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Machine Learning 2

Syllabus
A. Advanced Supervised Learning

Fri. 13.4. (1) A.1 Generalized Linear Models
Fri. 20.4. (2) A.2 Gaussian Processes
Fri. 27.4. (3) A.2b Gaussian Processes (ctd.)
Fri. 4.5. (4) A.3 Advanced Support Vector Machines

B. Ensembles
Fri. 11.5. (5) B.1 Stacking
Fri. 18.5. (6) B.2 Boosting
Fri. 25.5. — — Pentecoste Break —
Fri. 1.6. (7) B.3 Mixtures of Experts

C. Sparse Models
Fri. 8.6. (8) C.1 Homotopy and Least Angle Regression
Fri. 15.6. (9) C.2 Proximal Gradients
Fri. 22.6. (10) C.3 Laplace Priors
Fri. 29.6. (11) C.4 Automatic Relevance Determination

D. Complex Predictors
Fri. 6.7. (12) D.1 Latent Dirichlet Allocation (LDA)
Fri. 13.7. (13) Q & A
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Machine Learning 2 1. The Prediction Problem / Supervised Learning

The Prediction Problem Formally
Let X1,X2, . . . ,XM be random variables called predictors

(aka inputs, covariates, features),
X 1,X 2, . . . ,XM be their domains.

X := (X1,X2, . . . ,XM) the vector of random predictor variables and
X := X 1×X 2× · · · × XM its domain.

Y be a random variable called target (or output, response),
Y be its domain.

D ⊆ X ×Y be a (multi)set of instances of the unknown joint
distribution p(X ,Y ) of predictors and target called data.
D is often written as enumeration

D = {(x1, y1), (x2, y2), . . . , (xN , yN)}

Y = R: regression, Y a set of nominal values: classification.
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Machine Learning 2 1. The Prediction Problem / Supervised Learning

The Prediction Problem Formally / Test Set Formulation
Let X be any set (called predictor space),
Y be any set (called target space), e.g., and
p : X ×Y → R+

0 be a joint distribution / density.
Given

I a sample Dtrain ⊆ X ×Y (called training set), drawn from p,

I a loss function ` : Y ×Y → R that measures how bad it is to predict
value ŷ if the true value is y ,

compute a model
ŷ : X → Y

s.t. for another sample Dtest ⊆ X ×Y (called test set) drawn from the
same distribution p, not available during training, the test error

err(ŷ ;Dtest) :=
1

|Dtest|
∑

(x ,y)∈Dtest

`(y , ŷ(x))

is minimal.
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Machine Learning 2 1. The Prediction Problem / Supervised Learning

The Prediction Problem Formally / Risk Formulation
Let X be any set (called predictor space),
Y be any set (called target space), and
p : X ×Y → R+

0 be a joint distribution / density.

Given a sample Dtrain ⊆ X ×Y (called training set), drawn from p,
a loss function ` : Y ×Y → R that measures how bad it is to predict
value ŷ if the true value is y ,

compute a model

ŷ :X → Y
with minimal risk

risk(ŷ ; p) :=

∫
X ×Y

`(y , ŷ) p(x , y) d(x , y)

Explanation: risk(ŷ ; p) can be estimated by the empirical risk

risk(ŷ ;Dtest) :=
1

|Dtest|
∑

(x ,y)∈Dtest

`(y , ŷ(x))
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Machine Learning 2 2. The Exponential Family

Definition Exponential Family

A parametric pdf p(x|θ) belongs to the exponential family if it is of the
form

p(x | θ) =
h(x)

Z (θ)
e〈η(θ),Φ(x)〉 = h(x)e〈η(θ),Φ(x)〉−A(θ) (1)

I η are called natural or canonical parameters

I η(θ) is a reparametrization

I Z (θ) =

∫
X
h(x)eη(θ)·Φ(x) dx is called partition function

I A(θ) = logZ (θ) is called log partition or cumulant function

I h(x) is a scaling factor called base measure

I Φ(x) is called sufficient statistic
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Machine Learning 2 2. The Exponential Family

Subfamilies

I dim(θ) < dimη(θ): curved exponential family.
(more sufficient statistics than parameters)

I η(θ) = θ: canonical form

p(x | θ) =h(x)e〈θ,Φ(x)〉−A(θ)

I Φ(x) = x: natural exponential family.

p(x | θ) =h(x)e〈η(θ),x〉−A(θ)

I natural exponential family in canonical form:

p(x | θ) =h(x)e〈θ,x〉−A(θ)
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Machine Learning 2 2. The Exponential Family

Examples: Bernoulli

X = {0, 1} Ber(x | µ) = µx(1− µ)1−x

ex log(µ)+(1−x) log(1−µ)

ex log µ
1−µ+log(1−µ)

θ = µ

θ = µ

φ(x) =

(
x

1− x

)

φ(x) = x

η(θ) =

(
log θ

log(1− θ)

)

η(θ) = logit(θ) = log θ
1−θ

θ = logistic(η) = 1
1+e−η

A(θ) = 0

A(θ) = − log(1− θ)

A(η) = 0

A(η) = log(1 + eη)

curved

natural

(2)
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Machine Learning 2 2. The Exponential Family

Examples: Multinoulli / Categorical

X :={1, 2, . . . , L} ≡ {x ∈ {0, 1}L |
L∑

l=1

xl = 1}, µ ∈ ∆L

Cat(x | µ) :=
L∏
`=1

µx`` = e
∑L
`=1 x` logµ`

=e
∑L−1
`=1 x` log µ`+(1−

∑L−1
`=1 x`)(1−

∑L−1
`=1 µ`)

=e

∑L−1
`=1 x` log

µ`

1−
∑L−1
`′=1

µ`′
+(1−

∑L−1
`=1 µ`)

= eη(θ)T x−A(η(θ))

φ(x) :=x1:L−1, θ = µ1:L−1

η(θ) :=

(
log

θ`

1−∑L−1
`′=1 θ`′

)
`=1,...,L−1

, θ(η) =

(
eη`

1 +
∑L−1

`′=1 e
η`′

)
`=1,...,L−1

A(η) := log(1 +
L−1∑
`=1

eη`)
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Machine Learning 2 2. The Exponential Family

Examples: Univariate Gaussian

X :=R

N (x | µ, σ2) :=
1

(2πσ2)
1
2

e−
(x−µ)2

2σ2

=
1

(2πσ2)
1
2

e−
x2

2σ2 + xµ

σ2−
µ2

2σ2 = eη(θ)Tφ(x)−A(η(θ))

φ(x) :=

(
x
x2

)
, θ =

(
µ
σ2

)
η(θ) :=

(
θ1/θ2

− 1
2θ2

)
A(η) :=− η2

1

4η2
− 1

2
log(−2η2)− 1

2
log(2π)

h(x) :=
1

(2πσ2)
1
2
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Machine Learning 2 2. The Exponential Family

Non-Examples

Uniform distribution:

Unif(x ; a, b) :=
1

b − a
δ(x ∈ [a, b])

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

9 / 26



Machine Learning 2 2. The Exponential Family

Cumulants

∂A

∂η
= E (φ(x)),

∂2A

∂2η
= var(φ(x)), ∇2A(η) = cov(φ(x))
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Machine Learning 2 2. The Exponential Family

Likelihood and Sufficient Statistics

Data:

D := {x1, x2, . . . , xN}

Likelihood:

p(D | θ) =
N∏

n=1

h(xn)eη(θ)Tφ(xn)−A(η(θ))

=

(
N∏

n=1

h(xn)

)(
e−A(η(θ))

)N
eη(θ)T (

∑N
n=1 φ(xn))

=

(
N∏

n=1

h(xn)

)
eη(θ)Tφ(D)−NA(η(θ)), φ(D) :=

N∑
n=1

φ(xn)
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Machine Learning 2 2. The Exponential Family

Maximum Likelihood Estimator (MLE)

log p(D | θ) =

(
N∑

n=1

log h(xn)

)
+ η(θ)Tφ(D)− NA(η(θ))

for h ≡ 1, η(θ) = θ:

=N + θTφ(D)− NA(θ)

∂ log p

∂θ
=φ(D)− N

∂A(θ)

∂θ
= φ(D)− NE (φ(x))

!
= 0

 E (φ(x))
!

=
1

N

N∑
n=1

φ(xn) (moment matching)

Example: Bernoulli

θ̂ = µ :=
1

N

N∑
n=1

xn
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Machine Learning 2 2. The Exponential Family

Why the exponential family matters

I Many common distributions belong to it

I It is the only family of pdfs for which conjugate priors exist (later)

I All members of the exponential family are maximum entropy pdfs.

I given certain constraints, they are the pdfs. satisfying those
constraints which make ”the least assumptions about the data”
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Machine Learning 2 3. Generalized Linear Models (GLMs)
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Machine Learning 2 3. Generalized Linear Models (GLMs)

Parametrization

p(y | θ, σ2) :=e
yθ−A(θ)

σ2 +c(y ,σ2)

where σ2 dispersion parameter,
θ natural parameter (a scalar!),
A(θ) (log) partition function,
c(y , σ2) normalization constant.
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Machine Learning 2 3. Generalized Linear Models (GLMs)

Model

xi

w

ηi µi θi

g−1

g

Ψ

Ψ−1
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Machine Learning 2 3. Generalized Linear Models (GLMs)

Model with canonical link (g = ψ)

p(y | x ;w , σ2) :=e
y wT x−A(wT x)

σ2 +c(y ,σ2)

setting

θ = wT x

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

16 / 26



Machine Learning 2 3. Generalized Linear Models (GLMs)

Models

Distrib. mean µ = g−1(θ) link θ = g(µ)

N (y ;µ, σ2) µ = g−1(θ) = θ θ = g(µ) = µ
Bin(y ;N, µ) µ = g−1(θ) = logistic θ θ = g(µ) = logit(µ)
Poi(y ;µ) µ = g−1(θ) = eθ θ = g(µ) = logµ
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Machine Learning 2 3. Generalized Linear Models (GLMs)

Expectation and Variance

µ = E (y | x ;w , σ2) =A′(wT x)

τ2 = Var(y | x ;w , σ2) =A′′(wT x)σ2
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Machine Learning 2 3. Generalized Linear Models (GLMs)

Examples: Linear Regression

N (y ;µ, σ2) :=
1

(2πσ2)
1
2

e−
(y−µ)2

2σ2 , y ∈ R

µ(x) :=wT x

log p(y | x ,w , σ2) =− (y − µ)2

2σ2
− 1

2
log(2πσ2)

=
yµ− 1

2µ
2

σ2
− 1

2
(
y2

σ2
+ log(2πσ2))

=
y wT x − 1

2 (wT x)2

σ2
− 1

2
(
y2

σ2
+ log(2πσ2))

 A(θ) =
θ2

2

E (y) =µ = wT x

Var(y) =σ2
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Machine Learning 2 3. Generalized Linear Models (GLMs)

Examples: Binomial Regression

Bin(y ;N, π) :=

(
N
y

)
πy (1− π)N−y , y ∈ {0, 1, . . . ,N}

π(x) :=logistic(wT x)

log p(y | x ,w) =y log
π

1− π + N log(1− π) + log

(
N
y

)
 A(θ) =N log(1 + eθ)

E (y) =µ = Nπ = N logistic(wT x)

Var(y) =Nπ(1− π) = N logistic(wT x)(1− logistic(wT x))

where θ = log
π

1− π = wT x

σ2 =1
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Machine Learning 2 3. Generalized Linear Models (GLMs)

Examples: Poisson Regression

Poi(y ;µ) :=e−µ
µy

y !
, y ∈ {0, 1, 2, . . .}

µ(x) :=ew
T x

log p(y | x ,w) =y logµ− µ− log y !

 A(θ) =eθ

E (y) =µ = ew
T x

Var(y) =ew
T x

where θ = logµ = wT x

σ2 =1
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Machine Learning 2 4. Learning Algorithms
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Machine Learning 2 4. Learning Algorithms

Gradient Descent
model:

p(y | x ;w , σ2) :=e
y wT x−A(wT x)

σ2 +c(y ,σ2)

with θ =wT x

negative log likelihood:

`(w ; x , y) =−
N∑

n=1

yn w
T xn − A(wT xn)

σ2
=: − 1

σ2

N∑
n=1

`n(wT xn)

∂`n
∂wm

=
∂`n
∂θn

∂θn
∂µn

∂µn
∂ηn

∂ηn
∂wm

=(yn − µn)
∂θn
∂µn

∂µn
∂ηn

xn,m

and thus with canonical link:

∇w `(w) =− 1

σ2

N∑
n=1

(yn − µn)xn
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Machine Learning 2 4. Learning Algorithms

Newton

∇w `(w) =− 1

σ2

N∑
n=1

(yn − µn)xn

∂2`

∂2w
=

1

σ2

N∑
n=1

∂µn
∂θn

xnx
T
n =

1

σ2
XTSX

where S :=diag(
∂µ1

∂θ1
, . . . ,

∂µN
∂θN

)

Use within IRLS:

θ(t) :=Xw (t)

µ(t) :=g−1(θ(t))

z(t) :=θ(t) + (S (t))−1(y − µ(t))

w (t+1) :=(XTS (t)X )−1XTS (t)z(t)
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Machine Learning 2 4. Learning Algorithms

Stochastic Gradient Descent

∇w `(w) =− 1

σ2

N∑
n=1

(yn − µn)xn

Use a smaller subset of data to estimate the (stochastic) gradient:

∇w `(w) ≈− 1

σ2

∑
n∈S

(yn − µn)xn, S ⊆ {1, . . . ,N}

Extreme case: use only one sample at a time (online):

∇w `(w) ≈− 1

σ2
(yn − µn)xn, n ∈ {1, . . . ,N}

Beware: ∇w `(w) ≈ 0 then is not a useful stopping criterion!
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Machine Learning 2 4. Learning Algorithms

L2 Regularization

For all models, do not forget to add L2 regularization.

Straight-forward to add to all learning algorithms discussed.
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Machine Learning 2 4. Learning Algorithms

Summary

I Generalized linear models allow to model targets with
I specific domains: R, R+

0 , {0, 1}, {1, . . . ,K}, N0 etc.
I specific parametrized shapes of pdfs/pmfs.

I The model is composed of

1. a linear combination of the predictors and
2. a scalar transform to the domain of the target

(mean function, inverse link function)

I Many well-known models are special cases of GLMs:
I linear regression (= GLM with normally distributed target)
I logistic regression (= GLM with binomially distributed target)
I Poisson regression (= GLM with Poisson distributed target)

I Generic simple learning algorithms exist for GLMs independent of the
target distribution.

I GLMs have a principled probabilistic interpretation and provide
posterior distributions (uncertainty/risk).
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Machine Learning 2

Further Readings

I See also [Mur12, chapter 9].
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