h(x) == :
(2m0?)2
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Non-Examples

Uniform distribution:

Unif(x; a, b) = ﬁé(x € [2.b])
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Cumulants

2
= L) G =var(9(x), TA(r) = cou(6(x)
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Machine Learning 2 2. The Exponential Family

Likelihood and Sufficient Statistics

Data:
D :={xy,x2,...,xn}

Likelihood:

N
p(D|0)=]] h(x)e(®) T 0xn)=A(®))

n=1

N
N
— (H h(xn)> (e—A(n(e))) 107 (Znly ¢(xn))

n=1
N

(ﬁ h(Xn)> eNOTHDINAGON  4(D) 1= 3 p(xy)

n=1

n=1
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Machine Learning 2 2. The Exponential Family

B
Maximum Likelihood Estimator (MLE) i

log p(D | 0) = (Z log h(xn) > 1(8)" $(D) — NA(1(6))
for h=1,7n(0) = 0:
=N + 07 ¢(D) — NA(H)

N8P _ o) - NP2 _ (D) - NE(9(x)) L 0
~ E(¢p(x)) ;% Zqﬁ(x,,) (moment matching)
n=1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Machine Learning 2 2. The Exponential Family

Why the exponential family matters

» Many common distributions belong to it

» It is the only family of pdfs for which conjugate priors exist (later)

» All members of the exponential family are maximum entropy pdfs.

» given certain constraints, they are the pdfs. satisfying those
constraints which make "the least assumptions about the data”
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3. Generalized Linear Models (GLMs)
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Machine Learning 2 3. Generalized Linear Models (GLMs)

Parametrization

y0—A(6) 2
ply | 0,0%) i=e o2 V)
where o2 dispersion parameter,

6 natural parameter (a scalar!),

A(0) (log) partition function,

c(y,o?) normalization constant.
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Machine Learning 2 3. Generalized Linear Models (GLMs)

Model 8 5

g 7

w
\n- > Ui > 9
1 - 1 - 7

g /!
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Machine Learning 2 3. Generalized Linear Models (GLMs)

Model with canonical link (g = 1) i

WTX*A(WTX)
ply | xiw,0%) i=e 2 TeU?)

setting
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Machine Learning 2 3. Generalized Linear Models (GLMs)

Models

Distrib. mean =g~ ( ) link 0 = g(w)
N(yipo®) p=g 1(9)29 =g(p) =n
Bin(y; N,u) p=g 1(0) = glstlc 0 0= g(p)=logit(u)
Poi(yin) p=g *(0)=¢ = g(u) = logu
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Machine Learning 2 3. Generalized Linear Models (GLMs)

Expectation and Variance

p=Ely|xiw, 0% =A(w'x)

T 2

7% =Var(y | x; w,0%) =A"(w' x)o
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Machine Learning 2 3. Generalized Linear Models (GLMs)

Examples: Linear Regression

(y=n)
N(y: p,0?) :Z%e_ W, yeR
(2mo?)2
w(x) =w'x
2
y— W 1
log p(y | x, w,0%) = — (202) 3 log(270?)
_yp— 3

1,y?

0-2
T 1 T,\2 2
Cywix—3(w'x)* 1y 2
= o2 - 5(; + |Og(27TO' ))
92
~ A(f) =—
0) =2
E(y) == wTx
Var(y) =o?
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Machine Learning 2 3. Generalized Linear Models (GLMs)

Examples: Binomial Regression

Bin(y; N, ) ::< /}\/I )Wy(l—w)N_y, ye{0,1,...,N}

7(x) :=logistic(w x)

T N
Nlog(1 — |
—* og( 7r)+og(y)

A(0) =N log(1 + €%)
E(y) =p = N = Nlogistic(w " x)
Var(y) =Nn(1 — 7) = Nlogistic(w " x)(1 — logistic(w " x))

log p(y | x, w) =y log 1

= WTX

where 0 =log 1 T
o? =1
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Machine Learning 2 3. Generalized Linear Models (GLMs)

Examples: Poisson Regression

Poi(y; 1) :=e — y€{0,1,2,...}

~ A9) =€’
WTX
E(y)=n=e
Var(y) —e"'x
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4. Learning Algorithms

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
22 /26



Machine Learning 2 4. Learning Algorithms

Gradient Descent
model:

y WTX7A(WTX)

ply | xiw,0%) i=e o2 TeU)
Wlth 9 :WTX
negative log likelihood:
N
wlx, — AwTx 1
i) Z R o2 ) T2 D la(w xn)
n=1 oy

Ol, 0L, 00, Oy Ony
OWm 00, Opin ONp OWnm,

_( _ )8011 8/1/”X
=\Yn — HUn aﬂn 877n n,m

and thus with canonical link:
N

Vo l(w Z
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Machine Learning 2 4. Learning Algorithms

Newton

N

VWK(W) = — % Z()/n - ,Un)Xn

n=1
8Mn T 1 T
2y o2 Z - ?X X

where S —dlag(g'gl ’(892“,\\,/)
Use within IRLS:
o) -— X, (1)

) =g~ (00)
W(t+1) I:(XTS(t)X)_IXTS(t)Z(t)
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Machine Learning 2 4. Learning Algorithms

Stochastic Gradient Descent

N
1
Vil(w) = — - § (Yn — fn)Xn
n=1

g

Use a smaller subset of data to estimate the (stochastic) gradient:

1
Vwﬁ(w)%—; (Yn— ptn)xn, SCH{1,...,N}
nesS

Extreme case: use only one sample at a time (online):
1
VWE(W)%_?()/H_MH)Xm nG{l,...,N}

Beware: V,,/(w) = 0 then is not a useful stopping criterion!
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Machine Learning 2 4. Learning Algorithms

L2 Regularization

For all models, do not forget to add L2 regularization.

Straight-forward to add to all learning algorithms discussed

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 4. Learning Algorithms

Summary

» Generalized linear models allow to model targets with
> specific domains: R, R{, {0,1}, {1,..., K}, Ny etc.
» specific parametrized shapes of pdfs/pmfs.

» The model is composed of
1. a linear combination of the predictors and
2. a scalar transform to the domain of the target

(mean function, inverse link function)
» Many well-known models are special cases of GLMs:

> linear regression (= GLM with normally distributed target)
» logistic regression (= GLM with binomially distributed target)
> Poisson regression (= GLM with Poisson distributed target)

» Generic simple learning algorithms exist for GLMs independent of the
target distribution.

» GLMs have a principled probabilistic interpretation and provide
posterior distributions (uncertainty/risk).
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Further Readings

» See also [Murl2, chapter 9].
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