
Machine Learning 2

Machine Learning 2
2. Gaussian Process Models (GPs)

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science

University of Hildesheim, Germany

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 28

Machine Learning 2

Syllabus
A. Advanced Supervised Learning

Fri. 24.4. (1) A.1 Generalized Linear Models
Fri. 1.5. — — Labour Day —
Fri. 8.5. (2) A.2 Gaussian Processes
Fri. 15.5. (3) A.3 Advanced Support Vector Machines

B. Ensembles
Fri. 22.5. (4) B.1 Stacking

& B.2 Boosting
Fri. 29.5. (5) B.3 Mixtures of Experts
Fri. 5.6. — — Pentecoste Break —

C. Sparse Models
Fri. 12.6. (6) C.1 Homotopy and Least Angle Regression
Fri. 19.6. (7) C.2 Proximal Gradients
Fri. 26.6. (8) C.3 Laplace Priors
Fri. 3.7. (9) C.4 Automatic Relevance Determination

D. Complex Predictors
Fri. 10.7. (10) D.1 Latent Dirichlet Allocation (LDA)
Fri. 17.7. (11) Q & A

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 28

Machine Learning 2

Outline

1. The Gaussian Process Regression Model

2. Inference with Gaussian Processes

3. Learning Gaussian Processes

4. Gaussian Processes for Classification

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 28

Machine Learning 2 1. The Gaussian Process Regression Model

Outline

1. The Gaussian Process Regression Model

2. Inference with Gaussian Processes

3. Learning Gaussian Processes

4. Gaussian Processes for Classification

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 28

Machine Learning 2 1. The Gaussian Process Regression Model

Gaussian Process Model

Gaussian Processes describe

I the vector y := (y1, . . . , yN)T of all targets

I as a sample from a normal distribution

I where targets of different instances are correlated by a kernel Σ:

I and thus depend on the matrix X of all predictors:

y | X ∼ N (y | µ(X),Σ(X))

with

µ(X)n :=m(xn)

Σ(X)n,m :=k(xn, xm), n,m ∈ {1, . . . ,N}

with a kernel function k and mean function m (often m = 0).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 28

Machine Learning 2 1. The Gaussian Process Regression Model

Kernels

The kernel k measures how much targets y , y ′ correlate given their
predictors x , x ′.

I k(x , x ′) is larger the more similar x , x ′ are

I esp. k(x , x) ≥ k(x , x ′) ∀x , x ′

Example: squared exponential kernel / Gaussian kernel

k(x , x ′) := σ2
f e
− 1

2`2 ||x−x ′||2

with kernel (hyper)parameters

` horizontal length scale (x)

σ2
f vertical variation (y)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 28

Machine Learning 2 1. The Gaussian Process Regression Model

GPs as Prior on Functions

identity kernel

4 2 0 2 4
x

2

1

0

1

2

y

squared exponential kernel

4 2 0 2 4
x

1.0

0.5

0.0

0.5

1.0

y

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

3 / 28

Machine Learning 2 1. The Gaussian Process Regression Model

GPs as Prior on Functions

identity kernel

4 2 0 2 4
x

2

1

0

1

2

y

squared exponential kernel

4 2 0 2 4
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

3 / 28

Machine Learning 2 2. Inference with Gaussian Processes

Outline

1. The Gaussian Process Regression Model

2. Inference with Gaussian Processes

3. Learning Gaussian Processes

4. Gaussian Processes for Classification

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

4 / 28

Machine Learning 2 2. Inference with Gaussian Processes

Conditional Distributions of Multivariate Normals

Let yA, yB be jointly Gaussian

y :=

(
yA
yB

)
∼ N

((
yA
yB

) ∣∣∣∣
(
µA
µB

)
,

(
ΣAA ΣAB

ΣBA ΣBB

))

then the conditional distribution is

p(yB | yA) = N (yB | µB|A,ΣB|A)

with

µB|A := µB + ΣBAΣ−1
AA(yA − µA)

ΣB|A := ΣBB − ΣBAΣ−1
AAΣAB

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

4 / 28

Machine Learning 2 2. Inference with Gaussian Processes

Predictions w/o Noise
Let y ,X be the training data,

X∗ be the test data and
y∗ be the test targets to predict.

(
y
y∗

)
| X ,X∗ ∼N (

(
y
y∗

)
|
(

µ
µ∗

)
,

(
Σ Σ∗

ΣT
∗ Σ∗∗

)
)

with

µ :=m(X), µ∗ := m(X∗)

Σ :=k(X ,X), Σ∗ := k(X ,X∗), Σ∗∗ := k(X∗,X∗)

Then
p(y∗ | y) = N (y∗ | µ̃∗, Σ̃∗)

µ̃∗ := µ∗ + ΣT
∗ Σ−1(y − µ)

Σ̃∗ := Σ∗∗ − ΣT
∗ Σ−1Σ∗

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

5 / 28

Machine Learning 2 2. Inference with Gaussian Processes

Example w/o Noise

fig/03-gaussian-process-models/{Murphy2012-fig15.2a}.pdffig/03-gaussian-process-models/{Murphy2012-fig15.2b}.pdf

Without noise the data is interpolated.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

6 / 28

[?, fig. 15.2]

Machine Learning 2 2. Inference with Gaussian Processes

Predictions with Noise
No noise:

Σ :=K

With noise:

Σ :=K + σ2
y I

Then as before

p(y∗ | y) = N (y∗ | µ̃∗, Σ̃∗)
now with

µ̃∗ :=µ∗ + KT
∗ (K + σ2

y I)
−1(y − µ)

Σ̃∗ :=K∗∗ + σ2
y I − KT

∗ (K + σ2
y I)
−1K∗

where

K :=k(X ,X), K∗ := k(X ,X∗), K∗∗ := k(X∗,X∗)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

7 / 28

Machine Learning 2 2. Inference with Gaussian Processes

Predictions with Noise, Zero Means

p(y∗ | y) = N (y∗ | µ̃∗, Σ̃∗)

with

µ̃∗ :=µ∗ + KT
∗ (K + σ2

y I)
−1(y − µ)

Σ̃∗ :=K∗∗ + σ2
y I − KT

∗ (K + σ2
y I)
−1K∗

With m = 0:

p(y∗ | y) = N (y∗ | µ̃∗, Σ̃∗)

with

µ̃∗ :=KT
∗ (K + σ2

y I)
−1y

Σ̃∗ :=K∗∗ + σ2
y I − KT

∗ (K + σ2
y I)
−1K∗

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

8 / 28

Machine Learning 2 2. Inference with Gaussian Processes

Prediction for a single instance

p(y∗ | y) = N (y∗ | µ̃∗, Σ̃∗)
with

µ̃∗ :=KT
∗ (K + σ2

y I)
−1y

Σ̃∗ :=K∗∗ + σ2
y I − KT

∗ (K + σ2
y I)
−1K∗

Prediction ŷ for a single instance x :

ŷ(x) :=kT∗ (K + σ2
y I)
−1y =

N∑

n=1

αnk(xn, x), α := (K + σ2
y I)
−1y

with

k∗ :=k(X , x)

But GPs can provide a joint inference for multiple instances.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

9 / 28

Machine Learning 2 2. Inference with Gaussian Processes

Example with Noise

fig/03-gaussian-process-models/{Murphy2012-fig15.3a}.pdf

(`, σf , σy) = (1, 1, 0.1)

fig/03-gaussian-process-models/{Murphy2012-fig15.3b}.pdf

(`, σf , σy) = (0.3, 0.1?, 0.00005)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

10 / 28

[?, fig. 15.3]

Machine Learning 2 2. Inference with Gaussian Processes

Example with Noise

fig/03-gaussian-process-models/{Murphy2012-fig15.3a}.pdf

(`, σf , σy) = (1, 1, 0.1)

fig/03-gaussian-process-models/{Murphy2012-fig15.3c}.pdf

(`, σf , σy) = (3, 1.16, 0.89)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

10 / 28

[?, fig. 15.3]

Machine Learning 2 3. Learning Gaussian Processes

Outline

1. The Gaussian Process Regression Model

2. Inference with Gaussian Processes

3. Learning Gaussian Processes

4. Gaussian Processes for Classification

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

11 / 28

Machine Learning 2 3. Learning Gaussian Processes

Estimating Kernel Parameters

Either treating them as hyperparameters (grid search, random search) or
maximize the marginal likelihood (empirical Bayes; grad. desc.).

Model:

p(y | X , θ) = N (y | 0, (K + σ2
y I)), θ := (`, σ2

f , σ
2
y)

Negative log-likelihood:

L(θ) = − log p(y | X , θ)

=
1

2
yT (K + σ2

y I)
−1y +

1

2
log det(K + σ2

y I) +
N

2
log(2π)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

11 / 28

Machine Learning 2 3. Learning Gaussian Processes

Estimating Kernel Parameters

Negative log-likelihood (θ := (`, σ2
f , σ

2
y)):

L(θ) =
1

2
yT (K + σ2

y I)
−1y +

1

2
log det(K + σ2

y I) +
N

2
log(2π)

Gradients:

∂L

∂θj
=− 1

2
yT (K + σ2

y I)
−1∂(K + σ2

y I)

∂θj
(K + σ2

y I)
−1y

+
1

2
tr((K + σ2

y I)
−1∂(K + σ2

y I)

∂θj
)

=− 1

2
tr
(

(ααT − (K + σ2
y I)
−1)

∂(K + σ2
y I)

∂θj

)
, α := (K + σ2

y I)
−1y

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

12 / 28

Note: ∂(X−1) = X−1(∂X)X−1, ∂ detX = 1
det X

tr
(
(X−1)T∂X

)
,

and tr(aaTB) = aTBa. θ1 := `, θ2 := σ2
f , θ3 := σ2

y .

Machine Learning 2 3. Learning Gaussian Processes

Cholesky decompositon

How to solve Ax = b?

Matrix inversion: x = A−1b is problematic because

I Numerically unstable

I A−1 is dense, even if A is sparse

Better: LU-decomposition

Ax = b
A=LU−−−−→ Lz = b

Ux = z

I L and U lower/upper triangular

I if A symmetric pos.-definite, then (L,U) can be chosen s.t. U = LT

(Cholesky-decomposition)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

13 / 28

Machine Learning 2 3. Learning Gaussian Processes

Local Minima for Kernel Parameters

fig/03-gaussian-process-models/{Murphy2012-fig15.5a}.pdffig/03-gaussian-process-models/{Murphy2012-fig15.5b}.pdf

fig/03-gaussian-process-models/{Murphy2012-fig15.5c}.pdf
I top: (`, σy) ≈ (10, 0.8)

I left: (`, σy) ≈ (1, 0.1)

I in both cases σf = 1
(fixed)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

14 / 28

[?, fig. 15.5]

Machine Learning 2 3. Learning Gaussian Processes

Semi-parametric GPs

f (x) =βTφ(x) + r(x)

r(X) ∼GP(r | 0, k(X ,X))

Assuming

β ∼ N (β | b,B), e.g., b := 0,B := σ2
βI

yields just another GP

f (X) ∼ GP(φ(X)Tb, k(X ,X) + φ(X)Bφ(X)T)

where

φ(X) :=(φ(x1), . . . , φ(xN))T

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

15 / 28

Machine Learning 2 4. Gaussian Processes for Classification

Outline

1. The Gaussian Process Regression Model

2. Inference with Gaussian Processes

3. Learning Gaussian Processes

4. Gaussian Processes for Classification

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

16 / 28

Machine Learning 2 4. Gaussian Processes for Classification

Model

p(y | x) := s(y f (x)), y ∈ {+1,−1}, s := logistic

f ∼GP(f | 0,K (X ,X))

I f : latent score

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

16 / 28

Machine Learning 2 4. Gaussian Processes for Classification

Inference

Two-step inference:

1. infer latent score variable:

p(f∗ | X , y , x∗) =

∫
p(f∗ | X , x∗, f) p(f | X , y) df

2. infer target:

π∗ := p(y∗ = +1 | X , y , x∗) =

∫
s(f∗) p(f∗ | X , y , x∗) df∗

Non Gaussians are analytically intractable.

 Gaussian approximation (Laplace approximation)

 Expectation Propagation (EP)

 further methods

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

17 / 28

Machine Learning 2 4. Gaussian Processes for Classification

Posterior

p(f | X , y) =
p(y | f ,X) p(f | X)

p(y | X)
∝ p(y | f) p(f | X)

`(f) = log p(y | f) + log p(f | X)

= log p(y | f)− 1

2
f TK−1f − 1

2
log |K | − N

2
log 2π

∇`(f) =∇ log p(y | f)− K−1f

∇2`(f) =∇2 log p(y | f)− K−1

for logistic:

∇ log p(y | f) =y − π
∇2 log p(y | f) =diag(−π ◦ (1− π)) =: −W

at maximum:

∇`(f) = 0 =⇒ f = K∇ log p(y | f)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

18 / 28

Machine Learning 2 4. Gaussian Processes for Classification

Posterior

at maximum:

∇`(f) = 0 =⇒ f = K∇ log p(y | f)

Use Newton to find a maximum:

f (t+1) :=f (t) − (∇2`)−1∇`
=f (t) + (K−1 + W (t))−1(∇ log p(y | f)− K−1f (t))

=(K−1 + W (t))−1(W (t)f (t) +∇ log p(y | f))

eventually yielding the maximum posterior f̂ .

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

19 / 28

Machine Learning 2 4. Gaussian Processes for Classification

Gaussian Approximation

p(f | X , y) ≈ q(f | X , y) := N (f | f̂ , (K−1 + W)−1)

using the Hessian as covariance matrix.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

20 / 28

Machine Learning 2 4. Gaussian Processes for Classification

Predictions
exact mean

Ep(f∗ | X , y , x∗) =

∫
E (f∗ | f ,X , x∗) p(f | X , y)df

=

∫
k(x∗)

TK−1f p(f | X , y)df

=k(x∗)
TK−1Ep(f | X , y)

approximated mean:

Eq(f∗ | X , y , x∗) =k(x∗)
TK−1f̂

variance:

Varq(f∗ | X , y , x∗) =k(x∗, x∗)− kT∗ (K + W−1)−1k∗

predictions:

π̄∗ :=Eq(π∗ | X , y , x∗) =

∫
s(f∗)q(f∗ | X , y , x∗)df∗

solve integral via MCMC or
probit approximation (Murphy 8.4.4.2)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

21 / 28

Machine Learning 2 4. Gaussian Processes for Classification

Algorithm (Step 1)C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

46 Classification

input: K (covariance matrix), y (±1 targets), p(y|f) (likelihood function)
2: f := 0 initialization

repeat Newton iteration
4: W := −∇∇ log p(y|f) eval. W e.g. using eq. (3.15) or (3.16)

L := cholesky(I +W
1
2KW

1
2) B = I +W

1
2KW

1
2

6: b :=W f +∇ log p(y|f)
a := b−W 1

2L>\(L\(W 1
2Kb))

}
eq. (3.18) using eq. (3.27)

8: f := Ka
until convergence objective: − 1

2a
>f + log p(y|f)

10: log q(y|X, θ) := − 1
2a

>f + log p(y|f)−∑i logLii eq. (3.32)
return: f̂ := f (post. mode), log q(y|X, θ) (approx. log marg. likelihood)

Algorithm 3.1: Mode-finding for binary Laplace GPC. Commonly used convergence
criteria depend on the difference in successive values of the objective function Ψ(f)
from eq. (3.12), the magnitude of the gradient vector ∇Ψ(f) from eq. (3.13) and/or the
magnitude of the difference in successive values of f . In a practical implementation
one needs to secure against divergence by checking that each iteration leads to an
increase in the objective (and trying a smaller step size if not). The computational
complexity is dominated by the Cholesky decomposition in line 5 which takes n3/6
operations (times the number of Newton iterations), all other operations are at most
quadratic in n.

thus numerically safe to compute its Cholesky decomposition LL> = B, which
is useful in computing terms involving B−1 and |B|.

The mode-finding procedure uses the Newton iteration given in eq. (3.18),
involving the matrix (K−1+W)−1. Using the matrix inversion lemma eq. (A.9)
we get

(K−1 +W)−1 = K −KW 1
2B−1W

1
2K, (3.27)

where B is given in eq. (3.26). The advantage is that whereas K may have
eigenvalues arbitrarily close to zero (and thus be numerically unstable to invert),
we can safely work with B. In addition, Algorithm 3.1 keeps the vector a =
K−1f in addition to f , as this allows evaluation of the part of the objective
Ψ(f) in eq. (3.12) which depends on f without explicit reference to K−1 (again
to avoid possible numerical problems).

Similarly, for the computation of the predictive variance Vq[f∗|y] from eq. (3.24)
we need to evaluate a quadratic form involving the matrix (K +W−1)−1. Re-
writing this as

(K +W−1)−1 = W
1
2W− 1

2 (K +W−1)−1W− 1
2W

1
2 = W

1
2B−1W

1
2 (3.28)

achieves numerical stability (as opposed to inverting W itself, which may have
arbitrarily small eigenvalues). Thus the predictive variance from eq. (3.24) can
be computed as

Vq[f∗|y] = k(x∗,x∗)− k(x∗)
>W

1
2 (LL>)−1W

1
2k(x∗)

= k(x∗,x∗)− v>v, where v = L\(W 1
2k(x∗)),

(3.29)

which was also used by Seeger [2003, p. 27].

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

22 / 28

[Rasmussen/Williams 2006, p. 14]

Machine Learning 2 4. Gaussian Processes for Classification

Algorithm (Step 1)C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

46 Classification

input: K (covariance matrix), y (±1 targets), p(y|f) (likelihood function)
2: f := 0 initialization

repeat Newton iteration
4: W := −∇∇ log p(y|f) eval. W e.g. using eq. (3.15) or (3.16)

L := cholesky(I +W
1
2KW

1
2) B = I +W

1
2KW

1
2

6: b :=W f +∇ log p(y|f)
a := b−W 1

2L>\(L\(W 1
2Kb))

}
eq. (3.18) using eq. (3.27)

8: f := Ka
until convergence objective: − 1

2a
>f + log p(y|f)

10: log q(y|X, θ) := − 1
2a

>f + log p(y|f)−∑i logLii eq. (3.32)
return: f̂ := f (post. mode), log q(y|X, θ) (approx. log marg. likelihood)

Algorithm 3.1: Mode-finding for binary Laplace GPC. Commonly used convergence
criteria depend on the difference in successive values of the objective function Ψ(f)
from eq. (3.12), the magnitude of the gradient vector ∇Ψ(f) from eq. (3.13) and/or the
magnitude of the difference in successive values of f . In a practical implementation
one needs to secure against divergence by checking that each iteration leads to an
increase in the objective (and trying a smaller step size if not). The computational
complexity is dominated by the Cholesky decomposition in line 5 which takes n3/6
operations (times the number of Newton iterations), all other operations are at most
quadratic in n.

thus numerically safe to compute its Cholesky decomposition LL> = B, which
is useful in computing terms involving B−1 and |B|.

The mode-finding procedure uses the Newton iteration given in eq. (3.18),
involving the matrix (K−1+W)−1. Using the matrix inversion lemma eq. (A.9)
we get

(K−1 +W)−1 = K −KW 1
2B−1W

1
2K, (3.27)

where B is given in eq. (3.26). The advantage is that whereas K may have
eigenvalues arbitrarily close to zero (and thus be numerically unstable to invert),
we can safely work with B. In addition, Algorithm 3.1 keeps the vector a =
K−1f in addition to f , as this allows evaluation of the part of the objective
Ψ(f) in eq. (3.12) which depends on f without explicit reference to K−1 (again
to avoid possible numerical problems).

Similarly, for the computation of the predictive variance Vq[f∗|y] from eq. (3.24)
we need to evaluate a quadratic form involving the matrix (K +W−1)−1. Re-
writing this as

(K +W−1)−1 = W
1
2W− 1

2 (K +W−1)−1W− 1
2W

1
2 = W

1
2B−1W

1
2 (3.28)

achieves numerical stability (as opposed to inverting W itself, which may have
arbitrarily small eigenvalues). Thus the predictive variance from eq. (3.24) can
be computed as

Vq[f∗|y] = k(x∗,x∗)− k(x∗)
>W

1
2 (LL>)−1W

1
2k(x∗)

= k(x∗,x∗)− v>v, where v = L\(W 1
2k(x∗)),

(3.29)

which was also used by Seeger [2003, p. 27].

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

23 / 28

[Rasmussen/Williams 2006, p. 14]

Machine Learning 2 4. Gaussian Processes for Classification

Algorithm (Step 2)
C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

3.4 The Laplace Approximation for the Binary GP Classifier 47

input: f̂ (mode), X (inputs), y (±1 targets), k (covariance function),
p(y|f) (likelihood function), x∗ test input

2: W := −∇∇ log p(y|f̂)
L := cholesky(I +W

1
2KW

1
2) B = I +W

1
2KW

1
2

4: f̄∗ := k(x∗)>∇ log p(y|f̂) eq. (3.21)

v := L\
(
W

1
2k(x∗)

)

6: V[f∗] := k(x∗,x∗)− v>v

}
eq. (3.24) using eq. (3.29)

π̄∗ :=
∫
σ(z)N (z|f̄∗,V[f∗])dz eq. (3.25)

8: return: π̄∗ (predictive class probability (for class 1))

Algorithm 3.2: Predictions for binary Laplace GPC. The posterior mode f̂ (which
can be computed using Algorithm 3.1) is input. For multiple test inputs lines 4−7 are
applied to each test input. Computational complexity is n3/6 operations once (line
3) plus n2 operations per test case (line 5). The one-dimensional integral in line 7
can be done analytically for cumulative Gaussian likelihood, otherwise it is computed
using an approximation or numerical quadrature.

In practice we compute the Cholesky decomposition LL> = B during the
Newton steps in Algorithm 3.1, which can be re-used to compute the predictive
variance by doing backsubstitution with L as discussed above. In addition,
L may again be re-used to compute |In + W

1
2KW

1
2 | = |B| (needed for the

computation of the marginal likelihood eq. (3.32)) as log |B| = 2
∑

logLii. To
save computation, one could use an incomplete Cholesky factorization in the incomplete Cholesky

factorizationNewton steps, as suggested by Fine and Scheinberg [2002].

Sometimes it is suggested that it can be useful to replace K by K+εI where
ε is a small constant, to improve the numerical conditioning10 of K. However,
by taking care with the implementation details as above this should not be
necessary.

3.4.4 Marginal Likelihood

It will also be useful (particularly for chapter 5) to compute the Laplace ap-
proximation of the marginal likelihood p(y|X). (For the regression case with
Gaussian noise the marginal likelihood can again be calculated analytically, see
eq. (2.30).) We have

p(y|X) =

∫
p(y|f)p(f |X) df =

∫
exp

(
Ψ(f)

)
df . (3.30)

Using a Taylor expansion of Ψ(f) locally around f̂ we obtain Ψ(f) ' Ψ(f̂) −
1
2 (f− f̂)>A(f− f̂) and thus an approximation q(y|X) to the marginal likelihood
as

p(y|X) ' q(y|X) = exp
(
Ψ(f̂)

) ∫
exp

(
− 1

2 (f − f̂)>A(f − f̂)
)
df . (3.31)

10Neal [1999] refers to this as adding “jitter” in the context of Markov chain Monte Carlo
(MCMC) based inference; in his work the latent variables f are explicitly represented in
the Markov chain which makes addition of jitter difficult to avoid. Within the analytical
approximations of the distribution of f considered here, jitter is unnecessary.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

24 / 28

[Rasmussen/Williams 2006, p. 14]

Machine Learning 2 4. Gaussian Processes for Classification

MCMC

How to compute integrals of the form

∫ b

a
h(x)p(x)dx

where p is a probability density on [a, b].

∫ b

a
h(x)p(x)dx = Ep[h] ≈ 1

N

N∑

i=1

h(xi) (1)

when xi are sampled iid from p. (Monte-Carlo-integration)
Markov-Chain-Monte-Carlo: Clever sampling strategy of xi

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

25 / 28

Machine Learning 2 4. Gaussian Processes for Classification

Approximation Methods for Large Datasets

See recent literature:

I Filippone, M. and Engler, R. 2015.
Enabling scalable stochastic gradient-based inference for Gaussian
processes by employing the Unbiased LInear System SolvEr (ULISSE),
arXiv preprint arXiv:1501.05427. (2015).

I Dai, B., Xie, B., He, N., Liang, Y., Raj, A., Balcan, M.-F. and Song,
L. 2014.
Scalable Kernel Methods via Doubly Stochastic Gradients.
arXiv:1407.5599 [cs, stat]. (Jul. 2014).

I Hensman, J., Fusi, N. and Lawrence, N.D. 2013.
Gaussian processes for big data. arXiv preprint arXiv:1309.6835.
(2013).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

26 / 28

Machine Learning 2 4. Gaussian Processes for Classification

Summary

I Gaussian processes model continuous targets as jointly normally
distributed.
I correlated by covariance matrix depending on the predictors (kernel)

I The squared exponential kernel often is used as kernel.
I having 2 kernel parameters: horizontal length scale and vertical

variation

I Noise variation has to be added to the model
— otherwise Gaussian processes interpolate the observed data.

I Kernel parameters can be learnt through gradient descent.
I the objective is not convex, local minima need to be treated

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

27 / 28

Machine Learning 2 4. Gaussian Processes for Classification

Summary (2/2)

I For classification, Gaussian processes can be used to model
I a score function f
I that is mapped through the logistic function to probabilities π of target

labels.

I The posterior is not Gaussian, but can be approximated by a Gaussian
(Laplace approximation).

I Also the posterior predictive E (π∗ | x∗,X , y) cannot be computed
analytically.
I but it can be approximated by an integral over the (approximatly)

normally distributed predictive score f∗
I and thus be computed by MCMC.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

28 / 28

Machine Learning 2

Further Readings

I Rasmussen & Williams: Gaussian Processes for Machine Learning

(free ebook!)

I See also [?, chapter 15].

I Conditioning Gaussians: [?, section 4.3].

I Derivatives of inverse of a matrix etc., see, e.g., The Matrix
Cookbook, http:
//www.mit.edu/~wingated/stuff_i_use/matrix_cookbook.pdf

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

29 / 28

http://www.mit.edu/~wingated/stuff_i_use/matrix_cookbook.pdf
http://www.mit.edu/~wingated/stuff_i_use/matrix_cookbook.pdf

Machine Learning 2

Some Matrix Derivatives

∂(X−1) = −X−1(∂X)X−1

∂(log(|X |)) = tr(X−1∂X)

Computing with traces:

tr(aaTB) = aTBa

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

30 / 28

Machine Learning 2

References

Kevin P. Murphy.

Machine learning: a probabilistic perspective.
The MIT Press, 2012.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

31 / 28

	1. The Gaussian Process Regression Model
	2. Inference with Gaussian Processes
	3. Learning Gaussian Processes
	4. Gaussian Processes for Classification
	Appendix

