

Machine Learning 2 2. Gaussian Process Models (GPs)

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim, Germany

シック 正則 エル・エット (四)・ (日)・

Syllabus			A. Advanced Supervised Learning
Fri.	24.4.	(1)	A.1 Generalized Linear Models
Fri.	1.5.		— Labour Day —
Fri.	8.5.	(2)	A.2 Gaussian Processes
Fri.	15.5.	(3)	A.3 Advanced Support Vector Machines
			B. Ensembles
Fri.	22.5.	(4)	B.1 Stacking
			& B.2 Boosting
Fri.	29.5.	(5)	B.3 Mixtures of Experts
Fri.	5.6.	_	— Pentecoste Break —
			C. Sparse Models
Fri.	12.6.	(6)	C.1 Homotopy and Least Angle Regression
Fri.	19.6.	(7)	C.2 Proximal Gradients
Fri.	26.6.	(8)	C.3 Laplace Priors
Fri.	3.7.	(9)	C.4 Automatic Relevance Determination
			D. Complex Predictors
Fri.	10.7.	(10)	D.1 Latent Dirichlet Allocation (LDA)
Fri.	17.7.	(11)	Q & A

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Outline

- 1. The Gaussian Process Regression Model
- 2. Inference with Gaussian Processes
- 3. Learning Gaussian Processes
- 4. Gaussian Processes for Classification

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆○◆

Outline

1. The Gaussian Process Regression Model

2. Inference with Gaussian Processes

3. Learning Gaussian Processes

4. Gaussian Processes for Classification

シック 三所 エル・エリ・エマー

Gaussian Process Model

Gaussian Processes describe

- the vector $y := (y_1, \ldots, y_N)^T$ of all targets
- ► as a sample from a **normal distribution**
- where targets of different instances are correlated by a kernel Σ :
- ▶ and thus depend on the **matrix** X **of all predictors**:

$$y \mid X \sim \mathcal{N}(y \mid \mu(X), \Sigma(X))$$

with

$$\mu(X)_n := m(x_n)$$

 $\Sigma(X)_{n,m} := k(x_n, x_m), \quad n, m \in \{1, \dots, N\}$

with a kernel function k and mean function m (often m = 0).

シック エービー・ボット キャー・

Kernels

The kernel k measures how much targets y, y' correlate given their predictors x, x'.

- k(x, x') is larger the more similar x, x' are
- esp. $k(x,x) \ge k(x,x') \ \forall x,x'$

Example: squared exponential kernel / Gaussian kernel

$$k(x, x') := \sigma_f^2 e^{-\frac{1}{2\ell^2} ||x - x'||^2}$$

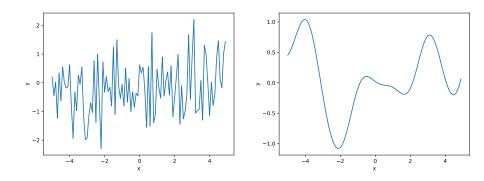
with kernel (hyper)parameters

 ℓ horizontal length scale (x) σ_f^2 vertical variation (y)

GPs as Prior on Functions

identity kernel

squared exponential kernel

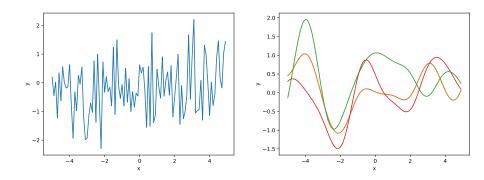


シック・目目 (ヨシ (ヨシ (ヨシ (ロ)))

GPs as Prior on Functions

identity kernel

squared exponential kernel



Outline

1. The Gaussian Process Regression Model

2. Inference with Gaussian Processes

- 3. Learning Gaussian Processes
- 4. Gaussian Processes for Classification

もうかん 川川 ふかく 山々 むやく 白々

Jniversiter . . .

Conditional Distributions of Multivariate Normals

Let y_A, y_B be jointly Gaussian

$$y := \begin{pmatrix} y_A \\ y_B \end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix} y_A \\ y_B \end{pmatrix} \middle| \begin{pmatrix} \mu_A \\ \mu_B \end{pmatrix}, \begin{pmatrix} \Sigma_{AA} & \Sigma_{AB} \\ \Sigma_{BA} & \Sigma_{BB} \end{pmatrix} \right)$$

then the conditional distribution is

$$p(y_B \mid y_A) = \mathcal{N}(y_B \mid \mu_{B|A}, \Sigma_{B|A})$$

with

$$\mu_{B|A} := \mu_B + \Sigma_{BA} \Sigma_{AA}^{-1} (y_A - \mu_A)$$

$$\Sigma_{B|A} := \Sigma_{BB} - \Sigma_{BA} \Sigma_{AA}^{-1} \Sigma_{AB}$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆○◆

Predictions w/o Noise

Let y, X be the training data, X_* be the test data and y_* be the test targets to predict.

$$\left(\begin{array}{c} y\\ y_* \end{array}\right) \mid X, X_* \sim \mathcal{N}\left(\left(\begin{array}{c} y\\ y_* \end{array}\right) \mid \left(\begin{array}{c} \mu\\ \mu_* \end{array}\right), \left(\begin{array}{c} \Sigma & \Sigma_*\\ \Sigma_*^T & \Sigma_{**} \end{array}\right)\right)$$

with

$$\begin{split} & \mu := m(X), \quad \mu_* := m(X_*) \\ & \Sigma := k(X,X), \quad \Sigma_* := k(X,X_*), \quad \Sigma_{**} := k(X_*,X_*) \end{split}$$

Then

$$p(y_* \mid y) = \mathcal{N}(y_* \mid \tilde{\mu}_*, \tilde{\Sigma}_*)$$
$$\tilde{\mu}_* := \mu_* + \Sigma_*^T \Sigma^{-1}(y - \mu)$$
$$\tilde{\Sigma}_* := \Sigma_{**} - \Sigma_*^T \Sigma^{-1} \Sigma_*$$

→ 同 ▶ → 三 ▶ → 三 ⊨ → へ ○

Example w/o Noise

Without noise the data is interpolated.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

6 / 28

Predictions with Noise

No noise:

 $\Sigma := K$

With noise:

 $\Sigma := K + \sigma_y^2 I$

Then as before

$$p(y_* \mid y) = \mathcal{N}(y_* \mid \tilde{\mu}_*, \tilde{\Sigma}_*)$$

now with

$$\tilde{\mu}_* := \mu_* + K_*^T (K + \sigma_y^2 I)^{-1} (y - \mu) \tilde{\Sigma}_* := K_{**} + \sigma_y^2 I - K_*^T (K + \sigma_y^2 I)^{-1} K_*$$

where

$$K := k(X, X), \quad K_* := k(X, X_*), \quad K_{**} := k(X_*, X_*)$$

Predictions with Noise, Zero Means

$$p(y_* \mid y) = \mathcal{N}(y_* \mid \tilde{\mu}_*, \tilde{\Sigma}_*)$$

with

$$\tilde{\mu}_* := \mu_* + K_*^T (K + \sigma_y^2 I)^{-1} (y - \mu) \tilde{\Sigma}_* := K_{**} + \sigma_y^2 I - K_*^T (K + \sigma_y^2 I)^{-1} K_*$$

With m = 0:

$$p(y_* \mid y) = \mathcal{N}(y_* \mid \tilde{\mu}_*, \tilde{\Sigma}_*)$$

with

$$\begin{split} \tilde{\mu}_* &:= \mathcal{K}_*^T (\mathcal{K} + \sigma_y^2 I)^{-1} y \\ \tilde{\Sigma}_* &:= \mathcal{K}_{**} + \sigma_y^2 I - \mathcal{K}_*^T (\mathcal{K} + \sigma_y^2 I)^{-1} \mathcal{K}_* \end{split}$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

三日 のへの

Prediction for a single instance

$$p(y_* \mid y) = \mathcal{N}(y_* \mid \tilde{\mu}_*, \tilde{\Sigma}_*)$$

with

$$\begin{split} \tilde{\mu}_* &:= \mathcal{K}_*^T (\mathcal{K} + \sigma_y^2 I)^{-1} y \\ \tilde{\Sigma}_* &:= \mathcal{K}_{**} + \sigma_y^2 I - \mathcal{K}_*^T (\mathcal{K} + \sigma_y^2 I)^{-1} \mathcal{K}_* \end{split}$$

Prediction \hat{y} for a single instance x:

$$\hat{y}(x) := k_*^T (K + \sigma_y^2 I)^{-1} y = \sum_{n=1}^N \alpha_n k(x_n, x), \quad \alpha := (K + \sigma_y^2 I)^{-1} y$$

with

$$k_* := k(X, x)$$

But GPs can provide a joint inference for multiple instances and a set on the set of the

Example with Noise

$$(\ell, \sigma_f, \sigma_y) = (1, 1, 0.1)$$
 $(\ell, \sigma_f, \sigma_y) = (0.3, 0.1?, 0.00005)$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

10 / 28

Example with Noise

$$(\ell, \sigma_f, \sigma_y) = (1, 1, 0.1)$$
 $(\ell, \sigma_f, \sigma_y) = (3, 1.16, 0.89)$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

10 / 28

Outline

- 1. The Gaussian Process Regression Model
- 2. Inference with Gaussian Processes
- 3. Learning Gaussian Processes
- 4. Gaussian Processes for Classification

シック 三川州 エル・エット 山中 マック

Estimating Kernel Parameters

Either treating them as hyperparameters (grid search, random search) or maximize the marginal likelihood (empirical Bayes; grad. desc.).

Model:

$$p(y \mid X, \theta) = \mathcal{N}(y \mid 0, (K + \sigma_y^2 I)), \quad \theta := (\ell, \sigma_f^2, \sigma_y^2)$$

Negative log-likelihood:

$$L(\theta) = -\log p(y \mid X, \theta)$$

= $\frac{1}{2}y^T (K + \sigma_y^2 I)^{-1} y + \frac{1}{2}\log \det(K + \sigma_y^2 I) + \frac{N}{2}\log(2\pi)$

・日・《四・《川・《川・《日・

Estimating Kernel Parameters

Negative log-likelihood ($\theta := (\ell, \sigma_f^2, \sigma_y^2)$):

$$L(\theta) = \frac{1}{2}y^{T}(K + \sigma_{y}^{2}I)^{-1}y + \frac{1}{2}\log\det(K + \sigma_{y}^{2}I) + \frac{N}{2}\log(2\pi)$$

Gradients:

$$\begin{aligned} \frac{\partial L}{\partial \theta_j} &= -\frac{1}{2} y^T (K + \sigma_y^2 I)^{-1} \frac{\partial (K + \sigma_y^2 I)}{\partial \theta_j} (K + \sigma_y^2 I)^{-1} y \\ &+ \frac{1}{2} \operatorname{tr} ((K + \sigma_y^2 I)^{-1} \frac{\partial (K + \sigma_y^2 I)}{\partial \theta_j}) \\ &= -\frac{1}{2} \operatorname{tr} \left((\alpha \alpha^T - (K + \sigma_y^2 I)^{-1}) \frac{\partial (K + \sigma_y^2 I)}{\partial \theta_j} \right), \quad \alpha := (K + \sigma_y^2 I)^{-1} y \end{aligned}$$

Note: $\partial(X^{-1}) = X^{-1}(\partial X)X^{-1}$, $\partial \det X = \frac{1}{\det X} \operatorname{tr}((X^{-1})^T \partial X)$, and $\operatorname{tr}(aa^T B) = a^T Ba$. $\theta_1 := \ell, \theta_2 := \sigma_f^2, \theta_3 := \sigma_y^2$. Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Cholesky decompositon

How to solve Ax = b?

Matrix inversion: $x = A^{-1}b$ is problematic because

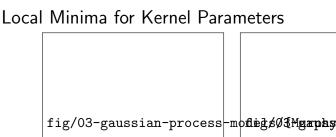
- Numerically unstable
- A^{-1} is dense, even if A is sparse
- Better: *LU*-decomposition

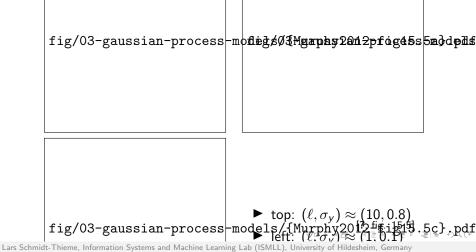
$$Ax = b \xrightarrow{A = LU} \frac{Lz = b}{Ux = z}$$

- L and U lower/upper triangular
- ▶ if A symmetric pos.-definite, then (L, U) can be chosen s.t. U = L^T (Cholesky-decomposition)

シック・目目・4日・4日・4日・4日・

Machine Learning 2 3. Learning Gaussian Processes





Semi-parametric GPs

$$f(x) = \beta^T \phi(x) + r(x)$$

r(X) ~GP(r | 0, k(X, X))

Assuming

$$\beta \sim \mathcal{N}(\beta \mid b, B), \quad \text{e.g., } b := 0, B := \sigma_{\beta}^2 I$$

yields just another GP

$$f(X) \sim \mathsf{GP}(\phi(X)^{\mathsf{T}}b, k(X, X) + \phi(X)B\phi(X)^{\mathsf{T}})$$

where

$$\phi(X) := (\phi(x_1), \ldots, \phi(x_N))^T$$

シック・目前、4回を4回を4回を4回を

Outline

- 1. The Gaussian Process Regression Model
- 2. Inference with Gaussian Processes
- 3. Learning Gaussian Processes
- 4. Gaussian Processes for Classification

Model

$$\begin{aligned} p(y \mid x) &:= s(y \, f(x)), \quad y \in \{+1, -1\}, s := \text{logistic} \\ f &\sim \mathsf{GP}(f \mid 0, \mathcal{K}(X, X)) \end{aligned}$$

► f: latent score

シック 単所 ふぼやえばや 1日を

Inference

Two-step inference:

1. infer latent score variable:

$$p(f_* \mid X, y, x_*) = \int p(f_* \mid X, x_*, f) p(f \mid X, y) df$$

2. infer target:

$$\pi_* := p(y_* = +1 \mid X, y, x_*) = \int s(f_*) \, p(f_* \mid X, y, x_*) \, df_*$$

Non Gaussians are analytically intractable.

- → Gaussian approximation (Laplace approximation)
- **~> Expectation Propagation (EP)**
- \rightsquigarrow further methods

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ◇Q@

Posterior

$$p(f \mid X, y) = \frac{p(y \mid f, X) p(f \mid X)}{p(y \mid X)} \propto p(y \mid f) p(f \mid X)$$

$$\ell(f) = \log p(y \mid f) + \log p(f \mid X)$$

$$= \log p(y \mid f) - \frac{1}{2} f^T K^{-1} f - \frac{1}{2} \log |K| - \frac{N}{2} \log 2\pi$$

$$\nabla \ell(f) = \nabla \log p(y \mid f) - K^{-1} f$$

$$\nabla^2 \ell(f) = \nabla^2 \log p(y \mid f) - K^{-1}$$

for logistic:

$$\nabla \log p(y \mid f) = y - \pi$$

$$\nabla^2 \log p(y \mid f) = \operatorname{diag}(-\pi \circ (1 - \pi)) =: -W$$

at maximum:

$$\nabla \ell(f) = 0 \implies f = K \nabla \log p(y \mid f)$$

Posterior

at maximum:

$$\nabla \ell(f) = 0 \implies f = K \nabla \log p(y \mid f)$$

Use Newton to find a maximum:

$$f^{(t+1)} := f^{(t)} - (\nabla^2 \ell)^{-1} \nabla \ell$$

= $f^{(t)} + (K^{-1} + W^{(t)})^{-1} (\nabla \log p(y \mid f) - K^{-1} f^{(t)})$
= $(K^{-1} + W^{(t)})^{-1} (W^{(t)} f^{(t)} + \nabla \log p(y \mid f))$

eventually yielding the maximum posterior \hat{f} .

シック 単則 《ヨヤ 《田》 《四》 《日》

Gaussian Approximation

$$p(f \mid X, y) \approx q(f \mid X, y) := \mathcal{N}(f \mid \hat{f}, (K^{-1} + W)^{-1})$$

using the Hessian as covariance matrix.

・ ロ ト ・ 西 ト ・ 画 ト ・ 一回 ト ・ 白 ト

Predictions exact mean

$$E_{p}(f_{*} \mid X, y, x_{*}) = \int E(f_{*} \mid f, X, x_{*}) p(f \mid X, y) df$$
$$= \int k(x_{*})^{T} K^{-1} f p(f \mid X, y) df$$
$$= k(x_{*})^{T} K^{-1} E_{p}(f \mid X, y)$$

approximated mean:

$$E_q(f_* \mid X, y, x_*) = k(x_*)^T K^{-1} \hat{f}$$

variance:

$$\operatorname{Var}_{q}(f_{*} \mid X, y, x_{*}) = k(x_{*}, x_{*}) - k_{*}^{T}(K + W^{-1})^{-1}k_{*}$$

predictions:

$$ar{\pi}_* := E_q(\pi_* \mid X, y, x*) = \int s(f_*) q(f_* \mid X, y, x_*) df_*$$

solve integral via MCMC or

Algorithm (Step 1)

input: K (covariance matrix), y (± 1 targets), $p(\mathbf{y}|\mathbf{f})$ (likelihood function) 2: f := 0initialization Newton iteration repeat 4: $W := -\nabla \nabla \log p(\mathbf{y}|\mathbf{f})$ eval. W e.g. using eq. (3.15) or (3.16) $B = I + W^{\frac{1}{2}} K W^{\frac{1}{2}}$ $L := \text{cholesky}(I + W^{\frac{1}{2}}KW^{\frac{1}{2}})$ 6: $\mathbf{b} := W\mathbf{f} + \nabla \log p(\mathbf{y}|\mathbf{f})$ $\left. \right\}$ eq. (3.18) using eq. (3.27) $\mathbf{a} := \mathbf{b} - W^{\frac{1}{2}} L^{\top} \setminus (L \setminus (W^{\frac{1}{2}} K \mathbf{b}))$ $\mathbf{f} := K\mathbf{a}$ 8. objective: $-\frac{1}{2}\mathbf{a}^{\top}\mathbf{f} + \log p(\mathbf{y}|\mathbf{f})$ until convergence 10: $\log q(\mathbf{y}|X, \theta) := -\frac{1}{2}\mathbf{a}^{\top}\mathbf{f} + \log p(\mathbf{y}|\mathbf{f}) - \sum_{i} \log L_{ii}$ eq. (3.32)**return**: $\hat{\mathbf{f}} := \mathbf{f}$ (post. mode), $\log q(\mathbf{y}|X, \theta)$ (approx. log marg. likelihood)

Algorithm 3.1: Mode-finding for binary Laplace GPC. Commonly used convergence

[Rasmussen/Williams 200

Algorithm (Step 1)

input: K (covariance matrix), \mathbf{y} (±1 targets), $p(\mathbf{y}|\mathbf{f})$ (likelihood function) 2: f := 0initialization Newton iteration repeat 4: $W := -\nabla \nabla \log p(\mathbf{y}|\mathbf{f})$ $L := \text{cholesky}(I + W^{\frac{1}{2}}KW^{\frac{1}{2}})$ eval. W e.g. using eq. (3.15) or (3.16) $B = I + W^{\frac{1}{2}} K W^{\frac{1}{2}}$ $\mathbf{b} := W\mathbf{f} + \nabla \log p(\mathbf{y}|\mathbf{f})$ 6. $\mathbf{a} := \mathbf{b} - W^{\frac{1}{2}} L^{\top} \setminus (L \setminus (W^{\frac{1}{2}} K \mathbf{b}))$ eq. (3.18) using eq. (3.27) $\mathbf{f} := K\mathbf{a}$ 8. objective: $-\frac{1}{2}\mathbf{a}^{\top}\mathbf{f} + \log p(\mathbf{y}|\mathbf{f})$ until convergence 10: $\log q(\mathbf{y}|X, \theta) := -\frac{1}{2}\mathbf{a}^{\top}\mathbf{f} + \log p(\mathbf{y}|\mathbf{f}) - \sum_{i} \log L_{ii}$ eq. (3.32)return: $\hat{\mathbf{f}} := \mathbf{f}$ (post. mode), $\log q(\mathbf{y}|X, \theta)$ (approx. log marg. likelihood)

Algorithm 3.1: Mode-finding for binary Laplace GPC. Commonly used convergence

シック・目目・4回を4回を4回を4回を

Algorithm (Step 2)

 $\begin{array}{ll} \operatorname{input:} \ \hat{\mathbf{f}} \ (\operatorname{mode}), \ X \ (\operatorname{inputs}), \ \mathbf{y} \ (\pm 1 \ \operatorname{targets}), \ k \ (\operatorname{covariance function}), \\ p(\mathbf{y}|\mathbf{f}) \ (\operatorname{likelihood function}), \ \mathbf{x}_* \ \operatorname{test input} \\ 2: \ W := -\nabla\nabla \log p(\mathbf{y}|\hat{\mathbf{f}}) \\ L := \operatorname{cholesky}(I + W^{\frac{1}{2}}KW^{\frac{1}{2}}) \\ 4: \ \overline{f}_* := \mathbf{k}(\mathbf{x}_*)^{\top}\nabla \log p(\mathbf{y}|\hat{\mathbf{f}}) \\ \mathbf{v} := L \setminus (W^{\frac{1}{2}}\mathbf{k}(\mathbf{x}_*)) \\ \mathbf{0}: \ \mathbb{V}[f_*] := k(\mathbf{x}_*, \mathbf{x}_*) - \mathbf{v}^{\top}\mathbf{v} \\ \overline{\pi}_* := \int \sigma(z)\mathcal{N}(z|\overline{f}_*, \mathbb{V}[f_*])dz \\ eq. (3.25) \\ 8: \ \operatorname{return:} \ \overline{\pi}_* \ (\operatorname{predictive class probability} \ (\operatorname{for class 1})) \end{array} \right)$

Algorithm 3.2: Predictions for binary Laplace GPC. The posterior mode $\hat{\mathbf{f}}$ (which can be computed using Algorithm 3.1) is input. For multiple test inputs lines 4-7 are applied to each test input. Computational complexity is $n^3/6$ operations once (line 3) plus n^2 operations per test case (line 5). The one-dimensional integral in line 7 can be done analytically for cumulative Gaussian likelihood, otherwise it is computed using an approximation or numerical quadrature.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ◇Q@

MCMC

How to compute integrals of the form

$$\int_{a}^{b} h(x)p(x)dx$$

where p is a probability density on [a, b].

$$\int_{a}^{b} h(x)p(x)dx = \mathbb{E}_{\rho}[h] \approx \frac{1}{N} \sum_{i=1}^{N} h(x_{i})$$
(1)

when x_i are sampled iid from p. (Monte-Carlo-integration) Markov-Chain-Monte-Carlo: Clever sampling strategy of x_i

シック 三回 《ヨッ 《日》 《日》

Approximation Methods for Large Datasets

See recent literature:

- Filippone, M. and Engler, R. 2015. Enabling scalable stochastic gradient-based inference for Gaussian processes by employing the Unbiased LInear System SolvEr (ULISSE), arXiv preprint arXiv:1501.05427. (2015).
- Dai, B., Xie, B., He, N., Liang, Y., Raj, A., Balcan, M.-F. and Song, L. 2014.

Scalable Kernel Methods via Doubly Stochastic Gradients. arXiv:1407.5599 [cs, stat]. (Jul. 2014).

 Hensman, J., Fusi, N. and Lawrence, N.D. 2013. Gaussian processes for big data. arXiv preprint arXiv:1309.6835. (2013).

・ロト・四下・《川下・《日・

Summary

- Gaussian processes model continuous targets as jointly normally distributed.
 - correlated by covariance matrix depending on the predictors (kernel)
- ▶ The squared exponential kernel often is used as kernel.
 - having 2 kernel parameters: horizontal length scale and vertical variation
- Noise variation has to be added to the model
 otherwise Gaussian processes interpolate the observed data.
- ► Kernel parameters can be learnt through gradient descent.
 - ▶ the objective is not convex, local minima need to be treated

Summary (2/2)

- ► For classification, Gaussian processes can be used to model
 - ► a score function f
 - that is mapped through the logistic function to probabilities π of target labels.
- The posterior is not Gaussian, but can be approximated by a Gaussian (Laplace approximation).
- ► Also the posterior predictive E(π_{*} | x_{*}, X, y) cannot be computed analytically.
 - but it can be approximated by an integral over the (approximatly) normally distributed predictive score f_{*}
 - ► and thus be computed by MCMC.

シック 正所 エボットボット 中マ

Further Readings

- Rasmussen & Williams: Gaussian Processes for Machine Learning (free ebook!)
- ► See also [?, chapter 15].
- ► Conditioning Gaussians: [?, section 4.3].
- Derivatives of inverse of a matrix etc., see, e.g., The Matrix Cookbook, http:

//www.mit.edu/~wingated/stuff_i_use/matrix_cookbook.pdf

Some Matrix Derivatives

$$\partial(X^{-1}) = -X^{-1}(\partial X)X^{-1}$$

 $\partial(\log(|X|)) = \operatorname{tr}(X^{-1}\partial X)$

Computing with traces:

$$tr(aa^TB) = a^TBa$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

30 / 28

References

Kevin P. Murphy.

Machine learning: a probabilistic perspective. The MIT Press, 2012.