Machine Learning 2
 2. Gaussian Process Models (GPs)

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science
University of Hildesheim, Germany

Syllabus

A. Advanced Supervised Learning

Fri. 12.4. (1) A. 1 Generalized Linear Models
Fri. 26.4. (2) A. 2 Gaussian Processes
Fri. 3.5. (3) A.2b Gaussian Processes (ctd.)
Fri. 10.5. (4) A. 3 Advanced Support Vector Machines
B. Ensembles

Fri. 17.5. (5) B. 1 Stacking
Fri. 24.5. (6) B. 2 Boosting
Fri. 31.5. (7) B. 3 Mixtures of Experts
C. Sparse Models

Fri. 7.6. (8) C. 1 Homotopy and Least Angle Regression
Fri. 14.6. - - Pentecoste Break -
Fri. 21.6. (9) C. 2 Proximal Gradients
Fri. 28.6. (10) C. 3 Laplace Priors
Fri. 29.6. (11) C. 4 Automatic Relevance Determination
D. Complex Predictors

Fri. 6.7. (12) D. 1 Latent Dirichlet Allocation (LDA)
Fri. 12.7. (13) Q \& A

Outline

1. GPs for Regression

2. GPs for Classification

Outline

1. GPs for Regression

2. GPs for Classification

Gaussian Process Model

Gaussian Processes describe

- the vector $y:=\left(y_{1}, \ldots, y_{N}\right)^{T}$ of all targets
- as a sample from a normal distribution
- where targets of different instances are correlated by a kernel Σ :
- and thus depend on the matrix X of all predictors:

$$
y \mid X \sim \mathcal{N}(y \mid \mu(X), \Sigma(X))
$$

with

$$
\begin{aligned}
\mu(X)_{n} & :=m\left(x_{n}\right) \\
\Sigma(X)_{n, m} & :=k\left(x_{n}, x_{m}\right), \quad n, m \in\{1, \ldots, N\}
\end{aligned}
$$

with a kernel function k and mean function m (often $m=0$).

Kernels

The kernel k measures how much targets y, y^{\prime} correlate given their predictors x, x^{\prime}.

- $k\left(x, x^{\prime}\right)$ is larger the more similar x, x^{\prime} are
- esp. $k(x, x) \geq k\left(x, x^{\prime}\right) \forall x, x^{\prime}$

Example: squared exponential kernel / Gaussian kernel

$$
k\left(x, x^{\prime}\right):=\sigma_{f}^{2} e^{-\frac{1}{2 \ell^{2}}\left\|x-x^{\prime}\right\|^{2}}
$$

with kernel (hyper)parameters
ℓ horizontal length scale (x)
σ_{f}^{2} vertical variation (y)

GPs as Prior on Functions

identity kernel

squared exponential kernel

GPs as Prior on Functions

identity kernel

squared exponential kernel

Conditional Distributions of Multivariate Normals

Let y_{A}, y_{B} be jointly Gaussian

$$
y:=\binom{y_{A}}{y_{B}} \sim \mathcal{N}\left(\binom{y_{A}}{y_{B}} \left\lvert\,\binom{\mu_{A}}{\mu_{B}}\right.,\left(\begin{array}{ll}
\Sigma_{A A} & \Sigma_{A B} \\
\Sigma_{B A} & \Sigma_{B B}
\end{array}\right)\right)
$$

then the conditional distribution is

$$
p\left(y_{B} \mid y_{A}\right)=\mathcal{N}\left(y_{B} \mid \mu_{B \mid A}, \Sigma_{B \mid A}\right)
$$

with

$$
\begin{aligned}
\mu_{B \mid A} & :=\mu_{B}+\Sigma_{B A} \Sigma_{A A}^{-1}\left(y_{A}-\mu_{A}\right) \\
\Sigma_{B \mid A} & :=\Sigma_{B B}-\Sigma_{B A} \Sigma_{A A}^{-1} \Sigma_{A B}
\end{aligned}
$$

Predictions w/o Noise

Let y, X be the training data, X_{*} be the test data and
y_{*} be the test targets to predict.

$$
\left.\binom{y}{y_{*}} \right\rvert\, X, X_{*} \sim \mathcal{N}\left(\binom{y}{y_{*}} \left\lvert\,\binom{\mu}{\mu_{*}}\right.,\left(\begin{array}{cc}
\Sigma & \Sigma_{*} \\
\Sigma_{*}^{T} & \Sigma_{* *}
\end{array}\right)\right)
$$

with

$$
\begin{aligned}
& \mu:=m(X), \quad \mu_{*}:=m\left(X_{*}\right) \\
& \Sigma:=k(X, X), \quad \Sigma_{*}:=k\left(X, X_{*}\right), \quad \Sigma_{* *}:=k\left(X_{*}, X_{*}\right)
\end{aligned}
$$

Then

$$
\begin{aligned}
& p\left(y_{*} \mid y\right)=\mathcal{N}\left(y_{*} \mid \tilde{\mu}_{*}, \tilde{\Sigma}_{*}\right) \\
& \tilde{\mu}_{*}:=\mu_{*}+\Sigma_{*}^{T} \Sigma^{-1}(y-\mu) \\
& \tilde{\Sigma}_{*}:=\Sigma_{* *}-\Sigma_{*}^{T} \Sigma^{-1} \Sigma_{*}
\end{aligned}
$$

Example w/o Noise

Without noise the data is interpolated.
[Mur12, fig. 15.2]

Predictions with Noise

No noise:

$$
\Sigma:=K
$$

With noise:

$$
\Sigma:=K_{y}=K+\sigma_{y}^{2} I
$$

Then as before

$$
p\left(y_{*} \mid y\right)=\mathcal{N}\left(y_{*} \mid \tilde{\mu}_{*}, \tilde{\Sigma}_{*}\right)
$$

now with

$$
\begin{aligned}
& \tilde{\mu}_{*}:=\mu_{*}+K_{*}^{T} K_{y}^{-1}(y-\mu) \\
& \tilde{\Sigma}_{*}:=K_{* *}+\sigma_{y}^{2} I-K_{*}^{T} K_{y}^{-1} K_{*}
\end{aligned}
$$

where

$$
K:=k(X, X), \quad K_{*}:=k\left(X, X_{*}\right), \quad K_{* *}:=k\left(X_{*}, X_{*}\right)
$$

Predictions with Noise, Zero Means

$$
p\left(y_{*} \mid y\right)=\mathcal{N}\left(y_{*} \mid \tilde{\mu}_{*}, \tilde{\Sigma}_{*}\right)
$$

with

$$
\begin{aligned}
& \tilde{\mu}_{*}:=\mu_{*}+K_{*}^{\top} K_{y}^{-1}(y-\mu) \\
& \tilde{\Sigma}_{*}:=K_{* *}+\sigma_{y}^{2} /-K_{*}^{\top} K_{y}^{-1} K_{*}
\end{aligned}
$$

With $m=0$:

$$
p\left(y_{*} \mid y\right)=\mathcal{N}\left(y_{*} \mid \tilde{\mu}_{*}, \tilde{\Sigma}_{*}\right)
$$

with

$$
\begin{aligned}
& \tilde{\mu}_{*}:=K_{*}^{\top} K_{y}^{-1} y \\
& \tilde{\Sigma}_{*}:=K_{* *}+\sigma_{y}^{2} I-K_{*}^{\top} K_{y}^{-1} K_{*}
\end{aligned}
$$

Prediction for a single instance

$$
p\left(y_{*} \mid y\right)=\mathcal{N}\left(y_{*} \mid \tilde{\mu}_{*}, \tilde{\Sigma}_{*}\right)
$$

with

$$
\begin{aligned}
\tilde{\mu}_{*} & :=K_{*}^{\top} K_{y}^{-1} y \\
\tilde{\Sigma}_{*} & :=K_{* *}+\sigma_{y}^{2} I-K_{*}^{T} K_{y}^{-1} K_{*}
\end{aligned}
$$

Prediction \hat{y} for a single instance x :

$$
\hat{y}(x):=k_{*}^{T} K_{y}^{-1} y=\sum_{n=1}^{N} \alpha_{n} k\left(x_{n}, x\right), \quad \alpha:=K_{y}^{-1} y
$$

with

$$
k_{*}:=k(X, x)
$$

But GPs can provide a joint inference for multiple instances.

Example with Noise

$\left(\ell, \sigma_{f}, \sigma_{y}\right)=(0.3,0.1 ?, 0.00005)$
[Mur12, fig. 15.3]

Example with Noise

$$
\left(\ell, \sigma_{f}, \sigma_{y}\right)=(1,1,0.1)
$$

$$
\left(\ell, \sigma_{f}, \sigma_{y}\right)=(3,1.16,0.89)
$$

[Mur12, fig. 15.3]

Estimating Kernel Parameters

Either treating them as hyperparameters (grid search, random search) or maximize the marginal likelihood (empirical Bayes; grad. desc.).

Model: $p(y \mid X, \theta)=\mathcal{N}\left(y \mid 0, K_{y}\right)$ with $\theta=\left(\ell, \sigma_{f}^{2}, \sigma_{y}^{2}\right)$
Negative log-likelihood:

$$
\begin{equation*}
L(\theta)=-\log p(y \mid X, \theta)=\frac{1}{2} y^{T} K_{y}^{-1} y+\frac{1}{2} \log \left|K_{y}\right|+\frac{N}{2} \log (2 \pi) \tag{1}
\end{equation*}
$$

Gradients: $\left(\right.$ via $\partial\left(X^{-1}\right)=X^{-1}(\partial X) X^{-1}$ and $\left.\partial \operatorname{det} X=\frac{1}{\operatorname{det} X} \operatorname{tr}\left(\left(X^{-1}\right)^{T} \partial X\right)\right)$

$$
\begin{aligned}
\frac{\partial L}{\partial \theta_{j}} & =-\frac{1}{2} y^{T} K_{y}^{-1} \frac{\partial K_{y}}{\partial \theta_{j}} K_{y}^{-1} y+\frac{1}{2} \operatorname{tr}\left(K_{y}^{-1} \frac{\partial K_{y}}{\partial \theta_{j}}\right) \\
& =-\frac{1}{2} \operatorname{tr}\left(\left(\alpha \alpha^{T}-K_{y}^{-1}\right) \frac{\partial K_{y}}{\partial \theta_{j}}\right)
\end{aligned}
$$

with $\alpha=K_{y}^{-1} y$

Cholesky decompositon

How to solve $A x=b$?
Matrix inversion: $x=A^{-1} b$ is problematic because

- Numerically unstable
- A^{-1} is dense, even if A is sparse

Better: LU-decomposition

$$
A x=b \xrightarrow{A=L U} \begin{aligned}
& L z=b \\
& U x=z
\end{aligned}
$$

- L and U lower/upper triangular
- if A symmetric pos.-definite, then (L, U) can be chosen s.t. $U=L^{T}$ (Cholesky-decomposition)

Local Minima for Kernel Parameters

- top: $\left(\ell, \sigma_{y}\right) \approx(10,0.8)$
- left: $\left(\ell, \sigma_{y}\right) \approx(1,0.1)$
- in both cases $\sigma_{f}=1$
(fixed)
[Mur12, fig. 15.5]

Semi-parametric GPs

$$
\begin{aligned}
f(x) & =\beta^{\top} \phi(x)+r(x) \\
r(X) & \sim \operatorname{GP}(r \mid 0, k(X, X))
\end{aligned}
$$

Assuming

$$
\beta \sim \mathcal{N}(\beta \mid b, B), \quad \text { e.g., } b:=0, B:=\sigma_{\beta}^{2} l
$$

yields just another GP

$$
f(X) \sim \operatorname{GP}\left(\phi(X)^{T} b, k(X, X)+\phi(X) B \phi(X)^{T}\right)
$$

where

$$
\phi(X):=\left(\phi\left(x_{1}\right), \ldots, \phi\left(x_{N}\right)\right)^{T}
$$

Outline

1. GPs for Regression

2. GPs for Classification

Model

$$
\begin{aligned}
p(y \mid x) & :=s(y f(x)), \quad y \in\{+1,-1\}, s=\text { logistic } \\
f & \sim \operatorname{GP}(0, K(X, X))
\end{aligned}
$$

- f : latent score

Inference

Two-step inference (given training data-set $\mathcal{D}=(X, y)$)

1. infer latent score variable:

$$
p\left(f_{*} \mid X, y, x_{*}\right)=\int p\left(f_{*} \mid X, x_{*}, f\right) p(f \mid X, y) d f
$$

with $p(f \mid X, y)=p(y \mid f) p(f \mid X) / p(y \mid X)$ (Bayes thm.)
2. infer target:

$$
\pi_{*}:=p\left(y_{*}=+1 \mid X, y, x_{*}\right)=\int s\left(f_{*}\right) p\left(f_{*} \mid X, y, x_{*}\right) d f_{*}
$$

Non-Gaussians are analytically intractable.
\rightsquigarrow Gaussian approximation (Laplace approximation)
\rightsquigarrow Expectation Propagation (EP)
\rightsquigarrow further methods

Laplace Approximation

If h has a unique global maximum in x_{0} then

$$
\int_{-\infty}^{+\infty} e^{h(x)} d x \approx \sqrt{\frac{2 \pi}{-h^{\prime \prime}\left(x_{0}\right)}} e^{h\left(x_{0}\right)}
$$

Proof: Via Taylor $h(x) \approx h\left(x_{0}\right)+\frac{1}{2} h^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}$
Apply on the marginal likelihood

$$
\begin{gathered}
p(y \mid X)=\int p(y \mid f) p(f \mid x) d f=\int e^{\ell(f)} \approx e^{\ell(\hat{f})} \frac{\sqrt{2 \pi}^{n}}{\sqrt{\left|\nabla^{2} \ell(\hat{f})\right|}} \\
\Longrightarrow \log p(y \mid X) \approx \log p(y \mid \hat{f})+\log p(\hat{f} \mid x)-\frac{1}{2} \log \left|\nabla^{2} \ell(\hat{f})\right|+\frac{n}{2} \log (2 \pi)
\end{gathered}
$$

How to find \hat{f} and $\nabla^{2} \ell(\hat{f})$?

Posterior

$$
\begin{aligned}
p(f \mid X, y) & =\frac{p(y \mid f, X) p(f \mid X)}{p(y \mid X)} \propto p(y \mid f) p(f \mid X) \\
\ell(f) & =\log p(y \mid f)+\log p(f \mid X) \\
& =\log p(y \mid f)-\frac{1}{2} f^{T} K^{-1} f-\frac{1}{2} \log |K|-\frac{N}{2} \log 2 \pi \\
\Longrightarrow \nabla \ell(f) & =\nabla \log p(y \mid f)-K^{-1} f \\
\Longrightarrow \nabla^{2} \ell(f) & =\nabla^{2} \log p(y \mid f)-K^{-1}
\end{aligned}
$$

for logistic $(p(y \mid f)=s(y f))$

$$
\begin{aligned}
\nabla \log p(y \mid f) & =y-\pi \\
\nabla^{2} \log p(y \mid f) & =\operatorname{diag}(-\pi \circ(1-\pi))=:-W
\end{aligned}
$$

At maximum: $\nabla \ell(f)=0 \quad \Longrightarrow \quad f=K \nabla \log p\left(y_{\square} \mid, f\right)^{\text {I }}$

Posterior

at maximum:

$$
\nabla \ell(f)=0 \quad \Longrightarrow \quad f=K \nabla \log p(y \mid f)
$$

Use Newton to find a maximum:

$$
\begin{aligned}
f^{(t+1)} & :=f^{(t)}-\left(\nabla^{2} \ell\right)^{-1} \nabla \ell \\
& =f^{(t)}+\left(K^{-1}+W^{(t)}\right)^{-1}\left(\nabla \log p(y \mid f)-K^{-1} f^{(t)}\right) \\
& =\left(K^{-1}+W^{(t)}\right)^{-1}\left(W^{(t)} f^{(t)}+\nabla \log p(y \mid f)\right)
\end{aligned}
$$

eventually yielding the maximum posterior \hat{f} at convergence. Then:

$$
p(f \mid X, y) \approx q(f \mid X, y):=\mathcal{N}\left(f \mid \hat{f},\left(K^{-1}+W\right)^{-1}\right)
$$

(Gaussian Approximation)

Predictions

Recall: $\mathbb{E}_{q}\left[f_{*} \mid X, y, x_{*}\right]=K_{*}^{T} K_{y}^{-1} \hat{f}=K_{*}^{T} \nabla \log p(y \mid \hat{f})$

$$
\begin{aligned}
\Longrightarrow \mathbb{E}_{\rho}\left[f_{*} \mid X, y, x_{*}\right] & =\int \mathbb{E}\left[f_{*} \mid f, X, x_{*}\right] p(f \mid X, y) d f \\
& =K_{*}^{T} K_{y}^{-1} f p(f \mid X, y) d f \\
& =k\left(x_{*}\right)^{T} K^{-1} \mathbb{E}[f \mid X, y]
\end{aligned}
$$

approximated mean:

$$
\mathbb{E}_{q}\left(f_{*} \mid X, y, x_{*}\right)=k\left(x_{*}\right)^{\top} K^{-1} \hat{f}
$$

variance:

$$
\operatorname{Var}_{q}\left(f_{*} \mid X, y, x_{*}\right)=k\left(x_{*}, x_{*}\right)-k_{*}^{\top}\left(K+W^{-1}\right)^{-1} k_{*}
$$

predictions:

$$
\bar{\pi}_{*}:=\mathbb{E}_{q}\left(\pi_{*} \mid X, y, x *\right)=\int s\left(f_{*}\right) q\left(f_{*} \mid X, y, x_{*}\right) d f_{*}
$$

Solve integral via MCMC or probit approximation (Murphy 8.4.4.2)

Algorithm (Step 1)

input: K (covariance matrix), \mathbf{y} (± 1 targets), $p(\mathbf{y} \mid \mathbf{f})$ (likelihood function)
2: $\mathbf{f}:=\mathbf{0}$
repeat
$W:=-\nabla \nabla \log p(\mathbf{y} \mid \mathbf{f})$
$L:=\operatorname{cholesky}\left(I+W^{\frac{1}{2}} K W^{\frac{1}{2}}\right)$
$\mathbf{b}:=W \mathbf{f}+\nabla \log p(\mathbf{y} \mid \mathbf{f})$
$\mathbf{a}:=\mathbf{b}-W^{\frac{1}{2}} L^{\top} \backslash\left(L \backslash\left(W^{\frac{1}{2}} K \mathbf{b}\right)\right)$
8: $\quad \mathbf{f}:=K \mathbf{a}$
until convergence
10: $\log q(\mathbf{y} \mid X, \theta):=-\frac{1}{2} \mathbf{a}^{\top} \mathbf{f}+\log p(\mathbf{y} \mid \mathbf{f})-\sum_{i} \log L_{i i}$
bjective: $-\frac{1}{2} \mathbf{a}^{\top} \mathbf{f}+\log p(\mathbf{y} \mid \mathbf{f})$
return: $\hat{\mathbf{f}}:=\mathbf{f}$ (post. mode), $\log q(\mathbf{y} \mid X, \theta)$ (approx. log marg. likelihood)
Algorithm 3.1: Mode-finding for binary Laplace GPC. Commonly used convergence

Algorithm (Step 2)

input: $\hat{\mathbf{f}}$ (mode), X (inputs), \mathbf{y} (± 1 targets), k (covariance function), $p(\mathbf{y} \mid \mathbf{f})$ (likelihood function), \mathbf{x}_{*} test input
2: $W:=-\nabla \nabla \log p(\mathbf{y} \mid \hat{\mathbf{f}})$
$L:=\operatorname{cholesky}\left(I+W^{\frac{1}{2}} K W^{\frac{1}{2}}\right)$
$B=I+W^{\frac{1}{2}} K W^{\frac{1}{2}}$
4: $\bar{f}_{*}:=\mathbf{k}\left(\mathbf{x}_{*}\right)^{\top} \nabla \log p(\mathbf{y} \mid \hat{\mathbf{f}})$
eq. (3.21)
$\mathbf{v}:=L \backslash\left(W^{\frac{1}{2}} \mathbf{k}\left(\mathbf{x}_{*}\right)\right)$
6: $\mathbb{V}\left[f_{*}\right]:=k\left(\mathbf{x}_{*}, \mathbf{x}_{*}\right)-\mathbf{v}^{\top} \mathbf{v}$ \} eq. (3.24) using eq. (3.29)
$\bar{\pi}_{*}:=\int \sigma(z) \mathcal{N}\left(z \mid \bar{f}_{*}, \mathbb{V}\left[f_{*}\right]\right) d z \quad$ eq. (3.25)
8: return: $\bar{\pi}_{*}$ (predictive class probability (for class 1))
Algorithm 3.2: Predictions for binary Laplace GPC. The posterior mode $\hat{\mathbf{f}}$ (which can be computed using Algorithm 3.1) is input. For multiple test inputs lines 4-7 are applied to each test input. Computational complexity is $n^{3} / 6$ operations once (line 3) plus n^{2} operations per test case (line 5). The one-dimensional integral in line 7 can be done analytically for cumulative Gaussian likelihood, otherwise it is computed using an approximation or numerical quadrature.

MCMC

How to compute integrals of the form

$$
\int_{a}^{b} h(x) p(x) d x
$$

where p is a probability density on $[a, b]$. LOTUS implies

$$
\begin{equation*}
\int_{a}^{b} h(x) p(x) d x=\mathbb{E}_{p}[h] \approx \frac{1}{N} \sum_{i=1}^{N} h\left(x_{i}\right) \tag{2}
\end{equation*}
$$

when x_{i} are sampled iid from p. (Monte-Carlo-integration)
Markov-Chain-Monte-Carlo: Clever sampling strategy of x_{i}

Approximation Methods for Large Datasets

See recent literature:

- Filippone, M. and Engler, R. 2015.

Enabling scalable stochastic gradient-based inference for Gaussian processes by employing the Unbiased LInear System SolvEr (ULISSE), arXiv preprint arXiv:1501.05427. (2015).

- Dai, B., Xie, B., He, N., Liang, Y., Raj, A., Balcan, M.-F. and Song, L. 2014.

Scalable Kernel Methods via Doubly Stochastic Gradients. arXiv:1407.5599 [cs, stat]. (Jul. 2014).

- Hensman, J., Fusi, N. and Lawrence, N.D. 2013.

Gaussian processes for big data. arXiv preprint arXiv:1309.6835. (2013).

Summary

- Gaussian processes model continuous targets as jointly normally distributed.
- correlated by covariance matrix depending on the predictors (kernel)
- The squared exponential kernel often is used as kernel.
- having 2 kernel parameters: horizontal length scale and vertical variation
- Noise variation has to be added to the model - otherwise Gaussian processes interpolate the observed data.
- Kernel parameters can be learnt through gradient descent.
- the objective is not convex, local minima need to be treated

Summary (2/2)

- For classification, Gaussian processes can be used to model
- a score function f
- that is mapped through the logistic function to probabilities π of target labels.
- The posterior is not Gaussian, but can be approximated by a Gaussian (Laplace approximation).
- Also the posterior predictive $E\left(\pi_{*} \mid x_{*}, X, y\right)$ cannot be computed analytically.
- but it can be approximated by an integral over the (approximatly) normally distributed predictive score f_{*}
- and thus be computed by MCMC.

Further Readings

- Rasmussen \& Williams: Gaussian Processes for Machine Learning (free ebook!)
- See also [Mur12, chapter 15].
- Conditioning Gaussians: [Mur12, section 4.3].
- Derivatives of inverse of a matrix etc., see, e.g., The Matrix Cookbook, http:
//www.mit.edu/~wingated/stuff_i_use/matrix_cookbook.pdf

Some Matrix Derivatives

$$
\begin{aligned}
\partial\left(X^{-1}\right) & =-X^{-1}(\partial X) X^{-1} \\
\partial(\log (|X|)) & =\operatorname{tr}\left(X^{-1} \partial X\right)
\end{aligned}
$$

Computing with traces:

$$
\operatorname{tr}\left(a a^{T} B\right)=a^{T} B a
$$

References

Kevin P. Murphy.
Machine learning: a probabilistic perspective.
The MIT Press, 2012.

