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Syllabus
A. Advanced Supervised Learning

Fri. 24.4. (1) A.1 Generalized Linear Models
Fri. 1.5. — — Labour Day —
Fri. 8.5. (2) A.2 Gaussian Processes
Fri. 15.5. (3) A.3 Advanced Support Vector Machines

B. Ensembles
Fri. 22.5. (4) B.1 Stacking

& B.2 Boosting
Fri. 29.5. (5) B.3 Mixtures of Experts
Fri. 5.6. — — Pentecoste Break —

C. Sparse Models
Fri. 12.6. (6) C.1 Homotopy and Least Angle Regression
Fri. 19.6. (7) C.2 Proximal Gradients
Fri. 26.6. (8) C.3 Laplace Priors
Fri. 3.7. (9) C.4 Automatic Relevance Determination

D. Complex Predictors
Fri. 10.7. (10) D.1 Latent Dirichlet Allocation (LDA)
Fri. 17.7. (11) Q & A
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Machine Learning 2 1. The Idea behind Mixtures of Experts

Underlying Idea

So far, we build ensemble models where the combination weights do not
depend on the predictors:

ŷ(x) :=
C∑

c=1

αc ŷc(x)

i.e., all instances x are reconstructed from their predictions ŷc(x) by the
component models in the same way α.

New idea: allow each instance to be reconstructed in an instance-specific
way.

ŷ(x) :=
C∑

c=1

αc(x) ŷc(x)
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αc ŷc(x)

i.e., all instances x are reconstructed from their predictions ŷc(x) by the
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Machine Learning 2 1. The Idea behind Mixtures of Experts

Mixtures of Experts

xn ∈ RM , yn ∈ R, cn ∈ {1, . . . ,C}, θ := (β, σ2, γ), β, γ ∈ RC×M :

p(yn | xn, cn; θ) :=N (y | βTcnxn, σ
2
cn)

p(cn | xn; θ) :=Cat(c | S(γx))

with softmax function

S(x)m :=
exm∑M

m′=1 e
xm′
, x ∈ RM

I C component models (experts) N (y | βTc x , σ2
c )

I each model c is expert in some region of predictor space,
defined by its component weight (gating function) S(γx)c

I a mixture model with latent nominal variable zn := cn.
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Machine Learning 2 1. The Idea behind Mixtures of Experts

Mixtures of Experts/ Example
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Machine Learning 2 1. The Idea behind Mixtures of Experts

Mixtures of Experts
Generic Mixtures of Experts model:

I variables: xn ∈ X , yn ∈ Y
I latent variables: cn ∈ {1, . . . ,C}
I component models: p(yn | xn, cn; θy )

I a separate model for each c : p(yn | xn, c ; θy ) = p(yn | xn; θyc ),
with θyc and θyc′ being disjoint for c 6= c ′.

I combination model: p(cn | xn; θc)

Example Mixture of Experts model:

I variables: X := RM ,Y := R
I component models: linear regression models N (y | βTc x , σ2

c )
I combination model: logistic regression model Cat(c | S(γx))

For prediction: p(y | x) =
C∑

c=1

p(y | x , c)︸ ︷︷ ︸
=ŷc (x)

p(c | x)︸ ︷︷ ︸
=αc (x)
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Machine Learning 2 2. Learning Mixtures of Experts

Learning Mixtures of Experts
complete data likelihood:

L(θy , θc , c;Dtrain) :=
N∏

n=1

p(yn|xn, cn; θy )p(cn|xn; θc), cn ∈ {1, . . . ,C}

Cannot be computed, as cn is unknown.

marginalize out unknown cn:

L(θy , θc ;Dtrain) :=
N∏

n=1

C∑
c=1

p(yn|xn, c ; θy ) p(c |xn; θc)

`(θy , θc) :=− log L(θy , θc)

= −
N∑

n=1

log
C∑

c=1

p(yn|xn, c ; θy ) log p(c |xn; θc)

log-sum is difficult to optimize (as it does not decompose in a big sum).
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Machine Learning 2 2. Learning Mixtures of Experts

Optimizing log-sums (review)

Lemma
For x1, x2, . . . , xN ∈ R+

0 :

log
N∑

n=1

xn = max
q∈∆N

N∑
n=1

qn log
xn
qn

Proof: “≥”:

log
N∑

n=1

xn = log
N∑

n=1

qn
xn
qn

≥
Jensen’s ineq.

N∑
n=1

qn log
xn
qn
, ∀q ∈ ∆N

log
N∑

n=1

xn ≥ max
q∈∆N

N∑
n=1

qn log
xn
qn

“≤”: Especially for qn := xn∑N
n′=1 xn′

:

N∑
n=1

qn log
xn
qn

=
N∑

n=1

xn∑N
n′=1 xn′

log
N∑

n′=1

xn′ = log
N∑

n′=1

xn′
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Machine Learning 2 2. Learning Mixtures of Experts

Joint Objective Function

`(θy , θc) = −
N∑

n=1

log
C∑

c=1

p(yn|xn, c ; θy ) log p(c |xn; θc)

= −
N∑

n=1

max
qn∈∆C

C∑
c=1

qn,c log
p(yn|xn, c ; θy ) p(c |xn; θc)

qn,c

`(θy , θc , q) := −
N∑

n=1

C∑
c=1

qn,c log
p(yn|xn, c ; θy ) p(c |xn; θc)

qn,c
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Machine Learning 2 2. Learning Mixtures of Experts

Learning Mixtures of Experts

`(θy , θc , q) := −
N∑

n=1

C∑
c=1

qn,c log
p(yn|xn, c ; θy )p(c |xn; θc)

qn,c

coordinate descent:

1. minimize w.r.t. θc : (maximization step)

`(θc ; θy , q) ∝ −
N∑

n=1

C∑
c=1

qn,c log p(c|xn; θc)

 Dtrain
θc := {(qn,c , xn, c) | n = 1 : N, c = 1 : C}

alternatively, Dtrain
θc := {(1, xn, (qn,c)c=1:C ) | n = 1 : N}

I train combination model on all completed instances, each with case
weight qn,c (alternatively: on all instances to predict qn,c)
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Note: Dtrain is given as triples (q, x , y) with instances (x , y) with case weights q.



Machine Learning 2 2. Learning Mixtures of Experts

Learning Mixtures of Experts

`(θy , θc , q) := −
N∑

n=1

C∑
c=1

qn,c log
p(yn|xn, c ; θy )p(c |xn; θc)

qn,c

coordinate descent:

1. minimize w.r.t. θc : (maximization step)
2. minimize w.r.t. θy : (maximization step)

`(θy ; θc , q) ∝ −
N∑

n=1

C∑
c=1

qn,c log p(yn|xn, c ; θy )

decomposes over c :

`(θyc ; θc , q) ∝
N∑

n=1

qn,c log p(yn|xn, c ; θyc )

 Dtrain
θy ,c := {(qn,c , xn, yn) | n = 1 : N}, c = 1 : C

I train each component model θyc on all instances, each with case weight
qn,c

3. minimize w.r.t. q: (expectation step)Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Learning Mixtures of Experts

Learning Mixtures of Experts

`(θy , θc , q) := −
N∑

n=1

C∑
c=1

qn,c log
p(yn|xn, c ; θy )p(c |xn; θc)

qn,c

coordinate descent:

1. minimize w.r.t. θc : (maximization step)

2. minimize w.r.t. θy : (maximization step)

3. minimize w.r.t. q: (expectation step)

qn,c =
p(yn|xn, c ; θy ) p(c |xn; θc)∑C

c ′=1 p(yn|xn, c ′; θy )p(c ′|xn; θc)

I can be solved analytically.
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Machine Learning 2 2. Learning Mixtures of Experts

Remarks

I Mixtures of experts can use any model as component model.
I Mixtures of experts can use any classification model as

combination model.
I both models need to be able to deal with case weights
I both models need to be able to output probabilities

I if data is sparse, sparsity can be naturally used in both, component
and combination models.

I Updating the three types of parameters can be interleaved.
I this way, qn,c never has to be materialized

(but for a mini batch, possibly a single n)
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Machine Learning 2 2. Learning Mixtures of Experts

Outlook: Hierarchical Mixture of Experts

yn

cn

xn

mixture of experts

yn

c2
n

c1
n

xn

hierarchical mixture of experts
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Machine Learning 2 3. Interpreting Ensemble Models

Outline

1. The Idea behind Mixtures of Experts

2. Learning Mixtures of Experts

3. Interpreting Ensemble Models

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

13 / 17



Machine Learning 2 3. Interpreting Ensemble Models

Variable Importance

Some models allow to assess the importance of single variables
(or more generally subsets of variables; variable importance), e.g.,

I linear models: the z-score

I decision trees: the number of times a variable occurs in its splits

Variable importance of ensembles of such models can be measured as
average variable importance in the component models:

importance(Xm, ŷ) :=
1

C

C∑
c=1

importance(Xm, ŷc), m ∈ {1, . . . ,M}
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Machine Learning 2 3. Interpreting Ensemble Models

Variable Importance / Example
Synthetic data:

x ∼uniform([0, 1]10)

y ∼N (y | 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5, 1)

Model: Bayesian adaptive regression tree
(variant of a random forest; see [?, p. 551]).
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Machine Learning 2 3. Interpreting Ensemble Models

Variable Dependence: Partial Dependence Plot
For any model ŷ (and thus any ensemble), the dependency of the model
on a variable Xm can be visualized by a partial dependence plot:

plot z ∈ range(Xm) vs.

ŷpartial(z ;Xm,Dtrain) :=
1

N

N∑
n=1

ŷ((xn,1, . . . , xn,m−1, z , xn,m+1, . . . , xn,M)),

or for a subset of variables

ŷpartial(z ;XV ,Dtrain) :=
1

N

N∑
n=1

ŷ(ρ(x ,V , z)), V ⊆ {1, . . . ,M}

with ρ(x ,V , z)m :=

{
zm, if m ∈ V

xm, else
, m ∈ {1, . . . ,M}
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Machine Learning 2 3. Interpreting Ensemble Models

Variable Dependence / Example
Synthetic data:

x ∼uniform([0, 1]10)
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Machine Learning 2 3. Interpreting Ensemble Models

Summary

I Mixtures of Experts additionally allow the combination weights to
depend on x (gating function)
I jointy model

I a latent component each instance belongs to and
I a model for y for each component

I can be learned via block coordinate descent / EM.
I requiring just learning algorithms for the component models
I as well as for the combination model.

I Ensemble models can be diagnosed by partial dependence plots
(as any model).
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Further Readings

I Mixtures of Experts: [?, chapter 14.5]. [?, chapter 11.2.4, 11.4.3], [?,
chapter 9.5].

I Optimizing log-sums and EM algorithm as coordinate descent:
I lecture Machine Learning, C.1 Clustering, section 2 on Gaussian

Mixture Models.
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