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Machine Learning 2

Syllabus
A. Advanced Supervised Learning

Fri. 24.4. (1) A.1 Generalized Linear Models
Fri. 1.5. — — Labour Day —
Fri. 8.5. (2) A.2 Gaussian Processes
Fri. 15.5. (3) A.3 Advanced Support Vector Machines

B. Ensembles
Fri. 22.5. (4) B.1 Stacking

& B.2 Boosting
Fri. 29.5. (5) B.3 Mixtures of Experts
Fri. 5.6. — — Pentecoste Break —

C. Sparse Models
Fri. 12.6. (6) C.1 Homotopy and Least Angle Regression
Fri. 19.6. (7) C.2 Proximal Gradients
Fri. 26.6. (8) C.3 Laplace Priors
Fri. 3.7. (9) C.4 Automatic Relevance Determination

D. Complex Predictors
Fri. 10.7. (10) D.1 Latent Dirichlet Allocation (LDA)
Fri. 17.7. (11) Q & A
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Machine Learning 2

Outline

1. Idea & L2 Loss Boosting

2. Exponential Loss Boosting (AdaBoost)

3. Functional Gradient Descent (Gradient Boosting)
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Machine Learning 2 1. Idea & L2 Loss Boosting

Consecutive vs Joint Ensemble Learning
So far, ensembles have been constructed in two consecutive steps:
I 1st step: create heterogeneous models

I learn model parameters for each model separately
I 2nd step: combine them

I learn combination weights (stacking)

Advantages:
I simple
I trivial to parallelize

Disadvantages:
I models are learnt in isolation

New idea: Learn model parameters and combination weights jointly

`(Dtrain; Θ) :=
N∑

n=1

`(yn,
C∑

c=1

αc ŷ(xn; θc)), Θ := (α, θ1, . . . , θC )
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Machine Learning 2 1. Idea & L2 Loss Boosting

Boosting
Idea: fit models (and their combination weights)
I sequentially, one at a time,
I relative to the ones already fitted,
I but do not consider to change the earlier ones again.

ŷ (C ′)(x) :=
C ′∑

c=1

αc ŷ(x ; θc), C ′ ∈ {1, . . . ,C}

=ŷ (C ′−1)(x) + αC ′ ŷ(x ; θC ′)

`(Dtrain, ŷ (C ′)) =
N∑

n=1

`(yn, ŷ
(C ′)(xn))

(αC ′ , θC ′) := arg min
αC ′ ,θC ′

N∑

n=1

`(yn, ŷ
(C ′−1)(xn)︸ ︷︷ ︸

=:ŷ0
n

+ αC ′︸︷︷︸
=:α

ŷ(xn; θC ′)︸ ︷︷ ︸
=:ŷn

)
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`(Dtrain, ŷ (C ′)) =
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`(Dtrain, ŷ (C ′)) =
N∑

n=1

`(yn, ŷ
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Machine Learning 2 1. Idea & L2 Loss Boosting

L2 Loss

Assume L2 loss:

`(y , ŷ) :=(y − ŷ)2

Q: How can we simplify

`(yn, ŷ
0
n + αŷn) =?

A. approximate yn by ŷ0
n : = `(ŷ0

n , αŷn)

B. approximate α by 1: = `(yn, ŷ
0
n + ŷn)

C. bring ŷ0
n on the other side: = `(yn − ŷ0

n , αŷn)

D. divide by ŷ0
n : = `(

yn
ŷ0
n

, 1 + αŷn)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

3 / 20



Machine Learning 2 1. Idea & L2 Loss Boosting

L2 Loss Boosting (Least Squares Boosting)
For L2 loss

`(y , ŷ) :=(y − ŷ)2

we get

`(yn, ŷ
0
n + αŷn) =`(yn − ŷ0

n , αŷn)

and thus fit the residuals

θC ′ := arg min
θC ′

N∑

n=1

`(yn − ŷ0
n , ŷ(xn; θC ′))

αC ′ :=1

Works for any loss with

`(y , ŷ) = s(y − ŷ), for a function s, e.g., s(z) = z2

e.g., L2, L1 etc.
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Machine Learning 2 1. Idea & L2 Loss Boosting

Convergence & Shrinking
Models are fitted iteratively

C ′ := 1, 2, 3, . . .

I convergence is assessed via early stopping: once the error on a
validation sample

`(Dval, ŷ (C ′))

does not decrease anymore over a couple of iterations, the algorithm
stops and returns the best iteration so far.

I To slow down convergence to the training data, usually shrinking the
combination weights is applied:

αC ′ := ν αC ′ , e.g., with ν = 0.02
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Machine Learning 2 1. Idea & L2 Loss Boosting

L2 Loss Boosting / Algorithm

1 l2boost(Dtrain = {(x1, y1), . . . , (xN , yN)},C , ν):
2 ỹn := yn, n = 1 : N
3 for c := 1, . . . ,C :

4 D̃train := {(xn, ỹn) | n = 1 : N}
5 θc := arg minθ `(D̃train, ŷ(θ))
6 αc := ν
7 ỹn := ỹn − αc ŷ(xn, θc), n = 1 : N
8 return (α, θ)

I C ∈ N number of component models

I ν ∈ (0, 1] step length

I arg minθ `(D̃train, ŷ(θ)) fits a classifier to predictors xn and residuals ỹn
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Machine Learning 2 2. Exponential Loss Boosting (AdaBoost)

Outline

1. Idea & L2 Loss Boosting

2. Exponential Loss Boosting (AdaBoost)

3. Functional Gradient Descent (Gradient Boosting)
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Machine Learning 2 2. Exponential Loss Boosting (AdaBoost)

Exponential Loss Boosting (AdaBoost)

For (weighted) exponential loss

`(y , ŷ ,w) :=w e−yŷ , y ∈ {−1,+1}, ŷ ∈ R
we get

`(yn, ŷ
0
n + αŷn,w

0
n ) =`(yn, ŷ

0
n ,w

0
n )︸ ︷︷ ︸

=:wn

`(yn, αŷn, 1)

=`(yn, αŷn,wn)
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Machine Learning 2 2. Exponential Loss Boosting (AdaBoost)

Exponential Loss Boosting (AdaBoost)

Discrete models with ŷ ∈ {+1,−1} are fitted in two steps:

1. Learn the next discrete model θC ′ :

θ̂C ′ := arg min
θC ′

N∑

n=1

`(yn, ŷ(xn, θC ′),w
(C ′)
n )

2. Learn αC ′ :

α̂C ′ := arg min
αC ′

N∑

n=1

`(yn, αC ′ ŷ(xn, θC ′),w
(C ′)
n )
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Machine Learning 2 2. Exponential Loss Boosting (AdaBoost)

Exponential Loss Boosting (AdaBoost) / Learning αC ′

Optimal αC ′ can be found analytically:

min
α

N∑

n=1

`(yn, αŷn,wn) =
N∑

n=1

wne
−αyn ŷn

0
!

=
∂(. . .)

∂α
=−

N∑

n=1

wnynŷne
−αyn ŷn

∗)

=− e−α
N∑

n=1

wnδ(yn = ŷn) + eα
N∑

n=1

wnδ(yn 6= ŷn)

=− e−α
N∑

n=1

wn + (eα + e−α)
N∑

n=1

wnδ(yn 6= ŷn)

e−α

eα + e−α
=

∑N
n=1 wnδ(yn 6= ŷn)
∑N

n=1 wn

= err
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Machine Learning 2 2. Exponential Loss Boosting (AdaBoost)

Exponential Loss Boosting (AdaBoost) / Learning αC ′

e−α

eα + e−α
=err

eα + e−α

e−α
=

1

err

e2α + 1 =
1

err

e2α =
1

err
− 1 =

1− err

err

α =
1

2
log

1− err

err
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Machine Learning 2 2. Exponential Loss Boosting (AdaBoost)

Exponential Loss Boosting (AdaBoost)

The loss in iteration C ′

arg min
α,ŷn

N∑

n=1

`(yn, αŷn,wn) = arg min
αC ′ ,θC ′

N∑

n=1

`(yn, αC ′ ŷ(xn, θC ′),w
(C ′)
n )

is minimized sequentially:

1. Learn θC ′ : w
(C ′)
n :=`(yn, ŷ

(C ′−1)(xn),w
(C ′−1)
n )

θ̂C ′ := arg min
θC ′

N∑

n=1

`(yn, ŷ(xn, θC ′),w
(C ′)
n )

2. Learn αC ′ :

errC ′ :=

∑N
n=1 w

(C ′)
n δ(yn 6= ŷ(xn, θC ′))
∑N

n=1 w
(C ′)
n

αC ′ :=
1

2
log

1− errC ′

errC ′
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Machine Learning 2 2. Exponential Loss Boosting (AdaBoost)

αC ′(errC ′)

0.0 0.2 0.4 0.6 0.8 1.0

3

2

1

0

1

2

3
alpha
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Machine Learning 2 2. Exponential Loss Boosting (AdaBoost)

AdaBoost

1 adaboost(Dtrain = {(x1, y1), . . . , (xN , yN)},C ):

2 wn := 1
N , n := 1, . . . ,N

3 for c := 1, . . . ,C :

4 θc := arg minθ `(Dtrain, ŷ(θ),w)

5 errC :=
∑N

n=1 wnδ(yn 6=ŷ(xn,θc ))∑N
n=1 wn

6 αc := log 1−errc
errc

7 wn := wne
αcδ(yn 6=ŷ(xn,θc )), n = 1, . . . ,N

8 return (α, θ)

I C number of component models

I arg minθ `(Dtrain, ŷ(θ),w) fits a classifier to data with case weights w

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Note: Here α is inflated by a factor of 2 as in [?, alg. 10.1].
The error in line 7 is for a crisp ŷ(xn, θc ) ∈ {−1,+1}.



Machine Learning 2 2. Exponential Loss Boosting (AdaBoost)

AdaBoost / Example (Decision Tree Stumps)

C ′ = 1 C ′ = 3 C ′ = 120
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Machine Learning 2 3. Functional Gradient Descent (Gradient Boosting)
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Machine Learning 2 3. Functional Gradient Descent (Gradient Boosting)

Functional Gradient Descent

So far, we have to derive the boosting equations for each loss
individually.

Idea:

I compute the gradient of the loss function for an additional additive
term and

I fit the next model that mimicks best a gradient update step

Advantage:

I works for all differentiable losses.
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Machine Learning 2 3. Functional Gradient Descent (Gradient Boosting)

Functional Gradient Descent
Functional gradient:

∇ŷ `(Dtrain, ŷ)|ŷ (C ′−1) =∇ŷ

(
N∑

n=1

`(yn, ŷn)

)
|ŷ (C ′−1)

=

(
∂`

∂ŷ
(yn, ŷ

(C ′−1)(xn))

)

n=1,...,N

A functional gradient update step would do:

ŷ (C ′) =ŷ (C ′−1) − η∇ŷ `(Dtrain, ŷ)

Boosting adds the next model:

ŷ (C ′) =ŷ (C ′−1) + αC ′ ŷ(θC ′)

To mimick the gradient update step with steplength η := 1:

θC ′ := arg min
θC ′

N∑

n=1

(−
(
∇ŷ `(Dtrain, ŷ)|ŷ (C ′−1)

)
n
− ŷ(xn, θC ′))2
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Machine Learning 2 3. Functional Gradient Descent (Gradient Boosting)

Gradient Boosting / Algorithm

1 gradient-boost(Dtrain = {(x1, y1), . . . , (xN , yN)},C , ν):
2 ŷn := 0, n := 1, . . . ,N
3 gn := yn, n := 1, . . . ,N
4 for c := 1, . . . ,C :

5 D̃train := {(xn, gn) | n = 1 : N}
6 θc := arg minθ `(D̃train, ŷ(θ))
7 αc := ν
8 ŷn := ŷn + αc ŷ(xn, θc), n = 1, . . . ,N
9 gn := −`′(yn, ŷn), n = 1, . . . ,N

10 return (α, θ)

I C ∈ N number of component models

I ν ∈ (0, 1] step length

I arg minθ `(D̃train, ŷ(θ)) fits a classifier to predictors xn and gradients
gn

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Note: `′ := ∂`
∂ŷ



Machine Learning 2 3. Functional Gradient Descent (Gradient Boosting)

Performance Comparison / Low Dimensional Data

582 Chapter 16. Adaptive basis function models

model 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
bst-dt 0.580 0.228 0.160 0.023 0.009 0.000 0.000 0.000 0.000 0.000
rf 0.390 0.525 0.084 0.001 0.000 0.000 0.000 0.000 0.000 0.000
bag-dt 0.030 0.232 0.571 0.150 0.017 0.000 0.000 0.000 0.000 0.000
svm 0.000 0.008 0.148 0.574 0.240 0.029 0.001 0.000 0.000 0.000
ann 0.000 0.007 0.035 0.230 0.606 0.122 0.000 0.000 0.000 0.000
knn 0.000 0.000 0.000 0.009 0.114 0.592 0.245 0.038 0.002 0.000
bst-stmp 0.000 0.000 0.002 0.013 0.014 0.257 0.710 0.004 0.000 0.000
dt 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.616 0.291 0.089
logreg 0.000 0.000 0.000 0.000 0.000 0.000 0.040 0.312 0.423 0.225
nb 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.030 0.284 0.686

Table 16.3 Fraction of time each method achieved a specified rank, when sorting by mean performance
across 11 datasets and 8 metrics. Based on Table 4 of (Caruana and Niculescu-Mizil 2006). Used with kind
permission of Alexandru Niculescu-Mizil.

which is a convex combination of base models, as follows:

p(y|x,π) =
∑

m∈M
πmp(y|x,m) (16.107)

In principle, we can now perform Bayesian inference to compute p(π|D); we then make pre-
dictions using p(y|x,D) =

∫
p(y|x,π)p(π|D)dπ. However, it is much more common to use

point estimation methods for π, as we saw above.

16.7 Experimental comparison

We have described many different methods for classification and regression. Which one should
you use? That depends on which inductive bias you think is most appropriate for your domain.
Usually this is hard to assess, so it is common to just try several different methods, and
see how they perform empirically. Below we summarize two such comparisons that were
carefully conducted (although the data sets that were used are relatively small). See the website
mlcomp.org for a distributed way to perform large scale comparisons of this kind. Of course,
we must always remember the no free lunch theorem (Section 1.4.9), which tells us that there is
no universally best learning method.

16.7.1 Low-dimensional features

In 2006, Rich Caruana and Alex Niculescu-Mizil (Caruana and Niculescu-Mizil 2006) conducted
a very extensive experimental comparison of 10 different binary classification methods, on 11
different data sets. The 11 data sets all had 5000 training cases, and had test sets containing
∼ 10, 000 examples on average. The number of features ranged from 9 to 200, so this is much
lower dimensional than the NIPS 2003 feature selection challenge. 5-fold cross validation was
used to assess average test error. (This is separate from any internal CV a method may need to
use for model selection.)

11 datasets, ∼ 10.000 instances, 9-200 variables
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Performance Comparison / High Dimensional Data

414 Neural Networks

TABLE 11.3. Performance of different methods. Values are average rank of test
error across the five problems (low is good), and mean computation time and
standard error of the mean, in minutes.

Screened Features ARD Reduced Features
Method Average Average Average Average

Rank Time Rank Time

Bayesian neural networks 1.5 384(138) 1.6 600(186)
Boosted trees 3.4 3.03(2.5) 4.0 34.1(32.4)
Boosted neural networks 3.8 9.4(8.6) 2.2 35.6(33.5)
Random forests 2.7 1.9(1.7) 3.2 11.2(9.3)
Bagged neural networks 3.6 3.5(1.1) 4.0 6.4(4.4)

and linear combinations of features work better. However the impressive
performance of random forests is at odds with this explanation, and came
as a surprise to us.

Since the reduced feature sets come from the Bayesian neural network
approach, only the methods that use the screened features are legitimate,
self-contained procedures. However, this does suggest that better methods
for internal feature selection might help the overall performance of boosted
neural networks.

The table also shows the approximate training time required for each
method. Here the non-Bayesian methods show a clear advantage.

Overall, the superior performance of Bayesian neural networks here may
be due to the fact that

(a) the neural network model is well suited to these five problems, and

(b) the MCMC approach provides an efficient way of exploring the im-
portant part of the parameter space, and then averaging the resulting
models according to their quality.

The Bayesian approach works well for smoothly parametrized models like
neural nets; it is not yet clear that it works as well for non-smooth models
like trees.

11.10 Computational Considerations

WithN observations, p predictors,M hidden units and L training epochs, a
neural network fit typically requires O(NpML) operations. There are many
packages available for fitting neural networks, probably many more than
exist for mainstream statistical methods. Because the available software
varies widely in quality, and the learning problem for neural networks is
sensitive to issues such as input scaling, such software should be carefully
chosen and tested.

5 datasets, 100–6.000 instances, 500-100.000 variables
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Summary

I Boosting learns the component models of an ensemble sequentially.

I for L2 regression,
I the next model predicts the residuum of the sum of the previous

models (L2 boosting)

I for exponential loss classification,
I the instance losses of the sum of the previous models are used as case

weights (AdaBoost)

I Gradient Boosting uses functional gradient descent to mimick
gradient update steps
I accomplished by predicting the loss gradient w.r.t. ŷ1:N

I works for all differentiable losses
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Further Readings

I Boosting: [?, chapter 16.4], [?, chapter 10], [?, chapter 14.3].

I Also interesting:
I Xgboost [?].
I DeepBoost [?].
I distributed boosting [?]
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