
Machine Learning 2

Machine Learning 2
6. Sparse Linear Models

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science

University of Hildesheim, Germany

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 42



Machine Learning 2

Syllabus
A. Advanced Supervised Learning

Fri. 24.4. (1) A.1 Generalized Linear Models
Fri. 1.5. — — Labour Day —
Fri. 8.5. (2) A.2 Gaussian Processes
Fri. 15.5. (3) A.3 Advanced Support Vector Machines

B. Ensembles
Fri. 22.5. (4) B.1 Stacking

& B.2 Boosting
Fri. 29.5. (5) B.3 Mixtures of Experts
Fri. 5.6. — — Pentecoste Break —

C. Sparse Models
Fri. 12.6. (6) C.1 Homotopy and Least Angle Regression
Fri. 19.6. (7) C.2 Proximal Gradients
Fri. 26.6. (8) C.3 Laplace Priors
Fri. 3.7. (9) C.4 Automatic Relevance Determination

D. Complex Predictors
Fri. 10.7. (10) D.1 Latent Dirichlet Allocation (LDA)
Fri. 17.7. (11) Q & A
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Machine Learning 2

Outline

1. Homotopy Methods: Least Angle Regression

2. Proximal Gradient Methods

3. Laplace Priors (Bayesian Lasso)
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

Sparse Models so far

I Variable subset selection
I forward search, backward search

I L1 regularization / Lasso
I Coordinate descent (shooting algorithm)
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

L1 Regularization

min. f (θ̂) := `(y , ŷ(θ̂,X )) +λ||θ̂||1
θ̂ ∈ RP

is equivalent to

min. f (θ̂) := `(y , ŷ(θ̂,X ))

||θ̂||1 ≤ B

θ̂ ∈ RP

with

B := ||θ̂∗||1
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

L1 Regularization / Equivalence

More generally, given

x∗ := arg min
x

f (x) + λ g(x), λ ≥ 0 (1)

x̃ := arg min
x :g(x)≤g(x∗)

f (x) (2)

then

x∗ =x̃

because

f (x̃) ≤
(2)
f (x∗) ≤

(1)
f (x̃) + λ (g(x̃)− g(x∗)︸ ︷︷ ︸

≤0

) ≤ f (x̃)

 f (x̃) =f (x∗)  x̃ = x∗

assuming x∗ is unique.
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

Homotopy Methods

min. f (θ̂) := `(y , ŷ(θ̂,X )) + λ||θ̂||1
or equivalently

min. f (θ̂) := `(y , ŷ(θ̂,X ))

||θ̂||1 ≤ B

I start with a solution for large λ(0) (or equiv. B(0) := 0)
I then θ̂(0) = 0.

I stepwise decrease λ(t) (or equiv. increase B(t))
I learn θ̂(t) starting from θ̂(t−1) (warmstart).
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

Homotopy Methods / Prerequisites

For homotopy to work,

1. the parameters as function of λ

θ̂(λ) := arg min
θ̂

`(y , ŷ(θ̂,X )) + λ||θ̂||1
must be continuous, i.e.,
I ŷ must be continuous in θ̂ and
I ` be continuous in ŷ .

2. the steps in λ(t) must be small enough.
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

Homotopy for the L1 Weight of Linear Regression

Most simple model: linear regression

I model ŷ(θ̂,X ) := X θ̂

I loss `(y , ŷ) := ||y − ŷ ||22

Advantage: can find optimal λ(t) sequence analytically! (actually B(t))

Imagine the following situation:

I initially all parameters θ̂m = 0.
I you can add one variable xm to the model

I by setting its parameter θ̂m to a small positive or negative value ε.

I the goal is to reduce the error as much as possible.

I Q: which parameter θ̂m would you choose?
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

Example

3.4 Shrinkage Methods 75
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FIGURE 3.14. Progression of the absolute correlations during each step of the
LAR procedure, using a simulated data set with six predictors. The labels at the
top of the plot indicate which variables enter the active set at each step. The step
length are measured in units of L1 arc length.
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FIGURE 3.15. Left panel shows the LAR coefficient profiles on the simulated
data, as a function of the L1 arc length. The right panel shows the Lasso profile.
They are identical until the dark-blue coefficient crosses zero at an arc length of
about 18.
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Q: which parameter will you pick initially
to reduce the loss maximally?

Q2: How will the cyano curve go?
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Q: which parameter will you pick initially
to reduce the loss maximally?

Q2: How will the cyano curve go?



Machine Learning 2 1. Homotopy Methods: Least Angle Regression

Least Angle Regression (LAR)
in step t:

1. choose the predictors with largest correlation with the residuum
(active predictors):

C (t−1) :=XT (y − ŷ (t−1))

A(t) := arg max
m

|C (t−1)
m | (a set!)

2. regress these predictors on the residuum:

X (t) :=X·,A(t)

γ̂(t) := arg min
γ
||y − ŷ (t−1) − X (t)γ||2

=(X (t)TX (t))−1X (t)T (y − ŷ (t−1))

3. update parameters in this direction:

β̂(t) :=β̂(t−1) + α∆(t)γ̂(t)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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(t)
mk ,k

:= 1 for A(t) := {m1,m2, . . . ,mK}, ∆
(t)
m,k := 0 otherwise.



Machine Learning 2 1. Homotopy Methods: Least Angle Regression

Least Angle Regression (LAR): step length

Residuum correlations after the update

C (t) =XT (y − ŷ (t)) = XT (y − X β̂(t)) = XT (y − X (β̂(t−1) + α∆(t)γ̂(t)))

=C (t−1) − αXTX∆(t)γ̂(t)

=C (t−1) − αXTX (t)γ̂(t)

are uniformly reduced for active predictors:

C (t)|A(t) =C (t−1)|A(t) − αX (t)TX (t)γ̂(t) = (1− α)C (t−1)|A(t)

and may also change for non-active predictors:

C
(t)
m =C

(t−1)
m − αXT

·,mX
(t)γ̂(t)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Note: Maybe a mistake somewhere here. Final formula for α differs from the one in the
paper.



Machine Learning 2 1. Homotopy Methods: Least Angle Regression

Least Angle Regression (LAR): step length (2/2)
Reduce until another predictor has same (max) residuum correlation:

C
(t)
m =C

(t−1)
m − αXT

·,mX
(t)γ̂(t) !

= (1− α)C
(t−1)
max

α =
C

(t−1)
max − C

(t−1)
m

C
(t−1)
max − XT

·,mX
(t)γ̂(t)

or for negative correlations:

C
(t)
m =C

(t−1)
m − αXT

·,mX
(t)γ̂(t) !

= −(1− α)C
(t−1)
max

α =
C

(t−1)
max + C

(t−1)
m

C
(t−1)
max + XT

·,mX
(t)γ̂(t)

yielding

α :=minpos{ C
(t−1)
max − C

(t−1)
m

C
(t−1)
max − XT

·,mX
(t)γ̂(t)

,
C

(t−1)
max + C

(t−1)
m

C
(t−1)
max + XT

·,mX
(t)γ̂(t)

| m ∈ {1, . . . ,M} \ A(t)}, minpos(X ) := min{x ∈ X | x > 0}
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

Remarks

I algorithm can be used two ways:

1. Estimate parameters for all λ (regularization path)
2. Estimate parameters for a specific λ (Homotopy method)

I start with large λ(0), stop once λ(t) < λ reached.

I not straightforward to extend from regression to GLMs

I LAR can be modified to solve the LASSO:
I if the parameter β

(t)
m for an active predictor m becomes 0 or changes

sign, drop it from the active set.

I also called Least Angle Regression and Shrinkage (LARS)
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Machine Learning 2 2. Proximal Gradient Methods

Outline

1. Homotopy Methods: Least Angle Regression

2. Proximal Gradient Methods

3. Laplace Priors (Bayesian Lasso)
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Machine Learning 2 2. Proximal Gradient Methods

Regularized

We want to compute models

θ∗ = arg min
θ

L(θ)︸︷︷︸
Loss

+ R(θ)︸︷︷︸
Regularization

Even when R is not differentiable, e.g.

I R(θ) = ‖θ‖1 (L1 regularization, lasso)

I R(θ) = IC (θ) =

{
0 : θ ∈ C

∞ : θ 6∈ C
(hard constraint)

Observation: For simple loss functions, we can sometimes compute θ∗

analytically

arg min
θ

1

2
‖θ − y‖2

2 + λ‖θ‖1 = soft(y , λ)
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Machine Learning 2 2. Proximal Gradient Methods

Proximal Problem
I find x with minimal f in a vicinity of a given x0:

proxf (x0) := arg min
x

f (x) +
1

2
||x − x0||22

Can be solved analytically for some typical (possibly non-differentiable)
regularization functions:
I f := λ||x ||22 : proxf (x0) =

1

2λ+ 1
x0

I f := λ||x ||1 :

proxf (x0) =soft(x0, λ) := (soft(x0
n , λ))n=1,...,N

soft(z , λ) := sign(z)(|z | − λ)0

I f := λ||x ||0 :

proxf (x0) =hard(x0, λ) := (hard(x0
n , λ))n=1,...,N ,

hard(z , λ) := δ(|z | ≥ λ) z
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f (x) +
1

2
||x − x0||22

Can be solved analytically for some typical (possibly non-differentiable)
regularization functions:
I f := λ||x ||22 : proxf (x0) =

1

2λ+ 1
x0

I f := λ||x ||1 :
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Machine Learning 2 2. Proximal Gradient Methods

More Analytical Solutions for the Proximal Problem
I find x with minimal f in a vicinity of a given x0:

proxf (x0) := arg min
x

f (x) +
1

2
||x − x0||22

f := IC for a convex set C and IC (x) :=

{
0, if x ∈ C

∞, else

proxf (x0) = arg min
x∈C

||x − x0||22 =: projC (x0)

I rectangles / box constraints C := [l1, u1]× [l2, u2]× · · · × [lN , uN ]:

proxf (x0) =clip(x0,C ) with clip(x0,C )n := min{max{x0
n , ln}, un}

I euclidean balls C := {x | ||x ||2 ≤ 1}:

proxf (x0) =

{
x0

||x0||2 , if ||x0||2 > 1

x0, else
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Machine Learning 2 2. Proximal Gradient Methods

More Analytical Solutions for the Proximal Problem

I find x with minimal f in a vicinity of a given x0:

proxf (x0) := arg min
x

f (x) +
1

2
||x − x0||22

f := IC for

I L1 balls C := {x | ||x ||1 ≤ 1}:

proxf (x0) =

{
soft(x0, λ), if ||x0||1 > 1

x0, else

for λ with
N∑

n=1

(|x0
n | − λ)0

!
= 1
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Machine Learning 2 2. Proximal Gradient Methods

Deriving Generalized Gradient Descent (1/2)

min
x

f (x) := g(x) + h(x), g , h convex, g differentiable, h possibly not

using a Taylor expansion of g around previous solution x (t):

g(x) ≈ g(x (t)) +∇g(x (t))(x − x (t)) +
1

2
(x − x (t))TH(x − x (t))

and diagonal approximation of the Hessian H ≈ 1
α(t) I

≈ g(x (t)) +∇g(x (t))(x − x (t)) +
1

2α(t)
(x − x (t))T (x − x (t))

=
1

2α(t)
(x − x (t) + 2α(t)∇g(x (t)))T (x − x (t)) + const

=
1

2α(t)
(x − (x (t) − α(t)∇g(x (t)))T (x − (x (t) − α(t)∇g(x (t))))

+const

=
1

2α(t)
||x − (x (t) − α(t)∇g(x (t)))||2 + const
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Machine Learning 2 2. Proximal Gradient Methods

Deriving Generalized Gradient Descent (2/2)

min
x

f (x) := g(x) + h(x), g , h convex, g differentiable, h possibly not

g(x) =
1

2α(t)
||x − (x (t) − α(t)∇g(x (t)))||2 + const

yields a proximal problem

min
x

f (x) =
1

2α(t)
||x − (x (t) − α(t)∇g(x (t)))||2 + h(x)

∝ 1

2
||x − (x (t) − α(t)∇g(x (t)))||2 + α(t)h(x)

= proxα(t)h(x (t) − α(t)∇g(x (t)))

with proxq(x0) := arg min
x

q(x) +
1

2
||x − x0||2
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Machine Learning 2 2. Proximal Gradient Methods

Generalized Gradient Descent

min
x

g(x) + h(x), g , h convex, g differentiable

Generalized Gradient Descent:

x (t+1) := proxα(t)h(x (t) − α(t)∇g(x (t)))

with proxq(x0) := arg min
x

q(x) +
1

2
||x − x0||2

I two-step approach:
1. minimize component g via gradient descent
2. minimize component h via prox operator

I requires control of step size α(t)

I generalizes gradient descent to objective functions with
non-differentiable additive components

I convergence rate O(1/t).
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Machine Learning 2 2. Proximal Gradient Methods

Application to Regularized Loss Minimization

min f (θ) :=`(θ) + R(θ)

I ` loss, convex and differentiable
I e.g., RSS.

I R regularization, convex, but possibly not differentiable

I e.g., ||θ||1 or IC (θ) :=

{
0, θ ∈ C

∞, else

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

22 / 42



Machine Learning 2 2. Proximal Gradient Methods

Special Cases

θ(t+1) := proxα(t)R (θ(t) − α(t)∇`(θ(t)))

= arg min
θ

α(t)R(θ) +
1

2
||θ − (θ(t) − α(t)∇`(θ(t)))||22

1. R = 0 yields gradient descent:

θ(t+1) = θ(t) − α(t)∇`(θ(t))

2. R = IC yields projected gradient descent:

θ(t+1) = projC (θ(t) − α(t)∇`(θ(t)))
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Machine Learning 2 2. Proximal Gradient Methods

Special Cases: Projected Gradient Descent

I Instead of taking a gradient step and then project,
we could compute the smallest stepsize that does not leave the feasible area (“guarded gradient descent”).

I Q: Which next iterate would “guarded gradient descent” find instead?

I Now assume the current iterate θt is on the upper right border of the feasible area.

I Q: Which next iterate would “guarded gradient descent” find now?

I Q: How about projected gradient descent?

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

Special Cases

θ(t+1) := proxα(t)R(θ(t) − α(t)∇`(θ(t)))

= arg min
θ

α(t)R(θ) +
1

2
||θ − (θ(t) − α(t)∇`(θ(t)))||22

3. R = λ||θ||1 yields iterative soft thresholding:

θ(t+1) = soft(θ(t) − α(t)∇`(θ(t)), λα(t))
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Machine Learning 2 2. Proximal Gradient Methods

Stepsizes α(t)

Taylor expansion of the Gradient:

∇`(θ) ≈ ∇`(θ(t)) +∇2`(θ(t))(θ − θ(t)) ≈ ∇`(θ(t)) +
1

α(t)
(θ − θ(t))

 α(t)∇`(θ(t))−∇`(θ(t−1)) ≈ (θ(t) − θ(t−1))

Idea:

α(t) := arg min
α
||(θ(t) − θ(t−1))− α(∇`(θ(t))−∇`(θ(t−1)))||22

=
(θ(t) − θ(t−1))T (θ(t) − θ(t−1))

(θ(t) − θ(t−1))T (∇`(θ(t))−∇`(θ(t−1)))

called Barzilai-Borwein stepsize or spectral stepsize.

I does not guarantee decreasing objective values.

I can be used with any gradient descent method.
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Machine Learning 2 2. Proximal Gradient Methods

Iterative Shrinkage and Thresholding Algorithm(ISTA)

I proximal gradient descent for L1 regularization
I iterative soft thresholding

I Barzilai-Borwein stepsize

I in outer loop, homotopy on λ
I i.e., gradually reducing λ(t) to λ
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(SpaRSA) in the literature.



Machine Learning 2 2. Proximal Gradient Methods

ISTA Algorithm

1 learn-l1reg-ista(X ∈ RN×M , y ∈ RN , λ > 0, s ∈ (0, 1),M) :

2 θ := 0, r := y , λ̃ :=∞, α := 1

3 for t := 1, 2, 3, . . . while λ̃ 6= λ:

4 λ̃ := max(λ, s||XT r ||∞)
5 while `(θ) + λ||θ||1 did not increase too much in the last M steps:

6 θold := θ

7 θ̃ := θ − α∇`(θ)

8 θ := soft(θ̃, λ̃α)

9 α := (θ−θold)T (θ−θold)
(θ−θold)T (∇`(θ)−∇`(θold))

10 r := y − Xθ
11 return θ
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Machine Learning 2 2. Proximal Gradient Methods

Nesterov’s Accelerated Generalized Gradient Descent

min
x

g(x) + h(x), g , h convex, g differentiable

Generalized Gradient Descent:

x (t+1) := proxα(t)h(x (t)+
t − 1

t + 2
(x (t) − x (t−1))− α(t)∇g(x (t)))

with proxf (x0) := arg min
x

f (x) +
1

2
||x − x0||2

I added momentum term

I works also for vanilla gradient descent (h = 0)

I convergence rate O(1/t2)!

I beware, there are at least 3 versions of Nesterov’s method.
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Machine Learning 2 2. Proximal Gradient Methods

Fast Iterative Shrinkage and Thresholding Alg. (FISTA)

θ(t+1) := proxα(t)R (θ(t)+
t − 1

t + 2
(θ(t) − θ(t−1))− α(t)∇`(θ(t)))

for R = λ||θ||1 yields iterative soft thresholding:

θ(t+1) = soft(θ(t)+
t − 1

t + 2
(θ(t) − θ(t−1))− α(t)∇`(θ(t)), λα(t))

using Nesterov’s Accelerated Generalized Gradient Descent.
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Machine Learning 2 2. Proximal Gradient Methods

FISTA vs ISTA
A FAST ITERATIVE SHRINKAGE-THRESHOLDING ALGORITHM 201
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Figure 5. Comparison of function value errors F (xk)− F (x∗) of ISTA, MTWIST, and FISTA.
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Outline

1. Homotopy Methods: Least Angle Regression

2. Proximal Gradient Methods

3. Laplace Priors (Bayesian Lasso)
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

Bayesian Regression

β̂ = arg min
β

L(β)︸︷︷︸
Loss

+λR(β)︸ ︷︷ ︸
Regularizationy”Bayesianize”

β̂ = arg max
β

p(β | X , y)

p(β | X , y)︸ ︷︷ ︸
posterior

∝ p(y | X , β)︸ ︷︷ ︸
likelihood

· p(β)︸︷︷︸
prior

I p(y | X , β) = N (y | Xβ, σ2I )! Bayesian Linear Regression
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

Laplace Priors correspond to L1 regularization

L2 regularization:

f (β) := ||y − Xβ||22 + λ||β||22

Gaussian priors:

p(yn | xn, β, σ2) := N (yn | xTn β, σ2)

p(β) := N (β | 0, 1
λ I )

= (2πλ)−M/2 e−
1
2λ‖β‖2

2

L1 regularization:

f (β) := ||y − Xβ||22 + λ||β||1

Laplace priors:

p(yn | xn, β, σ2) := N (yn | xTn β, σ2)

p(βm) := Lap(βm | 0, 1
λ )

= 1
2λe
−λ|βm|

using negative logposterior as objective function:

f (β;X , y , σ2 or λ) := − log p(y | X , β) p(β)
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

Laplace as Gaussian Scale Mixture
I problem: MAP cannot be found analytically.
I idea: rewrite the Laplace as a

Gaussian-Scale-Mixture with Exponential priors:

Lap(βi | 0, 1
λ) =

∫
N (βi | 0, τ2

i ) Exp(τ2
i | 1

2λ
2)dτ2

i.e. each parameter is distributed as βi ∼ N (0, τ2
i ) with τ2

i ∼ Exp( 1
2λ

2)

 posterior distribution:

p(β, σ2 | X , y , τ2) ∝ p(y | X , β, σ2)︸ ︷︷ ︸
=N (y |Xβ,σ2I )

· p(β | τ2)︸ ︷︷ ︸
=N (β|0,diag(τ2))

· p(τ2 | λ)︸ ︷︷ ︸
=Exp(τ2| 1

2
λ2)

· p(σ2)︸ ︷︷ ︸

=IG(σ2|a,b)

with (τi )m=1...M latent variables,
λ the regularization strength hyperparameter,

IG(σ2 | a, b) an Inverse-Gamma prior on the variance.

I p is now smooth in all parameters! We can apply EM-algorithm!
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IG(σ2 | a, b) an Inverse-Gamma prior on the variance.
I p is now smooth in all parameters! We can apply EM-algorithm!
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Laplace as Gaussian Scale Mixture
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Inverse Gamma Distribution

I Gamma distribution:

Γ(x | a, b) :=
ba

Γ(a)
xa−1e−bx

E(x) =
a

b

I Inverse Gamma distribution:

IG(x | a, b) :=
ba

Γ(a)
x−a−1e−

b
x

I X ∼ Γ(a, b) ⇐⇒ X−1 ∼ IG(a, b)

 E(
1

x
) =

a

b
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Laplace Prior as Gaussian Scale Mixture

p(yn | xn, β, σ2) := N (yn | xTn β, σ2) = 1√
2πσ2

e−
1

2σ2 |yn−xTn βm|2

p(βm | τ2
m) := N (βm | 0, τ2

m) = 1√
2πτ2

m

e
− 1

2τ2
m
|βm|2

p(τ2
m) := Exp(τ2

m |
1

2
λ2) = 1

2λ
2e−

1
2λ

2τ2
m

p(σ2) := IG(σ2 | a, b) = ba

Γ(a)σ
−2(1+a)e−

b
σ2

negative logposterior:

`(β, σ2 | X , y , τ2) = 1
2N log σ2 + 1

2σ2 ||y − Xβ||22

+
M∑

m=1

log τ2
m + 1

2β
TT−1β + 1

2λ
2

M∑
m=1

τ2
m + (1 + a) log σ2 + b

σ2
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446 Chapter 13. Sparse linear models

Algorithm 13.2: Iterative Shrinkage-Thresholding Algorithm (ISTA)

1 Input: X ∈ RN×D , y ∈ RN , parameters λ ≥ 0, M ≥ 1, 0 < s < 1 ;
2 Initialize θ0 = 0, α = 1, r = y, λ0 = ∞;
3 repeat
4 λt = max(s||XT r||∞, λ) // Adapt the regularizer ;
5 repeat
6 g = ∇L(θ);
7 u = θ − 1

αg;

8 θ = soft(u, λt
α );

9 Update α using BB stepsize in Equation 13.82 ;
10 until f(θ) increased too much within the past M steps;
11 r = y − Xθ // Update residual ;
12 until λt = λ;

σ2

N

yi

xi

D
wj

τj

γ

Figure 13.12 Representing lasso using a Gaussian scale mixture prior.

This is known as Nesterov’s method (Nesterov 2004; Tseng 2008). As before, there are a variety
of ways of setting tk ; typically one uses line search.

When this method is combined with the iterative soft thresholding technique (for R(θ) =
λ||θ||1), plus a continuation method that gradually reduces λ, we get a fast method for the
BPDN problem known as the fast iterative shrinkage thesholding algorithm or FISTA (Beck
and Teboulle 2009).

Note: T := diag(τ2
1 , τ

2
2 , . . . , τ

2
M)
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E-step for τ 2

We need to compute the expectation of

p(τ2 | X , y , β, σ2) ∝ p(β | τ2)p(τ2)

where p(βm | τ2
m) = N (βm | 0, τ2

m) and p(τ2
m) = Exp(τ2

m | 1
2λ

2)

It turns out simpler to estimate 1
τ2 : One can show that (tutorial)

1

τ2
| β ∼ InvGauss(

√
λ2

β2 , λ
2)

Where the Inverse Gaussian distribution is given by

InvGauss(x | µ, ν) =

√
ν

2πx3
e
− ν

2µ2x
(x−µ)2

with mean E[x ] = µ and variance Var[x ] = µ3/ν =⇒ E
[

1
τ2
m

]
= λ
|βm|
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E-step for σ2

We need to compute the expectation of

p(σ2 | X , y , β, τ2) ∝ p(y | X , β, σ2) p(σ2)

= N (y | Xβ, σ2I ) IG(σ2 | a, b)

One can show that (tutorial)

p(σ2 | X , y , β, τ2) = IG(σ2, a′, b′)

with a′ := a + 1
2N, b′ := b + 1

2‖y − Xβ‖2
2
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Remark on Conjugate Prior

Note that the posterior of σ2 is again an Inverse Gamma distribution!

p(σ2 | X , y , β)︸ ︷︷ ︸
=IG(a′,b′)

∝ p(y | X , β, σ2)︸ ︷︷ ︸
N (µ,ν)

p(σ2)︸ ︷︷ ︸
=IG(a,b)

This is because the IG is a conjugate prior to the normal distribution.
Conjugate priors let you interpret how the data changes the believe about
the parameters. −→ Main reason for choosing this prior!

Remark: inverse distributions
Note that the Inverse Gamma distribution is called Inverse Gamma because

X ∼ Γ(a, b) ⇐⇒ X−1 ∼ IG(a, b) (1)

However, despite the name, the same is not true for the Inverse Gaussian!
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M-step for β

We need to compute

β̂ = arg min
β

`(β, σ2, τ2) = arg min
β

1
2σ2 ‖y − Xβ‖2

2 + 1
2β

TT−1β

where we dropped all terms independent of β. Then

∇β` = 0 ⇐⇒ ( 1
σ2X

TX + T−1)β̂ = 1
σ2X

T y

So β̂ = (XTX + ( 1
σ2T )−1)−1XT y which is a ridge regression objective!
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EM summary

1. Expectation of τ2:

p( 1
τ2
m
| β) = Inv-Gauss(

√
λ2

β2
m
, λ2)

E
[

1
τ2
m

]
=

λ

|βm|
2. Expectation of σ2:

p(σ2 | X , y , β) = IG(σ2 | a′, b′)
a′ := a + 1

2N, b′ := b + 1
2‖y − Xβ‖2

2

E[ 1
σ2 ] = a′

b′

3. Maximization w.r.t. β:

`(β) = 1
2σ2 ‖y − Xβ‖2

2 + 1
2β

TT−1β

β̂ = (XTX + ( 1
σ2T )−1)−1XT y
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Why Laplace Prior?

I Bayesian Lasso
I provides posterior distribution, not just point estimates

I Can be generalized to other models / losses

I Motivates to experiment with other types of priors, too

I Less scalable than the other methods, though.
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Further Readings

I L1 regularization: [?, chapter 13.3–5], [?, chapter 3.4, 3.8, 4.4.4], [?,
chapter 3.1.4].
I LAR, LARS: [?, chapter 3.4.4], [?, chapter 13.4.2],

I Non-convex regularizers: [?, chapter 13.6].

I Automatic Relevance Determination (ARD): [?, chapter 13.7], [?,
chapter 11.9.1], [?, chapter 7.2.2].

I Sparse Coding: [?, chapter 13.8].

I Multivariate Laplace Distribution: [?]
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