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Outline

1. Homotopy Methods: Least Angle Regression

Interlude: A note on Model complexity

2. Proximal Gradient Methods

3. Laplace Priors (Bayesian Lasso)
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1. Homotopy Methods: Least Angle Regression
Qutline

1. Homotopy Methods: Least Angle Regression
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

Sparse Models so far

» Variable subset selection
» forward search, backward search

» L1 regularization / Lasso
» Coordinate descent (shooting algorithm)
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

L1 Regularization

min. £(9) == 0y, 9(6, X)) +A[101]x

§ e RP

is equivalent to

min. f(@A) = E(y,f/(é\, X))
10 < B
6 ¢ RP

with
B :=|6*|2

=] (=)
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

B
L1 Regularization / Equivalence i

More generally, given

x*:=argminf(x)+Ag(x), A>0 (1)
X:= argmin f(x) (2)
x:g(x)<g(x*)

then

x* =X
because

F(%) <F(x") < F(5)+ A (g(%) - g(x")) < f(X)
) 1) —

assuming x* is unique.
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

Homotopy Methods

min. f(8) := €(y,9(6,X)) + A|0|lx
or equivalently
min. £(8) := ((y, (8, X))
19l < B

> start with a solution for large A(9) (or equiv. B(®) := 0)
> then A©) = 0.

> stepwise decrease A(!) (or equiv. increase B(1))

> learn A(*) starting from 6(t=1) (warmstart).
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

Homotopy Methods

For homotopy to work,
1. the parameters as function of A
B(2) = arg min (y, 9(0, X)) + All0l 2

) . 0
must be continuous, i.e.,

P> { must be continuous in 0 and
» { be continuous in .

2. the steps in A(t) must be small enough.

Most simple model: linear regression
» model p(A, X) := X0

> loss ((y,9) = [ly — I3
Advantage: can find optimal A\(!) sequence analytically! (actually B(t))
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

Least Angle Regression (LAR)
in step t:

1. choose the predictors with largest correlation with the residuum
(active predictors):

C(t—l) ::XT(y o )/}(t—l))

Al .= arg max\C,(,,t_l)| (a set!)

2. regress these predictors on the residuum:
X =X a0
41 = argmin ||y — 901 — X(Dy|;
:(X(Z)Tx(t))—l (DT — plt=1)y
3. update parameters in this direction:

BB =1 4 AD5(0)

={mi,mp,...,mg}, Am)k := 0 otherwise.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

. B2
Least Angle Regression (LAR): step length “
Residuum correlations after the update

€0 =XT(y — 99) = XT(y = XFO) = XT(y = X(H¢ D) + an930)
=c(t=1) —_ o XT X A®3(0)
=c(t=1) _ o xT x(03(1)

are uniformly reduced for active predictors:
CO| i =C g — aXOTXOFO = (1 — a) D] 4
and may also change for non-active predictors:

i =Y —axT x0300)

Note: Maybe a mistake somewhere here. Final formula for « differs from the one in_the
pap

aper.
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

. N
Least Angle Regression (LAR): step length (2/2) i
Reduce until another predictor has same (max) residuum correlation

i =l — axT x50 L (1 - )l

max
o = Crgnta;l) - Clg"lt_l)
ClEY — XT x(0)45()
or for negative correlations:
cle=1) 4 clt=1)
o = max m
Crgnta;l) +X7;71X(t)’/)\/(t)
yielding | Cr(nta;l) B Cr(ntfl) Cr(nta—xl) + C,(ntfl)

D _XT x40 D + XT x(0)4(0)

Ime{1,...,M}\ AD} minpos(X) := min{x € X | x > 0}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

Example

v2 v6 va4 V5 v3 vi

0.4

Absolute Correlations
0.2

0.0

0 5 10 15

L1 Arc Length

FIGURE 3.14. Progression of the absolute correlations during each step of the
LAR procedure, using a simulated data set with siz predictors. The labels at the
top of the plot indicate which variables enter the active set at each step. The step
length are measured in units of L1 arc length.

[HTFFO5, p. 75]
= = =y =
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

Example

Least Angle Regression

Coefficients
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

Remarks

» algorithm can be used two ways:

1. Estimate parameters for all A (regularization path)
2. Estimate parameters for a specific A (Homotopy method)

P start with large 2O, stop once A < X reached.

» not straightforward to extend from regression to GLMs

» LAR can be modified to solve the LASSO:

» if the parameter ﬁ,(,f) for an active predictor m becomes 0 or changes
sign, drop it from the active set.

» also called Least Angle Regression and Shrinkage (LARS)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

Example
Least Angle Regression Lasso
o | v
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[HTFFO5, p. 75]
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Interlude: A note on Model complexity
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Machine Learning 2  Interlude: A note on Model complexity

Model Complexity, Bias & Variance
Example (Linear models)
> J(x)=P1-x

> J(x)=(B1+B2+...+Bk) x

Both models have the same bias and variance! ~» redundant parameters!

[m]

=
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Machine Learning 2  Interlude: A note on Model complexity

. i . N
Model Complexity, Bias & Variance v
Example (Linear models)

> J(x)=P1-x

> J(x)=(B1+ B+ ...+ Pk)-x
Both models have the same bias and variance! ~» redundant parameters!
Example (1-parameter model)

> y(x) =sin(fx)

Can achieve 100% accuracy on any finite 1D binary classification dataset.
— A single real number can store an infinite amount of information!
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Machine Learning 2  Interlude: A note on Model complexity

B
Model Complexity, Bias & Variance v

Example (Linear models)

> J(x)=P1-x

> J(x)=(B1+ B+ ...+ Pk)-x
Both models have the same bias and variance! ~» redundant parameters!
Example (1-parameter model)

> y(x) =sin(fx)

Can achieve 100% accuracy on any finite 1D binary classification dataset.

— A single real number can store an infinite amount of information!
Example (Neural Network)

» Network 1: vanilla MLP

> Network 2: sparse Network with skip connections

Network 2 is more complex when both have same amount of parameters!
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Machine Learning 2  Interlude: A note on Model complexity

Measures of Model Complexity
» Parameter Counting

» only really works when comparing models with the same architecture
P even then not guaranteed to be useful
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Machine Learning 2  Interlude: A note on Model complexity

Measures of Model Complexity

» Parameter Counting

» only really works when comparing models with the same architecture
P even then not guaranteed to be useful

» Information Criteria (e.g. BIC, AIC)

» Both very crude tools (lots of approximations used in derivation)
» Both ignorant about the model architecture
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Machine Learning 2  Interlude: A note on Model complexity

Measures of Model Complexity

» Parameter Counting

» only really works when comparing models with the same architecture
P even then not guaranteed to be useful

» Information Criteria (e.g. BIC, AIC)

» Both very crude tools (lots of approximations used in derivation)
» Both ignorant about the model architecture

» VC-dimension

» "What is size the the smallest binary classification problem that the
model cannot solve.”
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Machine Learning 2  Interlude: A note on Model complexity

Measures of Model Complexity

» Parameter Counting

» only really works when comparing models with the same architecture
P even then not guaranteed to be useful

» Information Criteria (e.g. BIC, AIC)

» Both very crude tools (lots of approximations used in derivation)
» Both ignorant about the model architecture

» VC-dimension

» "What is size the the smallest binary classification problem that the
model cannot solve.”

» Rademacher Complexity
> "How good can the model simulate noise.”
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Machine Learning 2  Interlude: A note on Model complexity

Measures of Model Complexity

» Parameter Counting

» only really works when comparing models with the same architecture
P even then not guaranteed to be useful

» Information Criteria (e.g. BIC, AIC)

» Both very crude tools (lots of approximations used in derivation)
» Both ignorant about the model architecture

» VC-dimension

» "What is size the the smallest binary classification problem that the
model cannot solve.”

» Rademacher Complexity
> "How good can the model simulate noise.”
» Kolmogorov Complexity & Minimum Description Length

» "What is the minimal size of a program that implements the model.”
» uncomputable!
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Machine Learning 2  Interlude: A note on Model complexity

Kolmogorov Complexity - Mandelbrot Fractal

Generated by a simple formula:
Does the iteration

zk+1:z,f+c zp=0

diverge? (with z, ¢ € C)
» Yes: c belongs to class 1 (white)
» No: ¢ belongs to class 0 (black)

images: wikipedia.org
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Machine Learning 2  Interlude: A note on Model complexity

Kolmogorov Complexity - Mandelbrot Fractal

Generated by a simple formula:
Does the iteration

zk+1:z,f+c zp=0

diverge? (with z, ¢ € C)
» Yes: c belongs to class 1 (white)
» No: ¢ belongs to class 0 (black)

Very simple rules lead to incredible
complexity.

images: wikipedia.org
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Machine Learning 2  Interlude: A note on Model complexity

Kolmogorov Complexity - Mandelbrot Fractal

Generated by a simple formula:
Does the iteration

zk+1:z,f+c zp=0

diverge? (with z, ¢ € C)
» Yes: c belongs to class 1 (white)
» No: ¢ belongs to class 0 (black)

Very simple rules lead to incredible
complexity.

It would be very hard to reconstruct
the rules, if we only know the image.
In fact, in general it is impossible!
«~ uncomputability

images: wikipedia.org
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Machine Learning 2 2. Proximal Gradient Methods

Outline

2. Proximal Gradient Methods
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Machine Learning 2 2. Proximal Gradient Methods

Regularized

We want to compute models

0* =argminL(0)+ R(0)
0~ ——

Loss Regularization
Even when R is not differentiable, e.g.

» R(0) = |01 (L' regularization, LASSO)

> R(0) = Ic() = {0 : Z Z (C:_ (hard constraint)
0 :

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

Regularized

We want to compute models

0* =argminL(0)+ R(0)
0~ ——

Loss Regularization

Even when R is not differentiable, e.g.

» R(0) = |01 (L' regularization, LASSO)

> R(0) = Ic() = {0 : Z Z (C:_ (hard constraint)
0 :

Observation: For simple loss functions, we can sometimes compute 6*
analytically

1
arg min 5[0 - ylI3 + Xl6ll2 = soft(y, A)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

Proximal Problem

» find x with minimal f in a vicinity of a given x

0,

0 - L 02

proxs(x°) :=arg min f(x) + §||x —x'||5
X

[m]

=
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Machine Learning 2 2. Proximal Gradient Methods

NN
Proximal Problem v

» find x with minimal f in a vicinity of a given x°:
1
proxs(x°) := arg min f(x) + EHX — x93
X

Can be solved analytically for some typical (possibly non-differentiable)
regularization functions: 1

> f = \|x]f3: prox,(x°) :mxo

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

Proximal Problem

» find x with minimal f in a vicinity of a given x°:
1
proxs(x°) := arg min f(x) + EHX — x93
X

Can be solved analytically for some typical (possibly non-differentiable)
regularization functions: o 1
AP E prox¢ (") =537

> = Ax]|1:

XO

proxs(x%) =soft(x®, \) := (soft(x%, \))n=1...n

soft(z, ) := sign(z)(]z] — A)o
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Machine Learning 2 2. Proximal Gradient Methods

Proximal Problem

» find x with minimal f in a vicinity of a given x°:
1
proxs(x°) := arg min f(x) + EHX — x93
X

Can be solved analytically for some typical (possibly non-differentiable)
regularization functions: o 1
AP E prox¢ (") =537

> = Ax]|1:

XO

proxs(x°) =soft(x®, \) := (soft(x%, A\))n=1...n

soft(z, ) := sign(z)(]z] — A)o
> = A|x||o:

proxs(x%) =hard(x%, \) := (hard(x2, A))n=1...N,
hard(z,\) :==d(|z| > ) z

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

More Analytical Solutions for the Proximal Problem
» find x with minimal f in a vicinity of a given x°:
1
prox(x°) := arg min f(x) + §\|x — X3
X

0, ifxecC

f := Ic for a convex set C and Ic(x) := {
oo, else

proxf(xo) = argmin||x — XOH% =: projC(xo)
xeC

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

More Analytical Solutions for the Proximal Problem
0.

» find x with minimal f in a vicinity of a given x
1
prox(x°) := arg min f(x) + §\|x — X3
X
0, ifxecC

f := Ic for a convex set C and Ic(x) := {
oo, else

proxf(xo) = argmin||x — XOH% =: projC(xo)
xeC

» rectangles / box constraints C := [, u1] X [k, us] X -+ X [In, un]:

prox(x°) =clip(x®, C)  with clip(x°, C), := min{max{x?, I,}, u,}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

More Analytical Solutions for the Proximal Problem

» find x with minimal f in a vicinity of a given x°:

1
prox(x°) := arg min f(x) + §\|x — X3
X

0, ifxecC

f := Ic for a convex set C and Ic(x) := {
oo, else

proxf(xo) = argmin||x — XOH% =: projC(xo)
xeC

» rectangles / box constraints C := [, u1] X [k, us] X -+ X [In, un]:
prox(x°) =clip(x®, C)  with clip(x°, C), := min{max{x?, I,}, u,}
» euclidean balls C := {x | ||x||2 < 1}:

0

_ X |f XO > 1
proxf(xo): [1x01]2 [1x7]|2
X0, else

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

More Analytical Solutions for the Proximal Problem

» find x with minimal f in a vicinity of a given x*:

1
prox,c(xo) :=argmin f(x) + EHX — XOHE
X

f :=Ic for
» L1 balls C := {x | ||x]]1 <1}

soft(x?, \), if [|x0] > 1

prox;(x°) = { 0

xY, else
N |
for A with > (Ix3] = A)o = 1

n=1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

. ; P2
Generalized Gradient Descent v

min g(x) + h(x), g, h convex, g differentiable
Generalized Gradient Descent:
x(tH1) . — proxa(t)h(x(t) — v g(x(1)))

1
with proxs(x°) := argmin f(x) + §||x — X912
X

» two-step approach:
1. minimize component g via gradient descent
2. minimize component h via prox operator

» requires control of step size a(t)

P> generalizes gradient descent to objective functions with
non-differentiable additive components

» convergence rate O(1/t).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

Application to Regularized Loss Minimization

min  £(0) :=£(0) + R(6)

» / loss, convex and differentiable
> e.g., RSS.
» R regularization, convex, but possibly not differentiable

0, becC
> e.g., ||9||1 or /C(H) = {oo else

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

Application to Regularized Loss Minimization
Minimizing
00+ .= arg min R(6) + £(6)
using a Taylor exepansmn around previous estimate 6():
0(0) =09 + V)T (9 — 0 + %(9 —0NTH (6 —01)

and diagonal approximation of the Hessian H ~ o()/
1
~0(00) + V(0T (60— 0)) 4 §a(t)H9 — 603
1 1 2
:§a(t)He — (6 — mW(e(“))u2 + r(6®)
yields a proximal problem

gt+1) ~arg) mln R(0) + *He - (0 - jVE(G(t)))Hg

0 _ L gop
—prox %t)R(e ORLIGR)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

Special Cases

1
(t+1) . (0~ (1)
0 = proxa(lt) r(0 NG Ve(6'))

1 1
= argmin — R(0) + 5||¢9 — (6 —
0

alt)
1. R =0 yields gradient descent:

1

(t+1) — p(t) _
0 0 NG

V(D)
2. R = I¢ yields projected gradient descent:

0D — projo (0 — —Lwe(a9))
alt)

1
— ®Y)112
a(t) Vf(@ ))”2

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

Special Cases: Projected Gradient Descent

[Mur12, fig. 13.11]
o & = = ==Y

DA
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

Special Cases

1
ﬁ

1
= arg9m|n © R(6) + H0 (0 o )V€(0 ))|]2

olt+1) prox%R(H(t) — V(™))

3. R = \||0]|]1 yields iterative soft thresholding:

A

90+ = soft(A(t) — —W(e(”), )
[0

alt)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods
Stepsizes alt) A
Taylor expansion of the Gradient:

V(0 = VLOD) + V201 (0 — 0) =~ V(D)) + oD (9 — 01))

— a® ) — gty = Vo)) — ve(et—1)
Idea:

alt) = argamin (0 — =1y — (w6 — we(et=1))| 3

B (Q(t) _ H(t_l))T(Vf(Q(t)) . VE(Q(’-‘—”))
B (6(t) — ple=1T (9(t) — g(t-1))

called Barzilai-Borwein stepsize or spectral stepsize.
P> does not guarantee decreasing objective values.

» can be used with any gradient descent method.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

NN
Iterative Shrinkage and Thresholding Algorithm(ISTA) “

» proximal gradient descent for L1 regularization
P iterative soft thresholding

» Barzilai-Borwein stepsize

» in outer loop, homotopy on A
» ie., gradually reducing A(Y) to X

Note This algorithm is called Sparse Reconstruction by Separable Approximation
(SpaRSA) . in the literature.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

NN
Algorithm “

Algorithm 13.2: Tterative Shrinkage-Thresholding Algorithm (ISTA)

1 Input: X € RV*P |y € RN, parameters A >0, M > 1,0 < s < 1;
2 Initialize 8 = 0, a =1, r =y, A\g = o0;

3 repeat

4 A¢ = max(s||XTr||o0, A) // Adapt the regularizer ;

5 repeat

6 g = VL(0);

7 u=~606-— é g;

8 Ozsoft(u,%);

9 Update « using BB stepsize in Equation 13.82 ;
10 until f(0) increased too much within the past M steps;
1 r =y — X6 // Update residual ;

2 until \; = )

—

[Mur12, p. 44
5 = =

o,

=] = DA

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

Nesterov's Accelerated Generalized Gradient Descent

min g(x) + h(x), g, h convex, g differentiable
X

Generalized Gradient Descent:

D) = prox o (x4 E L (0 — (1) _ o (yg(x(0)))

t+2

1
with prox;(x%) := argmin f(x) + §||x — X2
X

» added momentum term

» works also for vanilla gradient descent (h = 0)

» convergence rate O(1/t?)!

» beware, there are at least 3 versions of Nesterov’s method.
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Machine Learning 2 2. Proximal Gradient Methods

NE
Fast Iterative Shrinkage and Thresholding Alg. (FISTA)A

(t+1) . (t) (1) _plt=1)y _ (1)
0 = prox_s_ r(0 +t+2(9 6 ) — a(t)VE(H )

for R = A||||1 yields iterative soft thresholding:

-1
t+2

1 A
alt) a(t))

using Nesterov’s Accelerated Generalized Gradient Descent.

O — sofe(0 1 L2 (90 — g1y _ __wy(p®),

[} = =
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

FISTA vs ISTA

10°

= ISTA

FISTA

2000 4000 6000

8000 10000
Figure 5. Comparison

of function value errors F(xy) — F/(x*) of ISTA, MTWIST, and FISTA.

[BTO09, p. 19]
& = =
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Outline

Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

3. Laplace Priors (Bayesian Lasso)

[m]

=
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

Laplace Priors correspond to L1 regularization

N

f = argmin L(B) +A R(B)
B~

Loss Regularization

l” Bayesianize”

B= arg max p(B1X,y)
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

Laplace Priors correspond to L1 regularization

N

f = argmin L(B) +A R(B)
B~

Loss Regularization

l” Bayesianize”

N

B = argﬂmaxp(/@ | X,y)

PUB | X, y) o ply | X, 5)- p(B)

~
posterior likelihood prior
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

Laplace Priors correspond to L1 regularization

N

f = argmin L(B) +A R(B)
B~

Loss Regularization

l” Bayesianize”

N

B = argﬂmaxp(/@ | X,y)

p(B‘XJ/)OCP(y’XaB)JP\(@

posterior likelihood prior

» p(y | X,B8) = N(y | XB,0°) e« Bayesian Linear Regression
> p(8) = N(8]0,11) x exp(~2A[|B]Z) ~ Bayesian Ridge

> p(B) = Lap(5]0, }/) ox exp(—Al|]|1) ~~ Bayesian Lasso

» Different priors correspond to different regularization!
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

: o 21
Laplace Priors correspond to L1 regularization “
Problem: Still not possible to find the MAP analytically.

Idea: Rewrite the Laplace as a Gaussian-Scale-Mixture with Exponential
priors

Lap(5; |0, 1) = / N(B: | 0,72) Exp(r? | 1A2)dr2

i.e. each parameter is distributed as 3; ~ N'(0, 72) with 77 ~ Exp(3A?)
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

: o 21
Laplace Priors correspond to L1 regularization “
Problem: Still not possible to find the MAP analytically.

Idea: Rewrite the Laplace as a Gaussian-Scale-Mixture with Exponential
priors

Lap(5; |0, 1) = / N(B: | 0,72) Exp(r? | 1A2)dr2

i.e. each parameter is distributed as 3; ~ N'(0, 72) with 77 ~ Exp(3A?)

Resulting posterior distribution:

p(B,0% | Xy, ) o ply | X, B,0%) - p(B]7%)
—_————

- p(r?|7) - p(o?)
—_———
=N(y|XB,021)

=N(B|0,diag(72)) =Exp(r2|3A2) =IG(0?|a,b)

Where IG(c? | a, b) is an Inverse-Gamma prior on the variance, (7;)i=1..m
are latent variables and ) is the user chosen regularization strength.
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

: o 21
Laplace Priors correspond to L1 regularization “
Problem: Still not possible to find the MAP analytically.

Idea: Rewrite the Laplace as a Gaussian-Scale-Mixture with Exponential
priors

Lap(5; |0, 1) = / N(B: | 0,72) Exp(r? | 1A2)dr2

i.e. each parameter is distributed as 3; ~ N'(0, 72) with 77 ~ Exp(3A?)

Resulting posterior distribution:

p(B,0% | Xy, ) o ply | X, B,0%) - p(B]7%)
—_————

- p(r?|7) - p(o?)
—_———
=N(y|XB,021)

=N(B|0,diag(72)) =Exp(r2|3A2) =IG(0?|a,b)

Where IG(c? | a, b) is an Inverse-Gamma prior on the variance, (7;)i=1..m
are latent variables and ) is the user chosen regularization strength.

‘p is now smooth in all parameters! We can apply EM-aIgorithm!‘
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

Laplace Priors correspond to L1 regularization

L2 regularization:
F(B) = Ily — XBI[3 + AI5I13

Gaussian priors:

p()’n | Xn,ﬁ,o'z) = N(yn | sz—/Bao'z)
p(B) == N(B10,51)
= (2rA)~M/2 e 2 AIBI3

using negative loglikelihood as objective function:

f(8) := —logp(y | X, )
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

Laplace Priors correspond to L1 regularization

L2 regularization: L1 regularization:
F(8) = lly = XBI2 + AllBI F(8) = lly = XBI[Z + Al
Gaussian priors: Laplace priors:
p(yn | xa, 8,0%) := Ny | x, B,0°) p(Yn | Xn, 8,0%) = N(yn | %, B,07)
p(B) = N(B10,31) p(Bm) = Lap(Bm | 0, 3)
- (27r)\)*M/2 e 3813 = %)\eﬁxlﬁml

using negative loglikelihood as objective function:

f(8) := —logp(y | X, )
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

Laplace Prior as Gaussian Scale Mixture VI' i

1y, TR 2 Q7
p(yn | X,,,ﬁ,az) = N()’n | Xr;rﬁv(72) = \/2;?6 2020 |
2y . 2 1 I8l Oij
p(Bm | 75,) = N(Bm | 0,75,) = \/ﬁe ) ]
1 _ 1y
plra) = Bxp(miy | 50%) =3\ 2% O——Qu
g
a _ b
p(c?) == 1G(c? | a, b) = oo e
N
Note: A := diag(le,Tzz,...,Tﬁ/,) [Mur12, p. 446]
oy <3 =, <z, Z|= Dal
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

Laplace Prior as Gaussian Scale Mixture ’I “

1y, Tg 2 Qn
P | Xm B,0%) 1= Nyn | %] B,0%) = ez fnl
2y ) B ) _ﬁlﬁmp C)?UJD
p(Bm | 75,) = N(Bm | 0,75,) = \/ﬁe m ]
1 _lyo o
p(12) = Exp(2 | 5)\2) = %)\26 2T (2)——>.:l/,
o
a _ b
p(O’z) — |G(02 ‘ a, b) _ %0_2(1""3)6 -2 .
]\7

Negative-Log-Likelihood:
UB,0% | X,y,m%) = 3Nlogo® + 35|y — X513

M M
+ Z log 72, + %ﬁT/\flﬂ + %/\2 Z 72 4+ (14 a)log o? + ;bz
m=1 m=1

Note: A := diag(7'127 7'22, .. ,T,%/,) [Mur12, p. 446]
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

E-step for 72

We need to compute the expectation of

p(Tz | X7y7670-2) X P(ﬂ ’ T2)p(7_2)
where p(B; | 72) = N(8; | 0,72) and p(72) = Exp(7? | $)?)

[m]

=
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)
E-step for 72
We need to compute the expectation of
p(7* | X,y,8,0%) o< p(B | 7°)p(7°)
where p(B; | 72) = N(8; | 0,72) and p(7?) = Exp(7? | $)?)

It turns out simpler to estimate %: One can show that (tutorial)

1
= | B ~ InvGauss( %27A2)

Where the Inverse Gaussian distribution is given by

Y (x—p)?
InvGauss(x | p,v) = 2 )

——e
27x3

with mean E[x] = u and variance Var[x] = p3/v = E[%] =

A
1Bil
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)
E-step for o2
We need to compute the expectation of
2 2 2 2
p(o” [ X,y,B8,7%) o< p(y | X, 8,0%)p(c7)

where p(y | X, 3,02) = N(y | XB,021) and p(0?) = IG(o? | a, b)

[m] = = =
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

NS
E-step for o2 “

We need to compute the expectation of

p(o? | X,y,B8,7%) < ply | X, B,5%)p(0?)

where p(y | X, 3,02) = N(y | XB,021) and p(c?) = I1G(c? | a, b)
One can show that (tutorial)
p(o® | X,y,B,7%) =1G(c?, ", V)

with @ =a+ iN and b’ = b+ 3|ly — X33
Here the Inverse Gamma distribution is given by

ba
p(x | a,b) = x—le%

r(a)

Note that if X ~ [(a,b) <= X! ~1G(a,b), so |E[5] = 2
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

. . N
Remark on Conjugate Prior “
Note that the posterior of o is again an Inverse Gamma distribution!

p(a® | X,y,B) x ply | X,B,0%) p(c?)

——
=1G(2/,b") ) =1G(a,b)

This is because the IG is a conjugate prior to the normal distribution.

Conjugate priors let you interpret how the data changes the believe about
the parameters. — Main reason for choosing this prior!
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

s
Remark on Conjugate Prior q

Note that the posterior of o is again an Inverse Gamma distribution!

p(a? | X,y,B) o< p(y | X, B,0%) p(c?)
——
—1G(2/,b/) NGov)  =IG(a,b)

This is because the IG is a conjugate prior to the normal distribution.
Conjugate priors let you interpret how the data changes the believe about
the parameters. — Main reason for choosing this prior!

Remark: inverse distributions
Note that the Inverse Gamma distribution is called Inverse Gamma because

X ~T(a,b) <= X1 ~IG(a,b) (1)

However, despite the name, the same is not true for the Inverse Gaussian!

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

38 / 41



Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

NN
M-step for (3 “

We need to compute
§=argmin((3,0%,7%) = argmin 3l |y ~ X5l + 357N 5

where we dropped all terms independent of 3. Then

Vsl =0 = (UIZXTX+/\_1)5A: %XTy

So|B=(XTX+ (LN )Xy

which is a ridge regression objective!
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

EM summary

1. Expectation of 72:

p(# | B) = Inv—Gauss(,/g—;,)\z)

A
Bl = 1

2. Expectation of 02:
p(o® | Xy, B) = 1G(o® | &, b)
E[] =%
3. Maximization w.r.t. f:

0B) = 5=y — XBl3+38"A 18
B=X"X+(EN Xy
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

Why Laplace Prior?

» Bayesian Lasso
» provides posterior distribution, not just point estimates

» Can be generalized to other models / losses
» Motivates to experiment with other types of priors, too

P Less scalable than the other methods, though.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2

» L1 regularization: [Murl2, chapter 13.3-5], [HTFFO05, chapter 3.4,
3.8, 4.4.4], [Bis06, chapter 3.1.4].
> LAR, LARS: [HTFF05, chapter 3.4.4], [Murl2, chapter 13.4.2],

» Non-convex regularizers: [Murl2, chapter 13.6].

» Automatic Relevance Determination (ARD): [Murl2, chapter 13.7],
[HTFFO05, chapter 11.9.1], [Bis06, chapter 7.2.2].

» Sparse Coding: [Murl2, chapter 13.8].
» Multivariate Laplace Distribution: [EKL06]

Further Readings

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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