

Machine Learning 2 B. Ensembles / B.3. Mixtures of Experts

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim, Germany

シック 正則 エル・エット モー・

Syllabus			A. Advanced Supervised Learning
Fri.	24.4.	(1)	A.1 Generalized Linear Models
Fri.	1.5.		— Labour Day —
Fri.	8.5.	(2)	A.2 Gaussian Processes
Fri.	15.5.	(3)	A.3 Advanced Support Vector Machines
			B. Ensembles
Fri.	22.5.	(4)	B.1 Stacking
			& B.2 Boosting
Fri.	29.5.	(5)	B.3 Mixtures of Experts
Fri.	5.6.	_	— Pentecoste Break —
			C. Sparse Models
Fri.	12.6.	(6)	C.1 Homotopy and Least Angle Regression
Fri.	19.6.	(7)	C.2 Proximal Gradients
Fri.	26.6.	(8)	C.3 Laplace Priors
Fri.	3.7.	(9)	C.4 Automatic Relevance Determination
			D. Complex Predictors
Fri.	10.7.	(10)	D.1 Latent Dirichlet Allocation (LDA)
Fri.	17.7.	(11)	Q & A

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Outline

1. The Idea behind Mixtures of Experts

2. Learning Mixtures of Experts

3. Interpreting Ensemble Models

- 《日》 《聞》 《臣》 《臣》 (四) 『 今 ()

Outline

1. The Idea behind Mixtures of Experts

2. Learning Mixtures of Experts

3. Interpreting Ensemble Models

Underlying Idea

So far, we build ensemble models where the combination weights do not depend on the predictors:

$$\hat{y}(x) := \sum_{c=1}^{C} \alpha_c \, \hat{y}_c(x)$$

i.e., all instances x are reconstructed from their predictions $\hat{y}_c(x)$ by the component models in the same way α .

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Underlying Idea

So far, we build ensemble models where the combination weights do not depend on the predictors:

$$\hat{y}(x) := \sum_{c=1}^{C} \alpha_c \, \hat{y}_c(x)$$

i.e., all instances x are reconstructed from their predictions $\hat{y}_c(x)$ by the component models in the same way α .

New idea: allow each instance to be reconstructed in an instance-specific way.

$$\hat{y}(x) := \sum_{c=1}^{C} \alpha_c(x) \, \hat{y}_c(x)$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

$$\begin{aligned} x_n \in \mathbb{R}^M, y_n \in \mathbb{R}, c_n \in \{1, \dots, C\}, \theta &:= (\beta, \sigma^2, \gamma), \beta, \gamma \in \mathbb{R}^{C \times M} \\ p(y_n \mid x_n, c_n; \theta) &:= \mathcal{N}(y \mid \beta_{c_n}^T x_n, \sigma_{c_n}^2) \\ p(c_n \mid x_n; \theta) &:= \mathsf{Cat}(c \mid \mathcal{S}(\gamma x)) \end{aligned}$$

with softmax function

$$\mathcal{S}(x)_m := rac{e^{x_m}}{\sum_{m'=1}^M e^{x_{m'}}}, \quad x \in \mathbb{R}^M$$

- C component models (experts) $\mathcal{N}(y \mid \beta_c^T x, \sigma_c^2)$
- each model c is expert in some region of predictor space, defined by its component weight (gating function) S(γx)_c
- a mixture model with latent nominal variable $z_n := c_n$.

シック 正則 エル・エリ・モリ・エー

$$x_n \in \mathbb{R}^M, y_n \in \mathbb{R}, c_n \in \{1, \dots, C\}, \theta := (\beta, \sigma^2, \gamma), \beta, \gamma \in \mathbb{R}^{C \times M}$$
$$p(y_n \mid x_n, c_n; \theta) := \mathcal{N}(y \mid \beta_{c_n}^T x_n, \sigma_{c_n}^2)$$
$$p(c_n \mid x_n; \theta) := \mathsf{Cat}(c \mid \mathcal{S}(\gamma x))$$

with softmax function

$$\mathcal{S}(x)_m := rac{e^{x_m}}{\sum_{m'=1}^M e^{x_{m'}}}, \quad x \in \mathbb{R}^M$$

- C component models (experts) $\mathcal{N}(y \mid \beta_c^T x, \sigma_c^2)$
- each model c is expert in some region of predictor space, defined by its component weight (gating function) S(γx)_c
- a mixture model with latent nominal variable $z_n := c_n$.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

▲ロト ▲周ト ▲ヨト ▲ヨト 三回 のへの

$$egin{aligned} & \mathcal{K}_n \in \mathbb{R}^M, y_n \in \mathbb{R}, c_n \in \{1, \dots, C\}, heta := (eta, \sigma^2, \gamma), eta, \gamma \in \mathbb{R}^{C \times T} \ & p(y_n \mid x_n, c_n; heta) := \mathcal{N}(y \mid eta_{c_n}^T x_n, \sigma_{c_n}^2) \ & p(c_n \mid x_n; heta) := \mathsf{Cat}(c \mid \mathcal{S}(\gamma x)) \end{aligned}$$

with softmax function

$$\mathcal{S}(x)_m := \frac{e^{x_m}}{\sum_{m'=1}^M e^{x_{m'}}}, \quad x \in \mathbb{R}^M$$

- *C* component models (experts) $\mathcal{N}(y \mid \beta_c^T x, \sigma_c^2)$
- each model c is expert in some region of predictor space, defined by its component weight (gating function) S(γx)_c
- a mixture model with latent nominal variable $z_n := c_n$.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへつ

Mixtures of Experts/ Example

component models

component weight

mixture of experts

[?, fig. 11.6]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

3 / 17

Generic Mixtures of Experts model:

- ▶ variables: $x_n \in \mathcal{X}, y_n \in \mathcal{Y}$
- ▶ latent variables: $c_n \in \{1, ..., C\}$
- component models: $p(y_n | x_n, c_n; \theta^y)$
 - ► a separate model for each *c*: $p(y_n | x_n, c; \theta^y) = p(y_n | x_n; \theta_c^y)$, with θ_c^y and $\theta_{c'}^y$ being disjoint for $c \neq c'$.
- combination model: $p(c_n | x_n; \theta^c)$

Example Mixture of Experts model:

- variables: $\mathcal{X} := \mathbb{R}^M, \mathcal{Y} := \mathbb{R}$
- component models: linear regression models $\mathcal{N}(y \mid \beta_c^T x, \sigma_c^2)$
- combination model: logistic regression model $Cat(c \mid S(\gamma x))$

For prediction:
$$p(y \mid x) = \sum_{c=1}^{C} p(y \mid x, c) p(c \mid x)$$

Generic Mixtures of Experts model:

- ▶ variables: $x_n \in \mathcal{X}, y_n \in \mathcal{Y}$
- ▶ latent variables: $c_n \in \{1, ..., C\}$
- component models: $p(y_n | x_n, c_n; \theta^y)$
 - ► a separate model for each *c*: $p(y_n | x_n, c; \theta^y) = p(y_n | x_n; \theta_c^y)$, with θ_c^y and $\theta_{c'}^y$ being disjoint for $c \neq c'$.
- combination model: $p(c_n | x_n; \theta^c)$

Example Mixture of Experts model:

- variables: $\mathcal{X} := \mathbb{R}^M, \mathcal{Y} := \mathbb{R}$
- component models: linear regression models $\mathcal{N}(y \mid \beta_c^T x, \sigma_c^2)$
- combination model: logistic regression model $Cat(c \mid S(\gamma x))$

For prediction:

$$p(y \mid x) = \sum_{c=1}^{C} \underbrace{p(y \mid x, c)p(c \mid x)}_{=\hat{y}_{c}(x)} = \alpha_{c}(x)$$

Outline

1. The Idea behind Mixtures of Experts

2. Learning Mixtures of Experts

3. Interpreting Ensemble Models

シック 正則 エル・エット きょう くしゃ

Learning Mixtures of Experts complete data likelihood:

$$L(\theta^{y}, \theta^{c}, c; \mathcal{D}^{\text{train}}) := \prod_{n=1}^{N} p(y_{n}|x_{n}, c_{n}; \theta^{y}) p(c_{n}|x_{n}; \theta^{c}), \quad c_{n} \in \{1, \ldots, C\}$$

Cannot be computed, as c_n is unknown.

《日》《聞》《言》《言》 三世 釣べの

Learning Mixtures of Experts complete data likelihood:

$$L(\theta^{y},\theta^{c},c;\mathcal{D}^{\mathsf{train}}) := \prod_{n=1}^{N} p(y_{n}|x_{n},c_{n};\theta^{y}) p(c_{n}|x_{n};\theta^{c}), \quad c_{n} \in \{1,\ldots,C\}$$

Cannot be computed, as c_n is unknown.

marginalize out unknown *c_n*:

$$L(\theta^{y}, \theta^{c}; \mathcal{D}^{\text{train}}) := \prod_{n=1}^{N} \sum_{c=1}^{C} p(y_{n}|x_{n}, c; \theta^{y}) p(c|x_{n}; \theta^{c})$$
$$\ell(\theta^{y}, \theta^{c}) := -\log L(\theta^{y}, \theta^{c})$$
$$= -\sum_{n=1}^{N} \log \sum_{c=1}^{C} p(y_{n}|x_{n}, c; \theta^{y}) \log p(c|x_{n}; \theta^{c})$$

log-sum is difficult to optimize (as it does not decompose in a big sum).

Optimizing log-sums (review)

Lemma

For
$$x_1, x_2, \ldots, x_N \in \mathbb{R}_0^+$$
:
 $\log \sum_{n=1}^N x_n = \max_{q \in \Delta_N} \sum_{n=1}^N q_n \log \frac{x_n}{q_n}$
Proof: "\ge ":

$$\log \sum_{n=1}^{N} x_n = \log \sum_{n=1}^{N} q_n \frac{x_n}{q_n} \ge_{\text{Jensen's ineq.}} \sum_{n=1}^{N} q_n \log \frac{x_n}{q_n}, \quad \forall q \in \Delta_N$$
$$\log \sum_{n=1}^{N} x_n \ge \max_{q \in \Delta_N} \sum_{n=1}^{N} q_n \log \frac{x_n}{q_n}$$
$$``\leq ``: \text{ Especially for } q_n := \frac{x_n}{\sum_{n'=1}^{N} x_{n'}}:$$
$$\sum_{n=1}^{N} q_n \log \frac{x_n}{q_n} = \sum_{n=1}^{N} \frac{x_n}{\sum_{n'=1}^{N} x_{n'}} \log \sum_{n'=1}^{N} x_{n'} = \log \sum_{n'=1}^{N} x_{n'}$$

Shiversiter Fildesheim

Joint Objective Function

ł

$$\ell(\theta^{y}, \theta^{c}) = -\sum_{n=1}^{N} \log \sum_{c=1}^{C} p(y_{n}|x_{n}, c; \theta^{y}) \log p(c|x_{n}; \theta^{c})$$
$$= -\sum_{n=1}^{N} \max_{q_{n} \in \Delta_{C}} \sum_{c=1}^{C} q_{n,c} \log \frac{p(y_{n}|x_{n}, c; \theta^{y}) p(c|x_{n}; \theta^{c})}{q_{n,c}}$$
$$\ell(\theta^{y}, \theta^{c}, q) := -\sum_{n=1}^{N} \sum_{c=1}^{C} q_{n,c} \log \frac{p(y_{n}|x_{n}, c; \theta^{y}) p(c|x_{n}; \theta^{c})}{q_{n,c}}$$

シック 비판 《파》《파》《西》

Learning Mixtures of Experts

$$\ell(\theta^{y}, \theta^{c}, q) := -\sum_{n=1}^{N} \sum_{c=1}^{C} q_{n,c} \log \frac{p(y_{n}|x_{n}, c; \theta^{y})p(c|x_{n}; \theta^{c})}{q_{n,c}}$$

coordinate descent:

1. minimize w.r.t. θ^c : (maximization step)

$$\ell(\theta^{c}; \theta^{y}, q) \propto -\sum_{n=1}^{N} \sum_{c=1}^{C} q_{n,c} \log p(c|x_{n}; \theta^{c})$$

$$\rightarrow \mathcal{D}_{\theta^{c}}^{\text{train}} := \{(q_{n,c}, x_{n}, c) \mid n = 1 : N, c = 1 : C\}$$

alternatively, $\mathcal{D}_{\theta^{c}}^{\text{train}} := \{(1, x_{n}, (q_{n,c})_{c=1:C}) \mid n = 1 : N\}$

▶ train combination model on all completed instances, each with case weight q_{n,c} (alternatively: on all instances to predict q_{n,c})
 Note: D^{train} is given as triples (q, x, y) with instances (x, y) with case weights q. (B) = DQC

Learning Mixtures of Experts

$$\ell(\theta^{y},\theta^{c},q) := -\sum_{n=1}^{N}\sum_{c=1}^{C}q_{n,c}\log\frac{p(y_{n}|x_{n},c;\theta^{y})p(c|x_{n};\theta^{c})}{q_{n,c}}$$

coordinate descent:

- 1. minimize w.r.t. θ^c : (maximization step)
- 2. minimize w.r.t. θ^{y} : (maximization step)

$$\ell(\theta^{y}; \theta^{c}, q) \propto -\sum_{n=1}^{N} \sum_{c=1}^{C} q_{n,c} \log p(y_{n}|x_{n}, c; \theta^{y})$$

decomposes over *c*:

$$\ell(\theta_c^{y}; \theta^{c}, q) \propto \sum_{n=1}^{N} q_{n,c} \log p(y_n | x_n, c; \theta_c^{y})$$

$$\rightsquigarrow \mathcal{D}_{\theta^{y}, c}^{\text{train}} := \{(q_{n,c}, x_n, y_n) \mid n = 1 : N\}, \quad c = 1 : C$$

Learning Mixtures of Experts

$$\ell(\theta^{y}, \theta^{c}, q) := -\sum_{n=1}^{N} \sum_{c=1}^{C} q_{n,c} \log \frac{p(y_{n}|x_{n}, c; \theta^{y})p(c|x_{n}; \theta^{c})}{q_{n,c}}$$

coordinate descent:

- 1. minimize w.r.t. θ^c : (maximization step)
- 2. minimize w.r.t. θ^{y} : (maximization step)
- 3. minimize w.r.t. q: (expectation step)

$$q_{n,c} = \frac{p(y_n|x_n, c; \theta^y) p(c|x_n; \theta^c)}{\sum_{c'=1}^{C} p(y_n|x_n, c'; \theta^y) p(c'|x_n; \theta^c)}$$

can be solved analytically.

<ロ> < 団> < 団> < 三> < 三> < 三) < つ)</p>

Remarks

- Mixtures of experts can use **any model as component model**.
- Mixtures of experts can use any classification model as combination model.
 - both models need to be able to deal with case weights
 - both models need to be able to output probabilities

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Remarks

- Mixtures of experts can use any model as component model.
- Mixtures of experts can use any classification model as combination model.
 - both models need to be able to deal with case weights
 - both models need to be able to output probabilities
- if data is sparse, sparsity can be naturally used in both, component and combination models.

Remarks

- Mixtures of experts can use any model as component model.
- Mixtures of experts can use any classification model as combination model.
 - both models need to be able to deal with case weights
 - both models need to be able to output probabilities
- if data is sparse, sparsity can be naturally used in both, component and combination models.
- ► Updating the three types of parameters can be **interleaved**.
 - this way, q_{n,c} never has to be materialized (but for a mini batch, possibly a single n)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 2 2. Learning Mixtures of Experts

Outlook: Hierarchical Mixture of Experts

mixture of experts

hierarchical mixture of experts

シック 三回 エル・エー・エー・

Outline

1. The Idea behind Mixtures of Experts

2. Learning Mixtures of Experts

3. Interpreting Ensemble Models

・ ロ ト ・ 西 ト ・ 画 ト ・ 一 目 ・ つ タ ()・

Variable Importance

Some models allow to assess the importance of single variables (or more generally subsets of variables; variable importance), e.g.,

- ► linear models: the z-score
- ▶ decision trees: the number of times a variable occurs in its splits

シック 비로 《파》《파》《西》 《

Variable Importance

Some models allow to assess the importance of single variables (or more generally subsets of variables; variable importance), e.g.,

- ► linear models: the z-score
- ▶ decision trees: the number of times a variable occurs in its splits

Variable importance of ensembles of such models can be measured as average variable importance in the component models:

$$\operatorname{importance}(X_m, \hat{y}) := \frac{1}{C} \sum_{c=1}^{C} \operatorname{importance}(X_m, \hat{y}_c), \quad m \in \{1, \dots, M\}$$

うせん 正則 ふぼやえばや (雪やんり)

Variable Importance / Example Synthetic data:

x ~uniform([0, 1]¹⁰)
y ~
$$\mathcal{N}(y \mid 10\sin(\pi x_1 x_2) + 20(x_3 - 0.5)^2 + 10x_4 + 5x_5, 1)$$

Model: Bayesian adaptive regression tree (variant of a random forest; see [?, p. 551]).

Machine Learning 2 3. Interpreting Ensemble Models

Variable Dependence: Partial Dependence Plot

For any model \hat{y} (and thus any ensemble), the dependency of the model on a variable X_m can be visualized by a **partial dependence plot**:

$$\begin{aligned} & \text{plot } z \in \text{range}(X_m) \text{ vs.} \\ & \hat{y}_{\text{partial}}(z; X_m, \mathcal{D}^{\text{train}}) := & \frac{1}{N} \sum_{n=1}^N \hat{y}((x_{n,1}, \dots, x_{n,m-1}, z, x_{n,m+1}, \dots, x_{n,M})), \end{aligned}$$

or for a subset of variables

$$\hat{\psi}_{\text{partial}}(z; X_V, \mathcal{D}^{\text{train}}) := \frac{1}{N} \sum_{n=1}^N \hat{y}(\rho(x, V, z)), \quad V \subseteq \{1, \dots, M\}$$

with $\rho(x, V, z)_m := \begin{cases} z_m, & \text{if } m \in V \\ x_m, & \text{else} \end{cases}, \quad m \in \{1, \dots, M\}$

・ロト・4日ト・4日ト・4日ト・4日ト

Universit

Variable Dependence / Example Synthetic data:

$$x \sim$$
uniform([0, 1]¹⁰)
 $y \sim \mathcal{N}(y \mid 10 \sin(\pi x_1 x_2) + 20(x_3 - 0.5)^2 + 10x_4 + 5x_5, 1)$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Summary

- Mixtures of Experts additionally allow the combination weights to depend on x (gating function)
 - jointy model
 - a latent component each instance belongs to and
 - ► a model for *y* for each component
 - can be learned via block coordinate descent / EM.
 - requiring just learning algorithms for the component models
 - as well as for the combination model.
- Ensemble models can be diagnosed by partial dependence plots (as any model).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへつ

Further Readings

- Mixtures of Experts: [?, chapter 14.5]. [?, chapter 11.2.4, 11.4.3], [?, chapter 9.5].
- Optimizing log-sums and EM algorithm as coordinate descent:
 - lecture Machine Learning, C.1 Clustering, section 2 on Gaussian Mixture Models.

References

Christopher M. Bishop.

Pattern recognition and machine learning, volume 1. springer New York, 2006.

Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin.

The elements of statistical learning: data mining, inference and prediction, volume 27. Springer, 2005.

Kevin P. Murphy.

Machine learning: a probabilistic perspective. The MIT Press, 2012.

・ロト・雪ト・ヨト・ヨト 관日 うくぐ