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1. The Idea behind Mixtures of Experts
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1. The ldea behind Mixtures of Experts
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Machine Learning 2 1. The Idea behind Mixtures of Experts

B
Underlying ldea “

So far, we build ensemble models where the combination weights do not
depend on the predictors:

C
y(X) = Z (075 }/}c(x)
c=1

i.e., all instances x are reconstructed from their predictions y.(x) by the
component models in the same way a.
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B
Underlying ldea “

So far, we build ensemble models where the combination weights do not
depend on the predictors:

C
}/}(X) = Z (075 }/}C(X)
c=1

i.e., all instances x are reconstructed from their predictions y.(x) by the
component models in the same way a.

New idea: allow each instance to be reconstructed in an instance-specific
way.
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Machine Learning 2 1. The Idea behind Mixtures of Experts

Mixtures of Experts

Xn GRM7yn ER’CH 6 {17"'7C}79:: (ﬁ70-277)7/8’76RCXM

P(Yn ’ Xn, Cn; 9) ::N(y | /BZ;XH?GS,,)
p(cn | xn; 0) :=Cat(c | S(vx))

with softmax function
e*m
S(xX)m =—y —— XE RM

1 eXm’

» C component models (experts) N(y | B[ x,o2)

» each model c is expert in some region of predictor space,
defined by its component weight (gating function) S(vx).

» a mixture model with latent nominal variable z, := ¢,.
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Mixtures of Experts

Xn GRM7yn ER’CH 6 {17"'7C}79:: (ﬁ70-277)7/8’76RCXM

P(Yn ’ Xn, Cn; 9) ::N(y | /BZ;XH?GS,,)
p(cn | xn; 0) :=Cat(c | S(vx))

with softmax function

Oz=C

exm M
SX)mi=—gr——> XER
1 eXm!
» C component models (experts) N(y | B[ x,o2)

» each model c is expert in some region of predictor space,
defined by its component weight (gating function) S(vx).

» a mixture model with latent nominal variable z, := ¢,.
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Machine Learning 2 1. The Idea behind Mixtures of Experts

Mixtures of Experts

S

X
<
+®

X, € RM,y,, eER,c,e{l,...,C},0:= (ﬁ,02,7),ﬁ,7 € RY
S(vx)

P(Yn ’ Xn, Cn; 9) ::N(y | /BZ,—,XH?GS,,)
p(cn | xn; 0) :=Cat(c | S(vx))

—©

cTBx

with softmax function

O

e*m

S(X)mi=—g——, xERM

1 eXm’

» C component models (experts) N(y | B[ x,o2)

» each model c is expert in some region of predictor space,
defined by its component weight (gating function) S(vx).

» a mixture model with latent nominal variable z, := ¢,.
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Machine Learning 2 1. The Idea behind Mixtures of Experts

NN
Mixtures of Experts/ Example “

expert predictions, fixed mixing weights=0 gating functions, fixed mixing weights=0 predicted mean and var, fixed mixing weights=0
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component models component weight mixture of experts

[Mur12, fig. 11.6]
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Machine Learning 2 1. The Idea behind Mixtures of Experts

Mixtures of Experts
Generic Mixtures of Experts model:
» variables: x, € X,y, €)Y

» latent variables: ¢, € {1,...,C}
» component models: p(y, | xn, cn; 6¥)
» a separate model for each c: p(v, | xn, ¢;0¥) = p(ya | Xn; 6%),
with 0¥ and 67, being disjoint for ¢ # ¢’.
combination model: p(c, | xn; 6°)

v

Example Mixture of Experts model:
» variables: X :=RM Y :=R
» component models: linear regression models A'(y | 8/ x, 02)
» combination model: logistic regression model Cat(c | S(yx))

For prediction: ply | x) = Z p(y | x,c)p(c|x)

c=1
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Mixtures of Experts
Generic Mixtures of Experts model:
» variables: x, € X,y, €)Y

» latent variables: ¢, € {1,...,C}
» component models: p(y, | xn, cn; 6¥)
» a separate model for each c: p(v, | xn, ¢;0¥) = p(ya | Xn; 6%),
with 0¥ and 67, being disjoint for ¢ # ¢’.
combination model: p(c, | xn; 6°)

v

Example Mixture of Experts model:
» variables: X :=RM Y :=R
» component models: linear regression models A'(y | 8/ x, 02)
» combination model: logistic regression model Cat(c | S(yx))

C
For prediction: ply | x) = Z p(y | x,c)p(c|x)
o) =aelx)
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2. Learning Mixtures of Experts
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Machine Learning 2 2. Learning Mixtures of Experts

Learning Mixtures of Experts
complete data likelihood:

N
0(0”,6°,¢; D) =TT p(yalxn, cai 0 )p(calxni 6°),  cn € {1,
n=1

Cannot be computed, as ¢, is unknown.
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Machine Learning 2 2. Learning Mixtures of Experts

. . N
Learning Mixtures of Experts “

complete data likelihood:
N
0(0”,6%, ¢; D) := [ | p(yalxn; cn: 0)p(cnlxni 6), €€ {1,...,C}
n=1

Cannot be computed, as ¢, is unknown.
weighted complete data likelihood:

N C
067,60 w; D) =TT T (p(yalxn: c: 67)p(clxn; 69))™,  wi € Ac
n=1c=1
N C
—log £(6”, 6, w; D) = — >~ " wi ¢ (log p(ya|xn, ¢; 6”) + log p(c|xa; 6°)

n=1 c=1

Note: Ac :={w € [0,1]¢ | =5, we = 1}.
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B
Learning Mixtures of Experts “

complete data likelihood:

N
K(ey’ 9(:7 c; Dtrain) = H p(y,,|x,,, Cn; 9y)p(c,,\x,,; gc)a Cn € {17 R C}
n=1

Cannot be computed, as ¢, is unknown.
weighted complete data likelihood:

N C
067,60 w; D) =TT T (p(yalxn: c: 67)p(clxn; 69))™,  wi € Ac

n=1c=1
_ N C
—log £(6”,6°, w; D" =

n=1c=1
Cannot be computed either, as w, is unknown;

but w, can be treated as parameter — but with unwanted consequences.
Note: Ac :={w € [0,1]¢ | =5, we = 1}.
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Machine Learning 2 2. Learning Mixtures of Experts

Learning Mixtures of Experts

If we treat w, as free parameters, two issues emerge:
1. their relation to 0¥ and 6° via

p(¥n | Xn, c;6¥)p(c | Xn; 6°)

Wne = p(Cn =cC ’ Xn,}/n;eyaec) =

)

is not modeled.

2. a block coordinate descent approach for w, . would it set trivially to

crisp estimates:

N C =ian,c
arg min — Z Z Wn ¢ (log p(yn | xn, c; 0”) + log p(c | xn; 0)),
WENLC =] =1
decomposes over n:
C
VYn: argmin— Z Wh.canc, Wn€ Ac
Wh,1:C c=1

~ Wy = I(c = argmaxap)

Lars Schmidt-Thieme, Information Systems and Machine Learmng‘ Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Learning Mixtures of Experts

NN
Learning Mixtures of Experts / Bilevel Optimization “

Formulate the problem as bilevel optimization problem:
(6”,60°) :=arg max £(#”,6<; D)
0v,6¢

N C

=TT TT (P | s €3 67 )p(c | s 6°)) ")
n=1c=1
with

2
n | Xn, C; 0 n; 0°
Wo1.c(67,6°) _argmmz ( Pyn | xns €;6%)p(c | Xn; 0°) = Wn,c)

Whn,1:.C =1 C/_lp(yn|Xn7 /9)/) ( "X,,;@C

Vvn=1:N
Generic bilevel optimization problem:
x = argmin f(x, y(x))
X

with y(x) := argmin g(x, y)
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Machine Learning 2 2. Learning Mixtures of Experts

Bilevel Optimization
Generic bilevel optimization problem:

x = argmin f(x, y(x)) outer problem
X

with y(x) := argmin g(x, y) inner problem
y

argmin-bilevel-alternate(f, g, x(¥) ¢):
t:=0
do
ti=t+1

y( = arg min,, g(x(t=

'Y)

x(®) := arg min_ f(x, y*)
while [|x(1) — x(t=1)|| < ¢
return x(t)

» convergence in general problematic
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Machine Learning 2 2. Learning Mixtures of Experts

. . N
Learning Mixtures of Experts “
N C
arg min — wi (07,60 (lo n|Xn, €; 0¥) + log p(c|xp; 6¢
&m ;; (67,6 (1og p(ya| ) + log p(clxn; 6°))

wne o3 \ 6=y P(Ya | Xn, €' 07)p(C’ | xn; 0°

C oy e 2
W 1.c(0”,60°) :=arg minz (Z Pyn | xa, ¢ 67)p(c | mi 0°) ) - Wn,c>

Strategy:

» alternate inner/outer for bilevel (EM)

» Block coordinate descent for outer problem:
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Learning Mixtures of Experts

N C
in — n gy’ec I n|Xn, €; 07) + 1 n; 0°
ar(;gygyn Y > Wi ) (log p(¥n|xn, ¢; 0¥) + log p(c|xa; 6°))

n=1c=1

0y ;0
ncl®,6°) =argmin > (P L5 G0 DPLE  x: 6)
wnc S\ 51 P | Xny €3 6Y)p(C! | xn; 0
Strategy:
» alternate inner/outer for bilevel (EM)
» Block coordinate descent for outer problem:

1. minimize inner problem w.r.t. wp c:

» decomposes into N - C problems
» analytic solution:

_ p(yn ‘ Xn, C; ey)p(c | Xn, ec)
n,c —
61 P | Xay €5 0%)p(C” | Xn3 6°)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Learning Mixtures of Experts

B
Learning Mixtures of Experts “

N C
arg min — wp (67,60 (lo n|Xn, €; 0¥) + log p(c|xp; 6¢
&m D> wae(8”,6° (log p(yal ) + log p(clxn; 0°))

n=1c=1
C .y e
Wn71:C(9y7GC) ::argmin Z p(yn | Xn, C; ¢ )p(C ‘ Xns 0 )

c /. / . Hc Wn,c
Woc e3 \Doa—1 PWn | Xn, €5 0Y)p(c" | Xn; 0°)
Strategy:

» alternate inner/outer for bilevel (EM)

» Block coordinate descent for outer problem:

2. minimize outer problem w.r.t. 6*: N

argmin —» _ wy c log p(yalxn; 0%)
4 n=1

» learn C component models for D¥2" with case weights w, ..

» decomposes into C problems
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. . P2
Learning Mixtures of Experts “
N C
arg min — Z Z Wi (67, 6°) (log p(yn|xn, c; 6”) + log p(c|xn; 6°))
07,0¢ n=1c=1
¢ o | Xo: €5 67)p(c | 0 6°) ’
W 1.c(0Y,60°) :=arg minz ( Cp Yn | X, €, 7 )P o — W,,,C>
warc ey \ 2ogr=1 P | Xn, €3 6Y)p(c" | xn; 0°)

Strategy:

» alternate inner/outer for bilevel (EM)
» Block coordinate descent for outer problem:
3. minimize outer problem w.r.t. 6¢:

N C
» solve arg min — Z Z Wp ¢ log p(c|xn; 0°)
¢

n=1 c=1
» learn a combination model for target ¢ on

ptrain,wcompl . _ {(Xm c, Wn,c) | n=1,...,N,c

~1,....C}
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Machine Learning 2 2. Learning Mixtures of Experts

Remarks

» Mixtures of experts can use any model as component model.

» Mixtures of experts can use any classification model as
combination model.

» both models need to be able to deal with case weights
» both models need to be able to output probabilities
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Remarks

» Mixtures of experts can use any model as component model.

» Mixtures of experts can use any classification model as
combination model.
» both models need to be able to deal with case weights
» both models need to be able to output probabilities

» if data is sparse, sparsity can be naturally used in both, component
and combination models.
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Remarks

Mixtures of experts can use any model as component model.
Mixtures of experts can use any classification model as
combination model.

» both models need to be able to deal with case weights
» both models need to be able to output probabilities

» if data is sparse, sparsity can be naturally used in both, component
and combination models.

» Updating the three types of parameters can be interleaved.

» this way, w,  never has to be materialized
(but for a mini batch, possibly a single n)
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Machine Learning 2 2. Learning Mixtures of Experts

Outlook: Hierarchical Mixture of Experts

() ()
(o) !
) )

mixture of experts hierarchical mixture of experts
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Outline

3. Interpreting Ensemble Models
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Machine Learning 2 3. Interpreting Ensemble Models

Variable Importance

Some models allow to assess the importance of single variables
(or more generally subsets of variables; variable importance), e.g.,

» linear models: the z-score

» decision trees: the number of times a variable occurs in its splits
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Machine Learning 2 3. Interpreting Ensemble Models

Variable Importance

Some models allow to assess the importance of single variables
(or more generally subsets of variables; variable importance), e.g.,

» linear models: the z-score

» decision trees: the number of times a variable occurs in its splits
Variable importance of ensembles of such models can be measured as
average variable importance in the component models:

C
1
importance(Xm, 7) = Z importance(Xm, 7c), me{l,..., M}

c=1
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Machine Learning 2 3. Interpreting Ensemble Models

Variable Importance / Example
Synthetic data:

x ~uniform([0, 1]1%)
y ~N(y | 10sin(mx1x0) 4+ 20(x3 — 0.5)% 4 10x4 + 5x5, 1)

Model: Bayesian adaptive regression tree
(variant of a random forest; see [Murl2, p. 551]).

wn %\
N / N\
s \
p 3
o p
S it
2. AN IPRAIN
o 8 | 35 3 4T T
s .
g ° - Bl---5
g
o
S
S
2 5 ,ﬂi,,, 5 -5
> 2 -
° 3 3 E
=3 2-=---2 -3- 3=
o T T T T T
2 4 6 8 10

[Murl2, fig. 16.21]

Color denotes the number C of component models.
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Machine Learning 2 3. Interpreting Ensemble Models

Variable Dependence: Partial Dependence Plot
For any model y (and thus any ensemble), the dependency of the model
on a variable X,,, can be visualized by a partial dependence plot:

plot z € range(Xp) vs.

N
N i 1 .
_ypartial(Z; Xm, Dtraln) Z:N ZY((Xn,la <o s Xnm—1,Z, Xn,m+1, - - - 7Xn,M))7
n=1

or for a subset of variables

N
N i 1 N
.Vpartial(Z; XV’Dtra n) ::N Z}/(p(x, V,Z)), 4 - {17 sy M}

n=1

m, if 4
Zme NMEY 1, M)

with p(x, V., z)m, 1=
Xm, e€lse

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 3. Interpreting Ensemble Models

Variable Dependence / Example

Synthetic data:

x ~uniform([0, 1]1%)

y ~N(y | 10sin(mx1x2) + 20(x3 — 0.5)% + 10x4 + 5x5,1)

1 1 18 2
P

§’+
ﬁz—/

Ny Ny S B
FAVI e EUYP s T Nt Nl s Y
gt gt =k i
P AT e +,+/‘*/+ ii++»+++‘*"*’+

¥ - : S :
PR B R ] e s AT

g

®

o

[Murl2, fig. 16.20]
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Machine Learning 2 3. Interpreting Ensemble Models

Summary

» Mixtures of Experts additionally allow the combination weights to
depend on x (gating function)
> jointy model
> a latent component each instance belongs to and
» a model for y for each component
» can be learned via block coordinate descent / EM.

> requiring just learning algorithms for the component models
» as well as for the combination model.

» Ensemble models can be diagnosed by partial dependence plots
(as any model).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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B
Further Readings “

» Mixtures of Experts: [Bis06, chapter 14.5]. [Murl2, chapter 11.2.4,
11.4.3], [HTFFO5, chapter 9.5].
» Bilevel optimization:

» an interesting application of bilevel optimization in ML for
hyperparameter optimization: [FFST18].

Acknowledgements: Thanks a lot to my PhD student Randolf Scholz for spotting a bad
mistake on an earlier version of these slides!
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