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Syllabus A. Advanced Supervised Learning
Fri. 12.4. (1) A.1 Generalized Linear Models
Fri. 26.4. (2) A.2 Gaussian Processes
Fri. 3.5. (3) A.2b Gaussian Processes (ctd.)
Fri. 10.5. (4) A.3 Advanced Support Vector Machines

B. Ensembles
Fri. 17.5. (5) B.1 Stacking
Fri. 24.5. (6) B.2 Boosting
Fri. 31.5. (7) B.3 Mixtures of Experts
Fri. 7.6. (8) (ctd.)
Fri. 14.6. — — Pentecoste Break —

C. Sparse Models
Fri. 21.6. (9) C.1 Homotopy and Least Angle Regression
Fri. 28.6. (10) C.2 Proximal Gradients
Fri. 29.6. (11) C.3 Laplace Priors

& C.4 Automatic Relevance Determination

D. Complex Predictors
Fri. 6.7. (12) D.1 Latent Dirichlet Allocation (LDA)
Fri. 12.7. (13) Q & A
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Machine Learning 2 1. The Idea behind Mixtures of Experts

Underlying Idea

So far, we build ensemble models where the combination weights do not
depend on the predictors:

ŷ(x) :=
C∑

c=1

αc ŷc(x)

i.e., all instances x are reconstructed from their predictions ŷc(x) by the
component models in the same way α.

New idea: allow each instance to be reconstructed in an instance-specific
way.

ŷ(x) :=
C∑

c=1

αc(x) ŷc(x)
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Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 16



Machine Learning 2 1. The Idea behind Mixtures of Experts

Mixtures of Experts

xn ∈ RM , yn ∈ R, cn ∈ {1, . . . ,C}, θ := (β, σ2, γ), β, γ ∈ RC×M :

p(yn | xn, cn; θ) :=N (y | βTcnxn, σ
2
cn)

p(cn | xn; θ) :=Cat(c | S(γx))

with softmax function

S(x)m :=
exm∑M

m′=1 e
xm′
, x ∈ RM

I C component models (experts) N (y | βTc x , σ2
c )

I each model c is expert in some region of predictor space,
defined by its component weight (gating function) S(γx)c

I a mixture model with latent nominal variable zn := cn.
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Machine Learning 2 1. The Idea behind Mixtures of Experts

Mixtures of Experts/ Example
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Machine Learning 2 1. The Idea behind Mixtures of Experts

Mixtures of Experts
Generic Mixtures of Experts model:

I variables: xn ∈ X , yn ∈ Y
I latent variables: cn ∈ {1, . . . ,C}
I component models: p(yn | xn, cn; θy )

I a separate model for each c : p(yn | xn, c ; θy ) = p(yn | xn; θyc ),
with θyc and θyc′ being disjoint for c 6= c ′.

I combination model: p(cn | xn; θc)

Example Mixture of Experts model:

I variables: X := RM ,Y := R
I component models: linear regression models N (y | βTc x , σ2

c )
I combination model: logistic regression model Cat(c | S(γx))

For prediction: p(y | x) =
C∑

c=1

p(y | x , c)︸ ︷︷ ︸
=ŷc (x)

p(c | x)︸ ︷︷ ︸
=αc (x)
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Machine Learning 2 2. Learning Mixtures of Experts
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Machine Learning 2 2. Learning Mixtures of Experts

Learning Mixtures of Experts

complete data likelihood:

`(θy , θc , c ;Dtrain) :=
N∏

n=1

p(yn|xn, cn; θy )p(cn|xn; θc), cn ∈ {1, . . . ,C}

Cannot be computed, as cn is unknown.

weighted complete data likelihood:

`(θy , θc ,w ;Dtrain) :=
N∏

n=1

C∏
c=1

(p(yn|xn, c ; θy )p(c |xn; θc))wn,c , wn ∈ ∆C

− log `(θy , θc ,w ;Dtrain) =−
N∑

n=1

C∑
c=1

wn,c (log p(yn|xn, c ; θy ) + log p(c |xn; θc)) , wn ∈ ∆C

Cannot be computed either, as wn is unknown;
but wn can be treated as parameter — but with unwanted consequences.
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Note: ∆C := {w ∈ [0, 1]C |
∑C

c=1 wc = 1}.
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Machine Learning 2 2. Learning Mixtures of Experts

Learning Mixtures of Experts

If we treat wn as free parameters, two issues emerge:

1. their relation to θy and θc via

wn,c
!

= p(cn = c | xn, yn; θy , θc) =
Bayes

p(yn | xn, c ; θy )p(c | xn; θc)∑C
c ′=1 p(yn | xn, c ′; θy )p(c ′ | xn; θc)

is not modeled.
2. a block coordinate descent approach for wn,c would it set trivially to

crisp estimates:

arg min
w1:N,1:C

−
N∑

n=1

C∑
c=1

wn,c

=:an,c︷ ︸︸ ︷
(log p(yn | xn, c ; θy ) + log p(c | xn; θc)), wn ∈ ∆C

decomposes over n:

∀n : arg min
wn,1:C

−
C∑

c=1

wn,can,c , wn ∈ ∆C

 wn,c := I(c = arg max
c ′

an,c ′)
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Learning Mixtures of Experts

Learning Mixtures of Experts / Bilevel Optimization

Formulate the problem as bilevel optimization problem:

(θy , θc) := arg max
θy ,θc

`(θy , θc ;Dtrain)

:=
N∏

n=1

C∏
c=1

(p(yn | xn, c ; θy )p(c | xn; θc))wn,c (θy ,θc )

with

wn,1:C (θy , θc) := arg min
wn,1:C

C∑
c=1

(
p(yn | xn, c ; θy )p(c | xn; θc)∑C

c ′=1 p(yn | xn, c ′; θy )p(c ′ | xn; θc)
− wn,c

)2

,

∀n = 1 : N

Generic bilevel optimization problem:

x := arg min
x

f (x , y(x))

with y(x) := arg min
y

g(x , y)
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Machine Learning 2 2. Learning Mixtures of Experts

Bilevel Optimization
Generic bilevel optimization problem:

x := arg min
x

f (x , y(x)) outer problem

with y(x) := arg min
y

g(x , y) inner problem

1 argmin-bilevel-alternate(f , g , x (0), ε):
2 t := 0
3 do
4 t := t + 1

5 y (t) := arg miny g(x (t−1), y)

6 x (t) := arg minx f (x , y (t))

7 while ||x (t) − x (t−1)|| < ε

8 return x (t)

I convergence in general problematic
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Machine Learning 2 2. Learning Mixtures of Experts

Learning Mixtures of Experts

arg min
θy ,θc

−
N∑

n=1

C∑
c=1

wn,c(θy , θc) (log p(yn|xn, c ; θy ) + log p(c |xn; θc))

wn,1:C (θy , θc) := arg min
wn,1:C

C∑
c=1

(
p(yn | xn, c ; θy )p(c | xn; θc)∑C

c ′=1 p(yn | xn, c ′; θy )p(c ′ | xn; θc)
− wn,c

)2

Strategy:

I alternate inner/outer for bilevel (EM)

I Block coordinate descent for outer problem:
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Learning Mixtures of Experts
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c ′=1 p(yn | xn, c ′; θy )p(c ′ | xn; θc)
− wn,c

)2

Strategy:

I alternate inner/outer for bilevel (EM)
I Block coordinate descent for outer problem:

1. minimize inner problem w.r.t. wn,c :
I decomposes into N · C problems
I analytic solution:

wn,c =
p(yn | xn, c ; θy )p(c | xn; θc)∑C

c′=1 p(yn | xn, c ′; θy )p(c ′ | xn; θc)
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Learning Mixtures of Experts
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Strategy:

I alternate inner/outer for bilevel (EM)

I Block coordinate descent for outer problem:

2. minimize outer problem w.r.t. θy :

I decomposes into C problems arg min
θyc

−
N∑

n=1

wn,c log p(yn|xn; θyc )

I learn C component models for Dtrain with case weights wn,c .
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Machine Learning 2 2. Learning Mixtures of Experts

Learning Mixtures of Experts

arg min
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p(yn | xn, c ; θy )p(c | xn; θc)∑C

c ′=1 p(yn | xn, c ′; θy )p(c ′ | xn; θc)
− wn,c

)2

Strategy:

I alternate inner/outer for bilevel (EM)
I Block coordinate descent for outer problem:

3. minimize outer problem w.r.t. θc :

I solve arg min
θc

−
N∑

n=1

C∑
c=1

wn,c log p(c |xn; θc)

I learn a combination model for target c on

Dtrain,wcompl := {(xn, c ,wn,c) | n = 1, . . . ,N, c = 1, . . . ,C}
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Machine Learning 2 2. Learning Mixtures of Experts

Remarks

I Mixtures of experts can use any model as component model.
I Mixtures of experts can use any classification model as

combination model.
I both models need to be able to deal with case weights
I both models need to be able to output probabilities

I if data is sparse, sparsity can be naturally used in both, component
and combination models.

I Updating the three types of parameters can be interleaved.
I this way, wn,c never has to be materialized

(but for a mini batch, possibly a single n)
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Machine Learning 2 2. Learning Mixtures of Experts

Outlook: Hierarchical Mixture of Experts

yn
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mixture of experts

yn
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hierarchical mixture of experts
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Machine Learning 2 3. Interpreting Ensemble Models

Variable Importance

Some models allow to assess the importance of single variables
(or more generally subsets of variables; variable importance), e.g.,

I linear models: the z-score

I decision trees: the number of times a variable occurs in its splits

Variable importance of ensembles of such models can be measured as
average variable importance in the component models:

importance(Xm, ŷ) :=
1

C

C∑
c=1

importance(Xm, ŷc), m ∈ {1, . . . ,M}
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Machine Learning 2 3. Interpreting Ensemble Models

Variable Importance / Example
Synthetic data:

x ∼uniform([0, 1]10)

y ∼N (y | 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5, 1)

Model: Bayesian adaptive regression tree
(variant of a random forest; see [Mur12, p. 551]).
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Machine Learning 2 3. Interpreting Ensemble Models

Variable Dependence: Partial Dependence Plot
For any model ŷ (and thus any ensemble), the dependency of the model
on a variable Xm can be visualized by a partial dependence plot:

plot z ∈ range(Xm) vs.

ŷpartial(z ;Xm,Dtrain) :=
1

N

N∑
n=1

ŷ((xn,1, . . . , xn,m−1, z , xn,m+1, . . . , xn,M)),

or for a subset of variables

ŷpartial(z ;XV ,Dtrain) :=
1

N

N∑
n=1

ŷ(ρ(x ,V , z)), V ⊆ {1, . . . ,M}

with ρ(x ,V , z)m :=

{
zm, if m ∈ V

xm, else
, m ∈ {1, . . . ,M}
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Machine Learning 2 3. Interpreting Ensemble Models
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Summary

I Mixtures of Experts additionally allow the combination weights to
depend on x (gating function)

I jointy model
I a latent component each instance belongs to and
I a model for y for each component

I can be learned via block coordinate descent / EM.
I requiring just learning algorithms for the component models
I as well as for the combination model.

I Ensemble models can be diagnosed by partial dependence plots
(as any model).
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Further Readings

I Mixtures of Experts: [Bis06, chapter 14.5]. [Mur12, chapter 11.2.4,
11.4.3], [HTFF05, chapter 9.5].

I Bilevel optimization:
I an interesting application of bilevel optimization in ML for

hyperparameter optimization: [FFS+18].
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