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Machine Learning 2 1. GPs for Regression

Gaussian Process Model

Gaussian Processes describe

| 2

>
| 4
>

the vector y := (y1,...,yn)" of all targets

as a sample from a normal distribution

where targets of different instances are correlated by a kernel X:

and thus depend on the matrix X of all predictors:
y | X ~N(y | u(X), Z(X))
with
:U’(X)n ::m(Xn)
Y(X)nm :==k(xn, Xm), n,me{l,...,N}

with a kernel function k and mean function m (often m = 0).
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Machine Learning 2 1. GPs for Regression

Kernels

The kernel k measures how much targets y, y’ correlate given their
predictors x, x’.

» k(x,x') is larger the more similar x, x" are
> esp. k(x,x) > k(x,x") Vx,x'

Example: squared exponential kernel / Gaussian kernel

k(x,x') = o2 ezl
with kernel (hyper)parameters
¢ horizontal length scale (x)

o2 vertical variation (y)

[m] = = =
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1. GPs for Regression

GPs as Prior on Functions

identity kernel

squared exponential kernel
2 1.0
1 0.5
> 0 > 0.0
= -0.5
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. ) g
GPs as Prior on Functions A

identity kernel squared exponential kernel
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Machine Learning 2 1. GPs for Regression

Conditional Distributions of Multivariate Normals
Let ya, vy be jointly Gaussian
(A o[ A 1A Yan Xas ))
e <YB> <<YB>‘<NB>’<ZBA Y BB
then the conditional distribution is

p(ye | ya) = N(vB | 1184, L 5|A)

with

pBlA = pe + YeaX ia(va — 11a)
Ypia =88 — LeAT A4 AB
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Machine Learning 2 1. GPs for Regression

Predictions w/o Noise

Let y, X be the training data,
X, be the test data and
¥« be the test targets to predict.

) ixxon (X)) (S )
(o )i 1() (o 2

p=m(X),  pe = m(X)
Yo=k(X, X), T.:=k(X,X), Tei= k(X X))

with

Then y
p(Ys | y) = N (Ve | s, Z4)

fis 1= px + ZIZ_I(Y — i)

Y, =Y. -]y ly,
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Example w/o Noise

Without noise the data is interpolated.

[Mur12, fig. 15.2]
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Machine Learning 2 1. GPs for Regression

Predictions with Noise VA

No noise:
Y =K
With noise:
Y =K, =K+a,l
Then as before
p(ys | y) = Ny | fin, 2)

now with

fioe :=ps + KT KMy — 1)

S 2 T -1

Y. =K —|—ayl - K, Ky K.
where

K :=k(X,X), Ki:=k(X,Xs), K :=k(Xs,Xs)
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.. . . P2
Predictions with Noise, Zero Means v

P(ye | ¥) =N (v | fins 24)

with
fi =+ KKy — )
. 2 T —1
Sy =K + 02l — KK 1K,
With m = 0:
p(ye | ¥) = N(y | fins £4)
with

fin =K K, Yy
. 2 T -1
£ =K + 02l — KT KK,
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Prediction for a single instance

Py | ¥) = Ny | fi 24
with
fi ==K Kty
i* =Rk + 0'}2,1 — K*TKy_lK*
Prediction y for a single instance x:
N
V(%) ::k*TKy_ly = Za,,k(x,,,x), o= Ky_ly
n=1
with
k. :=k(X, x)

But GPs can provide a joint inference for multiple instances.
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Example with Noise

(E, O'f,O'y) — (1, 1701) (E, O'f,O'y) == (03,01?,000005)

[Mur12, fig. 15.3]
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Example with Noise

(¢,0¢,0,) = (3,1.16,0.89)

(f’ O'f70'y) = (17 1701)

[Mur12, fig. 15.3]
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. . V¥
Estimating Kernel Parameters “
Either treating them as hyperparameters (grid search, random search) or
maximize the marginal likelihood (empirical Bayes; grad. desc.)
Model: p(y | X,0) =N

(v | 0,K,) with 8 = (¢,0%,02)
Negative log-likelihood:

Ty

1. N
L(9)=—|ogp(y|X,9)=§yTKy1ywL log |Ky| + 7 log(2m) (1)

Gradients: (via (X™1) = X}(0X)X ! and ddet X = I tr (X71)70X) )
— K, 5K,
a6, ~ 20 v gy VT t (

=— %tr ((aaT - K, )({ggj)

0K,
K1
y69)

with a = Ky_ly
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Cholesky decompositon

How to solve Ax = b?

Matrix inversion: x = A~1b is problematic because
» Numerically unstable
» A~lis dense, even if A is sparse

Better: LU-decomposition

Ax — b A=LU Lz=b
Ux =z

» L and U lower/upper triangular

» if A symmetric pos.-definite, then (L, U) can be chosen s.t. U= LT
(Cholesky-decomposition)
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Local Minima for Kernel Parameters

c 2
%10 +
g &
3 - 1
: o
210
2 -1
-2 = ‘ :
input, x
2
o1
g » top: (4,0,)~ (10,0.8)
3 0 > left: (£,0,) ~ (1,0.1)
- » in both cases o =1
2 ) 5 (fixed) [Mur12, fig. 15.5]
input, x
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Semi-parametric GPs

F(x) =BT ¢(x) + r(x)
r(X) ~GP(r | 0, k(X, X))

Assuming

B~N(3|bB), eg.,b:=0B:=05
yields just another GP

F(X) ~ GP(¢(X) b, k(X, X) + ¢(X)Bp(X)T)

where
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Machine Learning 2 2. GPs for Classification

Model

p(y | x) = s(y f(x)),

y € {+1, -1}, s = logistic
f ~ GP(0,K(X, X))
» f: latent score

[m]

=
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Machine Learning 2 2. GPs for Classification

Inference

Two-step inference (given training data-set D = (X, y))
1. infer latent score variable:

bl | X,y.x.) = /p(a | Xox, £) p(F | X, ) df

with p(f | X,y) = p(y [ f)p(f | X)/p(y | X) (Bayes thm.)
2. infer target:

ro = plye = 41| Xysx.) = / S(6) p(f | X,y %) df.

Non-Gaussians are analytically intractable.

~» Gaussian approximation (Laplace approximation)
~» Expectation Propagation (EP)

~> further methods
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Machine Learning 2 2. GPs for Classification

NN
Laplace Approximation “

If h has a unique global maximum in xp then

+oo 27
h(x) 4y o h(xo)
/oo e dx —h”(xo)e

Proof: Via Taylor h(x) & h(xo) + 3h"(x0)(x — x0)?

Apply on the marginal likelihood

? \/271'”
(v | X)= [ ply | F)p(f | x)df = [ "N ) L2
Py /P y p / ’vze(f)’

” ~ 1 A n
= logp(y | X) ~ logp(y | ) + log p(F | x) — 5 log [V2((f)| + 7 log(2)

How to find f and V2/(f)?
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Posterior

plf | X.) = ELLESNR) ooty ot 1 )

((f) = log p(y | f) + log p(f | X)
=logp(y | ) — %fTK_lf - % log K| — glog%
— VU(f) = Vlogp(y | f) — Kf
— V2U(f) = V2logp(y | f) — K}
for logistic (p(y | f) = s(yf))
Viogp(y |[f)=y—m
V2logp(y | f) = diag(—7m o (1 — 7)) = —W

At maximum: V{(f)=0 = f=KVlogp(y|f)
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Posterior

at maximum:
Vi(f)=0 =

Use Newton to find a maximum:

f=KVlogp(y|f)

FED =) — (V20) Ve
=) + (K™ + W) (Viogp(y | ) — K711
=KL+ wO)LWOFO 1+ Tlogp(y | £))

eventually yielding the maximum posterior f at convergence. Then

p(f | X,y)mq(f| X,y) =N(f | f, (K + W)™
(Gaussian Approximation)
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Predictions
Recall: Eq[fs | X,y,x] = K*TK)fl’? = K] Viogp(y | f)

s Bolf | X.yix] = / E[f, | £,X,x] p(F | X.y)df

= K] K, 1 fo(f | X, y)df

= k(x)TKTE[f | X, y]
approximated mean:

~

Eq(f. | X,y x.) = k(x)TKF
variance:
Varg(fe | X, y, %) = k(x, %) — k] (K + W™ Lk,
predictions:

o = Eg(me | X, y,xx) = /s(f*)q(f* | X,y, x.)df,

Solve integral via MCMC or probit approximation (Murphy 8.4.4.2)
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Machine Learning 2 2. GPs for Classification

Algorithm (Step 1)

input: K (covariance matrix), y (+1 targets), p(y|f) (likelihood function)
2. f:=0 initialization
repeat Newton iteration
4: W:=-=VVlogp(yl|f) eval. W e.g. using eq. (3.15) or (3. 16)
L := cholesky(I + W2z KW?) B=IT+WiKW2
6:  b:=Wf+ Vliogp(yl|f)
a:=b—W2LT\(L\(W2Kb)) } eq. (3.18) using eq. (3.27)
8 f:=Ka
until convergence objective: —%an + log p(y|f)
10: logq(y|X,0) := —3a™f +logp(y[f) — >_;1log Lii eq. (3.32)
return: f :=f (post. mode), log ¢(y|X,6) (approx. log marg. likelihood)

Algorithm 3.1: Mode-finding for binary Laplace GPC. Commonly used convergence
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NS
Algorithm (Step 2) i

input: f (mode), X (inputs), y (£1 targets), k (covariance function),
p(y|f) (likelihood function), x, test input
2: W= -VVlogp(ylf)

L := cholesky (I + W2 KW?) B=I1+W:KW3
4 fo= k(x*)TVIng(y\f) eq. (3.21)
6 §[Z LL(JZI(/;EQB)l vTv } eq. (3.24) using eq. (3.29)

7 [ (N GI VIL))dz eq. (3.25)

8: return: 7, (predictive class probability (for class 1))

Algorithm 3.2: Predictions for binary Laplace GPC. The posterior mode f (which
can be computed using Algorithm 3.1) is input. For multlple test inputs lines 4 — 7 are
applied to each test input. Computational complexity is n /6 operations once (line
3) plus n? operations per test case (line 5). The one-dimensional integral in line 7
can be done analytically for cumulative Gaussian likelihood, otherwise it is computed
using an approximation or numerical quadrature.

[m] = = =
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MCMC

How to compute integrals of the form

/a ’ h(x)p(x)dx

where p is a probability density on [a, b]. LOTUS implies

b 1
[ Hp()de = Eglh] ~ 3 i)

when x; are sampled iid from p. (Monte-Carlo-integration)
Markov-Chain-Monte-Carlo: Clever sampling strategy of x;

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Approximation Methods for Large Datasets

See recent literature:

» Filippone, M. and Engler, R. 2015.
Enabling scalable stochastic gradient-based inference for Gaussian

processes by employing the Unbiased Llnear System SolvEr (ULISSE),

arXiv preprint arXiv:1501.05427. (2015).

» Dai, B., Xie, B., He, N., Liang, Y., Raj, A., Balcan, M.-F. and Song,
L. 2014.
Scalable Kernel Methods via Doubly Stochastic Gradients.
arXiv:1407.5599 [cs, stat]. (Jul. 2014).

» Hensman, J., Fusi, N. and Lawrence, N.D. 2013.
Gaussian processes for big data. arXiv preprint arXiv:1309.6835.
(2013).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Machine Learning 2 2. GPs for Classification

NN
Summary “

» Gaussian processes model continuous targets as jointly normally
distributed.

> correlated by covariance matrix depending on the predictors (kernel)

» The squared exponential kernel often is used as kernel.

P having 2 kernel parameters: horizontal length scale and vertical
variation

» Noise variation has to be added to the model
— otherwise Gaussian processes interpolate the observed data.

» Kernel parameters can be learnt through gradient descent.
P the objective is not convex, local minima need to be treated

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Summary (2/2) YA

» For classification, Gaussian processes can be used to model

» a score function f
P that is mapped through the logistic function to probabilities 7 of target
labels.

» The posterior is not Gaussian, but can be approximated by a Gaussian
(Laplace approximation).

» Also the posterior predictive E(m, | x«, X, y) cannot be computed
analytically.
» but it can be approximated by an integral over the (approximatly)

normally distributed predictive score f,
» and thus be computed by MCMC.
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B
Further Readings “

> ‘Rasmussen & Williams: Gaussian Processes for Machine Learning‘
(free ebook!)

> See also [Murl2, chapter 15].

» Conditioning Gaussians: [Murl2, section 4.3].

» Derivatives of inverse of a matrix etc., see, e.g., The Matrix
Cookbook, http:

//www.mit.edu/~wingated/stuff_i_use/matrix_cookbook.pdf
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Some Matrix Derivatives

X = —XxX"Hax)x 1
d(log(|X])) = tr(X*aX)

Computing with traces:

tr(aa’ B) = a’ Ba

[m] = = =
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