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Machine Learning 2

Syllabus
A. Advanced Supervised Learning

Fri. 24.4. (1) A.1 Generalized Linear Models
Fri. 1.5. — — Labour Day —
Fri. 8.5. (2) A.2 Gaussian Processes
Fri. 15.5. (3) A.3 Advanced Support Vector Machines

B. Ensembles
Fri. 22.5. (4) B.1 Stacking

& B.2 Boosting
Fri. 29.5. (5) B.3 Mixtures of Experts
Fri. 5.6. — — Pentecoste Break —

C. Sparse Models
Fri. 12.6. (6) C.1 Homotopy and Least Angle Regression
Fri. 19.6. (7) C.2 Proximal Gradients
Fri. 26.6. (8) C.3 Laplace Priors
Fri. 3.7. (9) C.4 Automatic Relevance Determination

D. Complex Predictors
Fri. 10.7. (10) D.1 Latent Dirichlet Allocation (LDA)
Fri. 17.7. (11) Q & A
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Machine Learning 2 1. Automatic Relevance Determination (ARD)

Linear Regression plus ARD Regularization
Linear Regression plus L2 regularization (Ridge Regression):

p(yn | xn, β, σ2y ) := N (yn | βT xn, σ2y )

p(β) := N (β | 0,Σβ := σ2βI )

Linear Regression plus ARD Regularization:

p(yn | xn, β, σ2y ) := N (yn | βT xn, σ2y )

p(β) := N (β | 0,Σβ := diag(σ2β1 , . . . , σ
2
βM

))

p(σ2y ) := InvGamma(σ2y | c , d)

p(σ2βm) := InvGamma(σ2βm | a, b), m = 1, . . . ,M

Idea:

I use a different regularization weight for each predictor xm.

I but M hyperparameters are too many to learn by grid search.
I hence put a hyperprior on top.
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Machine Learning 2 1. Automatic Relevance Determination (ARD)

Empirical Bayes
Maximum Likelihood (ML): θ̂ := arg max

θ
p(D | θ)

Maximum Aposteriori (MAP): θ̂ := arg max
θ

p(D | θ) p(θ | η)

ML-II (Empirical Bayes): η̂ := arg max
η

p(D | η)

= arg max
η

∫
p(D | θ) p(θ | η)dθ

θ̂ ∼p(θ | D, η̂) ∝ p(D | θ) p(θ | η̂)

MAP-II: η̂ := arg max
η

p(D | η) p(η)

= arg max
η

∫
p(D | θ) p(θ | η) p(η)dθ

θ̂ ∼p(θ | D, η̂) ∝ p(D | θ) p(θ | η̂)

Full Bayes: (θ̂, η̂) ∼p(θ, η | D) ∝ p(D | θ) p(θ | η) p(η)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 19



Machine Learning 2 1. Automatic Relevance Determination (ARD)

Empirical Bayes
Maximum Likelihood (ML): θ̂ := arg max

θ
p(D | θ)

Maximum Aposteriori (MAP): θ̂ := arg max
θ

p(D | θ) p(θ | η)

ML-II (Empirical Bayes): η̂ := arg max
η

p(D | η)

= arg max
η

∫
p(D | θ) p(θ | η)dθ

θ̂ ∼p(θ | D, η̂) ∝ p(D | θ) p(θ | η̂)

MAP-II: η̂ := arg max
η

p(D | η) p(η)

= arg max
η

∫
p(D | θ) p(θ | η) p(η)dθ

θ̂ ∼p(θ | D, η̂) ∝ p(D | θ) p(θ | η̂)

Full Bayes: (θ̂, η̂) ∼p(θ, η | D) ∝ p(D | θ) p(θ | η) p(η)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 19



Machine Learning 2 1. Automatic Relevance Determination (ARD)

Empirical Bayes
Maximum Likelihood (ML): θ̂ := arg max

θ
p(D | θ)

Maximum Aposteriori (MAP): θ̂ := arg max
θ

p(D | θ) p(θ | η)

ML-II (Empirical Bayes): η̂ := arg max
η

p(D | η)

= arg max
η

∫
p(D | θ) p(θ | η)dθ

θ̂ ∼p(θ | D, η̂) ∝ p(D | θ) p(θ | η̂)

MAP-II: η̂ := arg max
η

p(D | η) p(η)

= arg max
η

∫
p(D | θ) p(θ | η) p(η)dθ

θ̂ ∼p(θ | D, η̂) ∝ p(D | θ) p(θ | η̂)

Full Bayes: (θ̂, η̂) ∼p(θ, η | D) ∝ p(D | θ) p(θ | η) p(η)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 19



Machine Learning 2 1. Automatic Relevance Determination (ARD)

Marginal Likelihood
Without hyperpriors:

p(y | X , σ2y ,Σβ) =

∫
N (y | Xβ, σ2y I )N (β | 0,Σβ)dβ

= N (y | 0, σ2y I + XΣβX
T︸ ︷︷ ︸

=:Cy

)

`(σ2y ,Σβ) := − log p(y | X , σ2y ,Σβ) ∝ log |Cy |+ yTC−1y y

With hyperpriors:

`(σ2y ,Σβ) := − log p(y | X , σ2y ,Σβ) p(σ2y | c , d) p(Σβ | a, b)

∝ log |Cy |+ yTC−1y y +
M∑

m=1

(−a log σ2βm − b/σ2βm)

− c log σ2y − d/σ2y
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Machine Learning 2 1. Automatic Relevance Determination (ARD)

Bayes Rule for Linear Gaussian Systems

For an LGS p(x) := N (x | µx ,Σx)

p(y | x) := N (y | Ax + b,Σy )

Bayes’ Rule reads:

p(x | y) = N (x | µx |y ,Σx |y )

with Σx |y := (Σ−1x + ATΣ−1y A)−1

µx |y := Σx |y

(
ATΣ−1y (y − b) + Σ−1x µx

)
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Machine Learning 2 1. Automatic Relevance Determination (ARD)

Inferring Parameters β

p(β | X , y , σ2y ,Σβ) =
1

Z
N (β | 0,Σβ)N (y | Xβ, σ2y I )

= N (β | µβ :=
1

σ2y
CβX

T y ,Cβ := (
1

σ2y
XTX + Σ−1β )−1)

using Bayes Rule

for Σβ =∞I : unregularized estimates

= N (β | (XTX )−1XT y , σ2y (XTX )−1)

for σ2y =∞: overregularized estimates

= N (β | 0,Σβ)
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Machine Learning 2 1. Automatic Relevance Determination (ARD)

Equivalent MAP Estimation Problem

`(β) =
1

σ2y
||y − Xβ||22 + min

σ2
β1
,...,σ2

βM
≥0

log |σ2y I + Xdiag(σ2β)XT |+
M∑

m=1

β2m
σ2βm
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Machine Learning 2 1. Automatic Relevance Determination (ARD)

Two Rules for Expectations

i) E(tr(g(X )) = tr(E(g(X ))

ii) E(XTAX ) = µTAµ+ tr(AΣ), µ := E(X ),Σ := V(X )

proof:

E(XTAX ) = E((µ+ Y )TA(µ+ Y )), Y := X − µ,E(Y ) = 0,V(Y ) = V(X ) = Σ

= µTAµ+ 2µTAE(Y ) + E(Y TAY )

E(Y TAY ) = E(tr(Y TAY )) as YTAT is a scalar

= E(tr(AYY T )) as as YTAT is a scalar trace allows permutations of matrices

= tr(E(AYY T ))

= tr(AE(YY T ))

= tr(AΣ)
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Machine Learning 2 1. Automatic Relevance Determination (ARD)

Learning ARD I: via EM

`(σ2y ,Σβ, µβ,Cβ) := Eβ∼N (µβ ,Cβ)(log p(y | X , β, σ2y ,Σβ))

= Eβ∼N (µβ ,Cβ)(logN (y | Xβ, σ2y ) + logN (β | 0,Σβ))

+
M∑

m=1

log InvGamma(σ2βm | a, b) + log InvGamma(σ2y | c , d)

∝ Eβ∼N (µβ ,Cβ)(−
N

2
log σ2y −

1

2σ2y
||y − Xβ||2 − 1

2

∑
m

log σ2βm −
1

2
trΣ−1β ββT )

+
M∑

m=1

(−a log σ2βm − b/σ2βm)− c log σ2y − d/σ2y

= −N

2
log σ2y −

1

2σ2y
(||y − Xµβ||2 + tr(XTXCβ))− 1

2

∑
m

log σ2βm

− 1

2
trΣ−1β (µβµ

T
β + Cβ) +

M∑
m=1

(−a log σ2βm − b/σ2βm)− c log σ2y − d/σ2y

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

8 / 19



Machine Learning 2 1. Automatic Relevance Determination (ARD)

Learning ARD I: via EM

`(. . .)

= −N

2
log σ2y −

1

2σ2y
(||y − Xµβ||2 + tr(XTXCβ))− 1

2

∑
m

log σ2βm

− 1

2
trΣ−1β (µβµ

T
β + Cβ) +

M∑
m=1

(−a log σ2βm − b/σ2βm)− c log σ2y − d/σ2y

∝ −(2c + N) log σ2y − (2d + ||y − Xµβ||2 + tr(XTXCβ))
1

σ2y

−
∑
m

(2a + 1) log σ2βm + 2b/σ2βm − trΣ−1β (µβµ
T
β + Cβ)
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Machine Learning 2 1. Automatic Relevance Determination (ARD)

Learning ARD I: via EM

`(. . .) = − (2c + N) log σ2y − (2d + ||y − Xµβ||2 + tr(XTXCβ))
1

σ2y

−
∑
m

(2a + 1) log σ2βm + 2b/σ2βm − trΣ−1β (µβµ
T
β + Cβ)

0
!

=
∂`

∂σ2βm
= − (2a + 1)

1

σ2βm
+ (2b + (µβ)2m + (Cβ)m,m)/(σ2βm)2

σ2βm =
2b + (µβ)2m + (Cβ)m,m

2a + 1

0
!

=
∂`

∂σ2y

 σ2y =
2d + ||y − Xµβ||2 + tr(XTXCβ)

2c + N
which can be accelerated using

CβX
TX = σ2y

old(I − CβΣ−1β ), tr(. . .) = σ2y
old
∑
m

1−
(Cβ)m,m
σ2βmLars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 1. Automatic Relevance Determination (ARD)

Learning ARD I: via EM
given: data X , y , hyperprior parameters a, b, c, d .
initialize: σ2βm := 1, σ2y := 1
iteratively fit:

Cβ := (
1

σ2y
XTX + Σ−1β )−1), Σβ := diag(σ2β1 , . . . , σ

2
βM

)

µβ :=
1

σ2y
CβX

T y

σ2βm :=
2b + (µβ)2m + (Cβ)m,m

2a + 1

σ2y :=
2d + ||y − Xµβ||2 + tr(XTXCβ)

2c + N
finally yielding:

β ∼ N (µβ,Cβ)
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Machine Learning 2 1. Automatic Relevance Determination (ARD)

Learning ARD II: Fixed Point Algorithm

iteratively fit:

σ2βm :=
2b + (µβ)2m

2a + γm

σ2y :=
2d + ||y − Xµβ||2

2c + N −
∑

m γm

Cβ := (
1

σ2y
XTX + Σ−1β )−1

µβ :=
1

σ2y
CβX

T y

γm := 1−
(Cβ)m,m
σ2βm

, m := 1, . . . ,M
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Machine Learning 2 1. Automatic Relevance Determination (ARD)

Learning ARD III: Iteratively Reweighted L1
The ARD regularization term

R(σ2β) := log |Cy (σ2β)| = log |σ2y I + XΣβX
T |, Σβ := diag(σ2β)

is concave in σ2β and thus can be written as

R(σ2β) = min
λ
λTσ2β − R∗(λ)

R∗(λ) = min
σ̃2
β

λT σ̃2β − log |Cy (σ̃2β)|

The relaxed function

R(σ2β, λ) := λTσ2β − R∗(λ) = λTσ2β −min
σ̃2
β

λT σ̃2β − log |Cy (σ̃2β)|

for fixed σ2β is minimized by

λ = ∇σ2
β

log |Cy (σ2β)|
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Machine Learning 2 1. Automatic Relevance Determination (ARD)

Learning ARD III: Iteratively Reweighted L1

Instead of σ2β Wipf/Nagarajan 2008 use

σ2βm
??→ λ

1
2
m|βm|

finally yielding the iterative procedure:

β(t+1) := arg min
β

`(β) +
M∑

m=1

λ
(t)
m |βm|

and to find λ(t):

λ
(0)
m := 1

λ
(t+1)
m := (X.,m(σ2y I + Xdiag(

1

λ
(t)
1

, . . . ,
1

λ
(t)
M

) diag(|β(t)1 |, . . . , |β
(t)
M |))−1X.,m)

1
2
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Machine Learning 2 1. Automatic Relevance Determination (ARD)

ARD for Classification

I so far, everything was developed for linear regression.

I for logistic regression, for EM the E-step cannot be done analytically.
I possibly use variational approximation
I use Gaussian approximation (Laplace approximation)

I the iteratively reweighted learning algorithm still works.
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Machine Learning 2 1. Automatic Relevance Determination (ARD)

Remarks

I ARD is a good example for a (arguably simple) hierarchical Bayesian
model.

I ARD has to be diligently evaluated against simple baselines
such as normalizing the data with a vanilla L1/L2 regularized model.
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Machine Learning 2 2. A note on Model Complexity

Model Complexity, Bias & Variance

Example (Linear models)
I ŷ(x) = β1 · x
I ŷ(x) = (β1 + β2 + . . .+ βK ) · x

Both models have the same bias and variance!  redundant parameters!

Example (1-parameter model)
I ŷ(x) = sin(θx)

Can achieve 100% accuracy on any finite 1D binary classification dataset.
−→ A single real number can store an infinite amount of information!

Example (Neural Network)
I Network 1: vanilla MLP

I Network 2: sparse Network with skip connections

Network 2 is more complex when both have same amount of parameters!
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I ŷ(x) = β1 · x
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Machine Learning 2 2. A note on Model Complexity

Measures of Model Complexity

I Parameter Counting
I only really works when comparing models with the same architecture
I even then not guaranteed to be useful

I Information Criteria (e.g. BIC, AIC)

I Both very crude tools (lots of approximations used in derivation)
I Both ignorant about the model architecture

I VC-dimension

I ”What is size the the smallest binary classification problem that the
model cannot solve.”

I Rademacher Complexity

I ”How good can the model simulate noise.”

I Kolmogorov Complexity & Minimum Description Length

I ”What is the minimal size of a program that implements the model.”
I uncomputable!
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Kolmogorov Complexity - Mandelbrot Fractal
Generated by a simple formula:
Does the iteration

zk+1 = z2k + c z0 = 0

diverge? (with z , c ∈ C)

I Yes: c belongs to class 1 (white)

I No: c belongs to class 0 (black)

Very simple rules lead to incredible
complexity.

It would be very hard to reconstruct
the rules, if we only know the image.
In fact, in general it is impossible!
! uncomputability
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Further Readings

I L1 regularization: [?, chapter 13.3–5], [?, chapter 3.4, 3.8, 4.4.4], [?,
chapter 3.1.4].
I LAR, LARS: [?, chapter 3.4.4], [?, chapter 13.4.2],

I Non-convex regularizers: [?, chapter 13.6].
I Automatic Relevance Determination (ARD): [?, chapter 13.7], [?,

chapter 11.9.1], [?, chapter 7.2.2].
I see also [?].

I Sparse Coding: [?, chapter 13.8].
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