

Machine Learning 2

D.1. Latent Dirichlet Allocation (LDA)

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science
University of Hildesheim, Germany

Syllabus

A. Advanced Supervised Learning

- Fri. 24.4 (1)A.1 Generalized Linear Models Fri. 1.5. — Labour Day — Fri. 8.5. (2) A.2 Gaussian Processes Fri. 15.5. (3) A.3 Advanced Support Vector Machines B. Ensembles Fri. 22.5. (4) B.1 Stacking & B.2 Boosting
- Fri. 29.5. (5) B.3 Mixtures of Experts Fri. 5.6. — Pentecoste Break —
- C. Sparse Models
- Fri. 12.6. (6) C.1 Homotopy and Least Angle Regression Fri. 19.6. (7) C.2 Proximal Gradients
- Fri. 26.6. (8) C.3 Laplace Priors
- Fri. 3.7. (9) C.4 Automatic Relevance Determination
 - D. Complex Predictors
- Fri. 10.7. (10) D.1 Latent Dirichlet Allocation (LDA)
- Fri. 17.7. (11) Q & A

Jrivers/to

Outline

- 1. The LDA Model
- 2. Learning LDA via Gibbs Sampling
- 3. Learning LDA via Collapsed Gibbs Sampling
- 4. Learning LDA via Variational Inference
- 5. Supervised LDA

1. The LDA Model

- 2. Learning LDA via Gibbs Sampling
- 3. Learning LDA via Collapsed Gibbs Sampling
- 4. Learning LDA via Variational Inference
- 5. Supervised LDA

Documents / Finite Discrete Sequences

- ▶ instances $x_n \in A^*$ are **discrete sequences**
 - ▶ $A := \{1, ..., A\}$ called dictionary / alphabet $(A \in \mathbb{N})$, where $a \in A$ denotes the a-th word / symbol / token.
 - $\blacktriangleright \ \mathcal{A}^* := \bigcup_{\ell=1}^\infty \mathcal{A}^\ell \ \text{called } \ \text{documents} \ / \ \text{finite} \ \mathcal{A}\text{-sequences}.$
 - ▶ $M_n := |x_n| := \ell$ called **length** (for $x_n \in A^{\ell}$).
 - $ightharpoonup x_{n,m}$ called *m*-th word of x_n .
- if there are no sequential effects (order does not matter), documents can be described by their word frequencies (bag of words):

$$\tilde{x}_{n,a} := |\{m \in \{1,\ldots,|x_n|\} \mid x_{n,m} = a\}|, \quad a \in \mathcal{A}$$

The LDA Model

$$\begin{split} \rho(x_{n,m} \mid z_{n,m} = k, \phi) &:= \mathsf{Cat}(x_{n,m} \mid \phi_k), & n = 1, \dots, N, m = 1, \dots, M_n \\ \rho(z_{n,m} \mid \pi_n) &:= \mathsf{Cat}(z_{n,m} \mid \pi_n), & n = 1, \dots, N, m = 1, \dots, M_n \\ \rho(\phi_k \mid \beta) &:= \mathsf{Dir}(\phi_k \mid \beta \, 1_A), & k = 1, \dots, K \\ \rho(\pi_n \mid \gamma) &:= \mathsf{Dir}(\pi_n \mid \gamma \, 1_K), & n = 1, \dots, N \end{split}$$

- ▶ $z_{n,m} \in \{1, ..., K\}$: topic the *m*-th word of document *n* belongs to.
- $\phi_k \in \Delta^A$: word probabilities of topic k.
- ▶ $\pi_n \in \Delta^K$: topic probabilities of document n.
- $\triangleright \beta, \gamma \in \mathbb{R}^+$: priors of ϕ and π .

Note:
$$\Delta^K := \{ z \in \mathbb{R}^K \mid z \geq 0, \sum_{k=1}^K z_k = 1 \}.$$

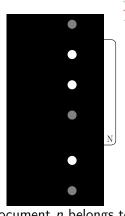
The LDA Model

$$p(x_{n,m} \mid z_{n,m} = k, \phi) := \mathsf{Cat}(x_{n,m} \mid \phi_k),$$

$$p(z_{n,m} \mid \pi_n) := \mathsf{Cat}(z_{n,m} \mid \pi_n),$$

$$p(\phi_k \mid \beta) := \mathsf{Dir}(\phi_k \mid \beta \, 1_A),$$

$$p(\pi_n \mid \gamma) := \mathsf{Dir}(\pi_n \mid \gamma \, 1_K),$$



- ▶ $z_{n,m} \in \{1, ..., K\}$: topic the *m*-th word of document *n* belongs to.
- $ightharpoonup \phi_k \in \Delta^A$: word probabilities of topic k.
- ▶ $\pi_n \in \Delta^K$: topic probabilities of document n.
- $\triangleright \beta, \gamma \in \mathbb{R}^+$: priors of ϕ and π .

Note: $\Delta^K := \{ z \in \mathbb{R}^K \mid z > 0, \sum_{k=1}^K z_k = 1 \}.$

Example $p(x_{n,m} \mid z_{n,m}, \phi)$

Topic 77

word	prob.
MUSIC	.090
DANCE	.034
SONG	.033
PLAY	.030
SING	.026
SINGING	.026
BAND	.026
PLAYED	.023
SANG	.022
SONGS	.021
DANCING	.020
PIANO	.017
PLAYING	.016
RHYTHM	.015
ALBERT	.013
MUSICAL	.013
·	

Topic 82

•	
word	prob.
LITERATURE	.031
POEM	.028
POETRY	.027
POET	.020
PLAYS	.019
POEMS	.019
PLAY	.015
LITERARY	.013
WRITERS	.013
DRAMA	.012
WROTE	.012
POETS	.011
WRITER	.011
SHAKESPEARE	.010
WRITTEN	.009
STAGE	.009

Topic 166

1 opic 1 oo	
word	prob.
PLAY	.136
BALL	.129
GAME	.065
PLAYING	.042
HIT	.032
PLAYED	.031
BASEBALL	.027
GAMES	.025
BAT	.019
RUN	.019
THROW	.016
BALLS	.015
TENNIS	.011
HOME	.010
CATCH	.010
FIELD	.010

[Mur12, fig. 27.4]

Shivers/Edy

Example $x_{n,m}, z_{n,m}$

Document #29795

Bix beiderbecke, at age⁰⁶⁰ fifteen²⁰⁷, sat¹⁷⁴ on the slope⁰⁷¹ of a bluff⁰⁵⁵ overlooking⁰²⁷ the mississippi¹³⁷ river¹³⁷. He was listening⁰⁷⁷ to music⁰⁷⁷ coming⁰⁰⁹ from a passing⁰⁴³ riverboat. The music⁰⁷⁷ had already captured⁰⁰⁶ his heart¹⁵⁷ as well as his ear¹¹⁹. It was jazz⁰⁷⁷. Bix beiderbecke had already had music⁰⁷⁷ lessons⁰⁷⁷. He showed⁰⁰² promise¹³⁴ on the piano⁰⁷⁷, and his parents⁰³⁵ hoped²⁶⁸ he might consider¹¹⁸ becoming a concert⁰⁷⁷ pianist⁰⁷⁷. But bix was interested²⁶⁸ in another kind⁰⁵⁰ of music⁰⁷⁷. He wanted²⁶⁸ to play⁰⁷⁷ the cornet. And he wanted²⁶⁸ to play⁰⁷⁷ jazz⁰⁷⁷...

Document #1883

There is a simple ⁹⁵⁰ reason ¹⁰⁶ why there are so few periods ⁰⁷⁸ of really great theater ⁰⁸² in our whole western ⁰⁴⁶ world. Too many things ³⁰⁰ have to come right at the very same time. The dramatists must have the right actors ⁰⁸² the actors ⁰⁸² must have the right playhouses, the playhouses must have the right audiences ⁰⁸². We must remember ²⁸⁸ that plays ⁰⁸² exist ¹⁴³ to be performed ⁰⁷⁷, not merely ⁰⁵⁰ to be read ²⁵⁴. (even when you read ²⁵⁴ a play ⁰⁸² to yourself, try ²⁸⁸ to perform ⁰⁶² it, to put ¹⁷⁴ it on a stage ⁰⁷⁸, as you go along.) as soon ⁰²⁸ as a play ⁰⁸² has to be performed ⁰⁸², then some kind ¹²⁶ of theatrical ⁰⁸²...

Document #21359

[Mur12, fig. 27.5]

Jrivers/tag

The LDA Model

$$p(x_{n,m} \mid z_{n,m} = k, \phi) := \mathsf{Cat}(x_{n,m} \mid \phi_k)$$
 $p(z_{n,m} \mid \pi_n) := \mathsf{Cat}(z_{n,m} \mid \pi_n)$
 $p(\phi_k \mid \beta) := \mathsf{Dir}(\phi_k \mid \beta \, 1_A)$
 $p(\pi_n \mid \gamma) := \mathsf{Dir}(\pi_n \mid \gamma \, 1_K)$

- $ightharpoonup z_{n,m} \in \{1,\ldots,K\}$: topic the *m*-th word of docume
- $\phi_k \in \Delta^A$: word probabilities of topic k.
- ▶ $\pi_n \in \Delta^K$: topic probabilities of document n.
- $\triangleright \beta, \gamma \in \mathbb{R}^+$: priors of ϕ and π .

 x_7 = "In Franfurt, many banks are located at the banks of Main." Q: How can LDA model that

- \triangleright $x_{7,4}=$ "bank" denotes a credit institute and belongs to topic 1 "finance",
- \triangleright $x_{7,9}$ ="bank" denotes a river bank and belongs to topic 2 "environment"?

Outline

- 1. The LDA Mode
- 2. Learning LDA via Gibbs Sampling
- 3. Learning LDA via Collapsed Gibbs Sampling
- 4. Learning LDA via Variational Inference
- 5. Supervised LDA

Jrivers/

Learning via Parameter Sampling

The posterior

$$p(\theta \mid \mathcal{D}) \propto p(\mathcal{D} \mid \theta)$$

describes the distribution of the parameters given the data. If we can sample parameters from this distribution

$$\theta_1, \theta_2, \ldots, \theta_S \sim p(\theta \mid \mathcal{D})$$

we can

estimate expected parameter values and their variances from this parameter sample:

$$\hat{\theta} := E(\theta \mid \mathcal{D}) pprox \frac{1}{S} \sum_{s=1}^{S} \theta_s, \qquad V(\theta \mid \mathcal{D}) pprox \frac{1}{S-1} \sum_{s=1}^{S} (\theta_s - E(\theta \mid \mathcal{D}))^2$$

predict targets for new instances x via model averaging:

$$p(y \mid x, \theta_{1:S}) = \frac{1}{S} \sum_{s=1}^{S} p(y \mid x, \theta_s)$$

Sampling

- ▶ for most closed-form distributions p(x) there exist efficient sampling methods
 - ► categorical, normal, . . .
- but most posteriors are not closed-form distributions.
 - but for example products thereof.

Juners/igh

Gibbs Sampling

- \blacktriangleright task: sample from $p(x_1,\ldots,x_N)$
- problem:
 - ightharpoonup assume sampling from the joint distribution $p(x_1,\ldots,x_N)$ is difficult.
 - ▶ assume sampling from marginals $p(x_n)$ or partial conditionals $p(x_n \mid \text{some } x_{n'})$ is also difficult.
 - ▶ assume sampling from all **full conditionals** $p(x_n \mid x_{-n})$ is easy.

Shiversite .

Gibbs Sampling

- \blacktriangleright task: sample from $p(x_1,\ldots,x_N)$
- problem:
 - ightharpoonup assume sampling from the joint distribution $p(x_1,\ldots,x_N)$ is difficult.
 - ▶ assume sampling from marginals $p(x_n)$ or partial conditionals $p(x_n \mid \text{some } x_{n'})$ is also difficult.
- ▶ assume sampling from all **full conditionals** $p(x_n \mid x_{-n})$ is easy.

Gibbs sampling: given last sample x^s , sample x^{s+1} one variable at a time:

$$x_{1}^{s+1} \sim p(x_{1} \mid x_{2:N} = x_{2:N}^{s})$$

$$x_{2}^{s+1} \sim p(x_{2} \mid x_{1:1} = x_{1:1}^{s+1}, x_{3:N} = x_{3:N}^{s})$$

$$\vdots$$

$$x_{n}^{s+1} \sim p(x_{n} \mid x_{1:n-1} = x_{1:n-1}^{s+1}, x_{n+1:N} = x_{n+1:N}^{s})$$

$$\vdots$$

$$x_{N}^{s+1} \sim p(x_{N} \mid x_{1:N-1} = x_{1:N-1}^{s+1})$$

4□ > 4回 > 4 = > 4 = > 車目 900

Jrivers/idy

Gibbs Sampling

- ▶ the distribution created by the Gibbs sampler eventually will converge to $p(x_1,...,x_N)$
- ▶ start Gibbs sampling with an arbitrary x^0
 - but ensure that $p(x^0) > 0$!
 - ► also consider restarts.
- ► throw away the first examples (burn in).
 - only after a while the chain has converged to the stationary distribution $p(x_1, ..., x_N)$.
 - ► typical are 100-10,000 examples
- sometimes some variables can be marginalized out, improving the performance of the Gibbs sampler (collapsed Gibbs sampling, Rao-Blackwellisation)

Gibbs Sampling for LDA

$$\begin{split} \rho(x_{n,m} \mid z_{n,m} = k, \phi) &:= \mathsf{Cat}(x_{n,m} \mid \phi_k) &= \phi_{k, x_{n,m}} \\ \rho(z_{n,m} \mid \pi_n) &:= \mathsf{Cat}(z_{n,m} \mid \pi_n) &= \pi_{n, z_{n,m}} \\ \rho(\phi_k \mid \beta) &:= \mathsf{Dir}(\phi_k \mid \beta \, 1_A) & \propto \prod_{a=1}^A \phi_{k,a}^{\beta_a - 1} \\ \rho(\pi_n \mid \gamma) &:= \mathsf{Dir}(\pi_n \mid \gamma \, 1_K) & \propto \prod_{k=1}^K \pi_{n,k}^{\gamma_k - 1} \end{split}$$

Full conditionals: 1. z

$$p(z_{n,m} = k \mid \phi, \pi_n) \propto p(x_{n,m} \mid z_{n,m} = k, \phi) p(z_{n,m} = k \mid \pi_n) = \phi_{k,x_{n,m}} \pi_{n,k}$$

Gibbs Sampling for LDA

$$\begin{split} \rho(x_{n,m} \mid z_{n,m} = k, \phi) &:= \mathsf{Cat}(x_{n,m} \mid \phi_k) &= \phi_{k,x_{n,m}} \\ \rho(z_{n,m} \mid \pi_n) &:= \mathsf{Cat}(z_{n,m} \mid \pi_n) &= \pi_{n,z_{n,m}} \\ \rho(\phi_k \mid \beta) &:= \mathsf{Dir}(\phi_k \mid \beta \, 1_A) &\propto \prod_{a=1}^A \phi_{k,a}^{\beta_a - 1} \\ \rho(\pi_n \mid \gamma) &:= \mathsf{Dir}(\pi_n \mid \gamma \, 1_K) &\propto \prod_{k=1}^K \pi_{n,k}^{\gamma_k - 1} \end{split}$$

Full conditionals: 2.
$$\pi$$

$$p(\pi_n \mid z_n, \phi) \propto p(\pi_n \mid \gamma) \prod_{m=1}^{M_n} p(z_{n,m} = k \mid \pi_n)$$

$$\propto \prod_{n,k}^{K} \pi_{n,k}^{\gamma_k - 1} \prod_{n,k}^{M_n} \prod_{n,k}^{K} \pi_{n,k}^{\delta(z_{n,m} = k)}$$

m=1 k=1

Q: Do you recognize this distribution?

 $p(x_{n,m} | z_{n,m} = k, \phi) := Cat(x_{n,m} | \phi_k)$

 $p(z_{n,m} \mid \pi_n) := \mathsf{Cat}(z_{n,m} \mid \pi_n)$

Gibbs Sampling for LDA

$$p(\phi_k \mid \beta) := \mathsf{Dir}(\phi_k \mid \beta \, 1_A) \qquad \propto \prod_{a=1}^A \phi_{k,a}^{\beta_a - 1}$$

$$p(\pi_n \mid \gamma) := \mathsf{Dir}(\pi_n \mid \gamma \, 1_K) \qquad \propto \prod_{k=1}^K \pi_{n,k}^{\gamma_k - 1}$$
Full conditionals: 2. π

$$p(\pi_n \mid z_n, \phi) \propto p(\pi_n \mid \gamma) \prod_{m=1}^{M_n} p(z_{n,m} = k \mid \pi_n)$$

$$\propto \prod_{k=1}^K \pi_{n,k}^{\gamma_k - 1} \prod_{m=1}^K \prod_{k=1}^K \pi_{n,k}^{\delta(z_{n,m} = k)}$$

Gibbs Sampling for LDA

$$\begin{split} \rho(x_{n,m} \mid z_{n,m} = k, \phi) &:= \mathsf{Cat}(x_{n,m} \mid \phi_k) &= \phi_{k,x_{n,m}} \\ \rho(z_{n,m} \mid \pi_n) &:= \mathsf{Cat}(z_{n,m} \mid \pi_n) &= \pi_{n,z_{n,m}} \\ \rho(\phi_k \mid \beta) &:= \mathsf{Dir}(\phi_k \mid \beta \, 1_A) & \propto \prod_{a=1}^A \phi_{k,a}^{\beta_a - 1} \\ \rho(\pi_n \mid \gamma) &:= \mathsf{Dir}(\pi_n \mid \gamma \, 1_K) & \propto \prod_{k=1}^K \pi_{n,k}^{\gamma_k - 1} \end{split}$$

Full conditionals: 3. ϕ

$$p(\phi_k \mid z, \pi) \propto (\prod_{n=1}^{N} \prod_{m=1}^{M_n} p(x_{n,m} = a \mid z_{n,m} = k, \phi_k) p(\phi_k \mid \beta))_{a=1:A}$$

$$= Dir((\beta_a + \sum_{n=1}^{N} \sum_{m=1}^{M} \delta(x_{n,m} = a, z_{n,m} = k))_{a=1:A})$$

<ロ > < 同 > < 同 > < 三 > < 三 > 三 | 三 | の Q () < 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 。 < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > <

Gibbs Sampling for LDA

▶ initialize randomly

$$\pi_n \sim \text{Dir}(\gamma 1_K), \quad \phi_k \sim \text{Dir}(\beta 1_A)$$

sample iteratively:

$$z_{n,m} \sim \mathsf{Cat}((\phi_{k,x_{n,m}} \pi_{n,k})_{k=1:K}), \quad \forall n \forall m$$

$$\pi_n \sim \mathsf{Dir}((\gamma_k + \sum_{m=1}^M \delta(z_{n,m} = k))_{k=1:K}), \quad \forall n$$

$$\phi_k \sim \mathsf{Dir}((\beta_a + \sum_{n=1}^N \sum_{m=1}^M \delta(x_{n,m} = a, z_{n,m} = k))_{a=1:A}), \quad \forall k$$

- I. THE LDA MODE
- 2. Learning LDA via Gibbs Sampling
- 3. Learning LDA via Collapsed Gibbs Sampling
- 4. Learning LDA via Variational Inference
- 5. Supervised LDA

Counts

$$c_{n,a,k} := \sum_{m=1}^{M_n} \delta(x_{n,m} = a, z_{n,m} = k)$$

$$c_{n,k} := \sum_{a=1}^{A} c_{n,a,k}$$

$$c_{a,k} := \sum_{n=1}^{N} c_{n,a,k}$$

$$c_k := \sum_{a=1}^{A} \sum_{n=1}^{N} c_{n,a,k}$$

$$c_n := \sum_{a=1}^{A} \sum_{k=1}^{K} c_{n,a,k} = M_n$$

Sciversite.

Marginals over π

$$p(z_{n} \mid \gamma) = \int (\prod_{m=1}^{M_{n}} \operatorname{Cat}(z_{n,m} \mid \pi_{n})) \operatorname{Dir}(\pi_{n} \mid \gamma 1_{K}) d\pi_{n}$$

$$= \int \prod_{k=1}^{K} \pi_{n,k}^{c_{n,k}} \frac{\Gamma(K\gamma)}{\Gamma(\gamma)^{K}} \pi_{n,k}^{\gamma} d\pi_{n}$$

$$= \frac{\Gamma(K\gamma)}{\Gamma(\gamma)^{K}} \frac{\prod_{k=1}^{K} \Gamma(\gamma + c_{n,k})}{\Gamma(\sum_{k=1}^{K} \gamma + c_{n,k})} \int \underbrace{\frac{\Gamma(\sum_{k=1}^{K} \gamma + c_{n,k})}{\prod_{k=1}^{K} \Gamma(\gamma + c_{n,k})}}_{=\operatorname{Dir}(\pi_{n} \mid (\gamma + c_{n,k})_{k=1:K})} d\pi_{n}$$

$$= \frac{\Gamma(K\gamma)}{\Gamma(\gamma)^{K}} \frac{\prod_{k=1}^{K} \Gamma(c_{n,k} + \gamma)}{\Gamma(M + K\gamma)}$$

Shiversites.

Marginals over π and ϕ

$$p(z \mid \gamma) = \prod_{n=1}^{N} \int (\prod_{m=1}^{M_n} \mathsf{Cat}(z_{n,m} \mid \pi_n)) \mathsf{Dir}(\pi_n \mid \gamma 1_K) d\pi_n$$
$$= \left(\frac{\Gamma(K\gamma)}{\Gamma(\gamma)^K}\right)^N \prod_{n=1}^{N} \frac{\prod_{k=1}^{K} \Gamma(c_{n,k} + \gamma)}{\Gamma(M_n + K\gamma)}$$

Shivers/

Marginals over π and ϕ

$$p(z \mid \gamma) = \prod_{n=1}^{N} \int (\prod_{m=1}^{M_n} \mathsf{Cat}(z_{n,m} \mid \pi_n)) \mathsf{Dir}(\pi_n \mid \gamma 1_K) d\pi_n$$
$$= \left(\frac{\Gamma(K\gamma)}{\Gamma(\gamma)^K}\right)^N \prod_{n=1}^{N} \frac{\prod_{k=1}^{K} \Gamma(c_{n,k} + \gamma)}{\Gamma(M_n + K\gamma)}$$

$$p(x \mid z, \beta) = \prod_{k=1}^{K} \int (\prod_{(n,m): z_{n,m} = k} \mathsf{Cat}(x_{n,m} \mid \phi_k)) \mathsf{Dir}(\phi_k \mid \beta 1_K) d\phi_k$$
$$= \left(\frac{\Gamma(A\beta)}{\Gamma(\beta)^A}\right)^K \prod_{k=1}^{K} \frac{\prod_{a=1}^{A} \Gamma(c_{a,k} + \beta)}{\Gamma(c_k + A\beta)}$$

$$p(z \mid x, \beta, \gamma) \stackrel{\text{Bayes}}{=} \frac{p(x \mid z, \beta, \gamma) p(z \mid \beta, \gamma)}{p(x \mid \beta, \gamma)} \propto p(x \mid z, \beta) p(z \mid \gamma)$$

$$p(z \mid x, \beta, \gamma) = p(z_{n,m} \mid z_{-(n,m)}, x, \beta, \gamma) p(z_{-(n,m)} \mid x, \beta, \gamma)$$

$$= p(z_{n,m} \mid z_{-(n,m)}, x, \beta, \gamma) p(z_{-(n,m)} \mid x_{-(n,m)}, \beta, \gamma)$$

 \rightsquigarrow

$$p(z_{n,m} \mid z_{-(n,m)}, x, \beta, \gamma) = \frac{p(z \mid x, \beta, \gamma)}{p(z_{-(n,m)} \mid x_{-(n,m)}, \beta, \gamma)}$$

$$\propto \frac{p(x \mid z, \beta) p(z \mid \gamma)}{p(x_{-(n,m)} \mid z_{-(n,m)}, \beta) p(z_{-(n,m)} \mid \gamma)}$$

$$p(z_{n,m} \mid z_{-(n,m)}, x, \beta, \gamma) \propto \frac{p(x \mid z, \beta) p(z \mid \gamma)}{p(x_{-(n,m)} \mid z_{-(n,m)}, \beta) p(z_{-(n,m)} \mid \gamma)}$$

$$p(z_{n,m} \mid z_{-(n,m)}, x, \beta, \gamma) \propto \frac{p(x \mid z, \beta) p(z \mid \gamma)}{p(x_{-(n,m)} \mid z_{-(n,m)}, \beta) p(z_{-(n,m)} \mid \gamma)}$$

Now let $c_{n,a,k}^-$ be the counts for the leave-one-out sample $x_{-(n,m)}, z_{-(n,m)}$ (all but m-th word of document n).

$$c_{n,a,k}^- = \begin{cases} c_{n,a,k} - 1, & \text{for } x_{n,m} = a, z_{n,m} = k \\ c_{n,a,k}, & \text{else} \end{cases}$$

- ▶ all terms other than for $x_{n,m} = a, z_{n,m} = k$ cancel out.
- lacktriangle terms for $x_{n,m}=a, z_{n,m}=k$ can be simplified via $\Gamma(x+1)/\Gamma(x)=x$

$$p(z_{n,m} \mid z_{-(n,m)}, x, \beta, \gamma) \propto \frac{p(x \mid z, \beta) p(z \mid \gamma)}{p(x_{-(n,m)} \mid z_{-(n,m)}, \beta) p(z_{-(n,m)} \mid \gamma)}$$

Now let $c_{n,a,k}^-$ be the counts for the leave-one-out sample $x_{-(n,m)}, z_{-(n,m)}$ (all but m-th word of document n).

$$c_{n,a,k}^- = \begin{cases} c_{n,a,k} - 1, & \text{for } x_{n,m} = a, z_{n,m} = k \\ c_{n,a,k}, & \text{else} \end{cases}$$

- ▶ all terms other than for $x_{n,m} = a, z_{n,m} = k$ cancel out.
- lacktriangle terms for $x_{n,m}=a, z_{n,m}=k$ can be simplified via $\Gamma(x+1)/\Gamma(x)=x$

$$p(z_{n,m} = k \mid z_{-(n,m)}, x, \beta, \gamma) \propto \frac{c_{x_{n,m},k}^- + \beta}{c_{\nu}^- + A\beta} \frac{c_{n,k}^- + \gamma}{M_n + K\gamma}$$

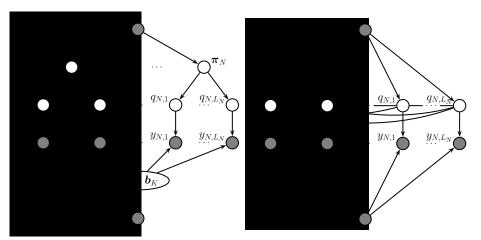
ㅁ > 《윤 > 《호 > 《호 > 호)도 외익()

Collapsed LDA Implementation

- ightharpoonup assign all $z_{n,m}$ randomly
- ightharpoonup compute $c_{n,a,k}$
- ▶ for s := 1, ..., S :
 - ► for $n := 1, ..., N, m := 1, ..., M_n$:

$$\begin{split} c_{x_{n,m},z_{n,m}} &:= c_{x_{n,m},z_{n,m}} - 1 \\ c_{n,z_{n,m}} &:= c_{n,z_{n,m}} - 1 \\ c_{z_{n,m}} &:= c_{z_{n,m}} - 1 \\ z_{n,m} &\sim \text{Cat}((\frac{c_{x_{n,m},k}^{-} + \beta}{c_{k}^{-} + A\beta} \frac{c_{n,k}^{-} + \gamma}{M_{n} + K\gamma})_{k=1:K}) \\ c_{x_{n,m},z_{n,m}} &:= c_{x_{n,m},z_{n,m}} + 1 \\ c_{n,z_{n,m}} &:= c_{z_{n,m}} + 1 \\ c_{z_{n,m}} &:= c_{z_{n,m}} + 1 \end{split}$$

LDA vs Collapsed LDA



[Mur12, fig. 27.7]

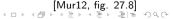
Still water

Collapsed LDA / Example

	j.	00000	000000	•000
	1	0000000	00000	●000
	i i	••••	000000	000
	1	9000000	•0	0000000
	i i	000000000	000	0000
0	1	0000	000000	00000
•	0	000000	0000	880
•	∞•	000000	0000	0
•••		. ●000000	•	0000
0	000	0000000	000	•
000	00000	000000	. 0	1
000000	000	●0000●●	1	0
00	60000000	•••••	!	1
0000	******	00000	1	1
00000	••••	9000	!	1

River	Stream	Bank	Money	Loan
1 2 3 4 4 5 6 6 7 7 0 0 8 0 0 9 0 0 10 0 0 11 0 0 11 0 0 11 0 0 11 0 0 11 0 0 11 0 0 11 0 0 11 0 0 11 0 0 11 0 0 11 0 0 11 0 11 0 0 11 0 0 11 0 0 11 0 0 11 0 0 11 0 0 11 0 0 11 0 0 11 0 0 11 0 0 0 0 11 0 0 0 0 11 0 0 0 0 11 0 0 0 0 11 0 0 0 0 11 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0	00 000 000 000 000 000000 0000000 000000	0000 00000 000000 0000000 0000000 000000 000000 000000 000000 000000 000000 000000 000000	000000 000000 00000 00000 000 00000 0000	000000 0000 0000 0000 0000 0000 0000 0000

$$N = 16$$
 (rows), $A = 5$ (columns), $K = 2$ (colors)



- 1. The LDA Mode
- 2. Learning LDA via Gibbs Sampling
- 3. Learning LDA via Collapsed Gibbs Sampling
- 4. Learning LDA via Variational Inference
- 5. Supervised LDA

Variational Inference via Mean Field Approximation

To solve the inference problem

compute
$$p(x_1, \ldots, x_N)$$

for intractable p, approximate p with a fully factorized density q

$$p(x_1,\ldots,x_N)\approx q(x_1,\ldots,x_N\mid\theta):=\prod_{n=1}^N q_n(x_n\mid\theta_n)$$

A good approximation should minimize the KL divergence of p and q:

$$(heta_1,\ldots, heta_N):=rgmin_{ heta_1,\ldots, heta_N}\mathsf{KL}(q||p)$$

$$\mathsf{KL}(q||p) := E_{\mathsf{x}}(\ q(\mathsf{x})\log\frac{q(\mathsf{x})}{p(\mathsf{x})}\)$$

which can be solved via coordinate descent:

$$\log q_n(x_n \mid \theta_n) = E_{x_{-n} \sim q_{-n}}(\tilde{p}(x_1, \dots, x_N)) + \text{const}$$

where \tilde{p} can be an unnormalized version of p.

Jainers Joy

Learning LDA via Mean Field Approximation

Mean field approximation

$$q(\pi_n \mid \tilde{\pi}_n) := \mathsf{Dir}(\pi_n \mid \tilde{\pi}_n)$$

 $q(z_{n,m} \mid \tilde{z}_{n,m}) := \mathsf{Cat}(z_{n,m} \mid \tilde{z}_{n,m})$

in the E-step of EM leads to

E-step:

$$\tilde{z}_{n,m,k} = \phi_{x_{n,m},k} e^{\Psi(\tilde{\pi}_{n,k}) - \Psi(\sum_{k'} \tilde{\pi}_{n,k'})}
\tilde{\pi}_{n,k} = \gamma + \sum_{m} \tilde{z}_{n,m,k}$$

M-step:

$$\phi_{a,k} = \beta + \sum_{n} \sum_{m} \tilde{z}_{n,m,k} \delta(x_{n,m} = a)$$

Note: $E_{\pi_{n,k} \sim \mathrm{Dir}(\tilde{\pi}_{n,k})}(\log \pi_{n,k}) = \Psi(\tilde{\pi}_{n,k}) - \Psi(\sum_{k'} \tilde{\pi}_{n,k'})$ with Ψ the digamma function.

Outline

- 1. The LDA Mode
- 2. Learning LDA via Gibbs Sampling
- 3. Learning LDA via Collapsed Gibbs Sampling
- 4. Learning LDA via Variational Inference
- 5. Supervised LDA

Adding Further Information

Add observed class information

$$y_n \in \mathcal{Y} := \{1, \ldots, T\}, \quad n \in \{1, \ldots, N\}$$

- ► goal now is either
 - ▶ to analyze x_n with an LDA model and predict targets y_n based on this analysis (supervised learning) or
 - ▶ to find topics that explain both, documents x_n and their classes y_n (unsupervised learning).
- Sometimes richer information is added, e.g., images.

Joint LDA and Logistic Regression

$$\begin{split} p(\theta \mid \sigma^2) := & \, \mathcal{N}(\theta \mid 0, \sigma^2) \\ p(x_{n,m} \mid z_{n,m} = k, \phi) := & \, \mathsf{Cat}(x_{n,m} \mid \phi_k), \quad n = 1, \dots, N, m = 1, \dots, M_n \\ p(z_{n,m} \mid \pi_n) := & \, \mathsf{Cat}(z_{n,m} \mid \pi_n), \quad n = 1, \dots, N, m = 1, \dots, M_n \\ p(\phi_k \mid \beta) := & \, \mathsf{Dir}(\phi_k \mid \beta \, 1_A), \quad k = 1, \dots, K \\ p(\pi_n \mid \gamma) := & \, \mathsf{Dir}(\pi_n \mid \gamma \, 1_K), \quad n = 1, \dots, N \end{split}$$

 $p(y_n \mid \pi_n, \theta) := \mathsf{Cat}(y_n \mid \mathsf{logistic}(\theta^T \pi_n))$

Generative Supervised LDA

$$p(y_n \mid \bar{\pi}_n, \theta) := \mathsf{Cat}(y_n \mid \mathsf{logistic}(\theta^T \bar{\pi}_n)), \quad \bar{\pi}_{n,k} := \frac{1}{M_n} \sum_{m=1}^{M_n} \delta(z_{n,m} = k)$$

$$\begin{split} \rho(x_{n,m} \mid z_{n,m} = k, \phi) &:= \mathsf{Cat}(x_{n,m} \mid \phi_k), \quad n = 1, \dots, N, \, m = 1, \dots, M_n \\ \rho(z_{n,m} \mid \pi_n) &:= \mathsf{Cat}(z_{n,m} \mid \pi_n), \quad n = 1, \dots, N, \, m = 1, \dots, M_n \\ \rho(\phi_k \mid \beta) &:= \mathsf{Dir}(\phi_k \mid \beta \, 1_A), \quad k = 1, \dots, K \\ \rho(\pi_n \mid \gamma) &:= \mathsf{Dir}(\pi_n \mid \gamma \, 1_K), \quad n = 1, \dots, N \end{split}$$

Discriminative Supervised LDA

$$\begin{split} \rho(x_{n,m} \mid z_{n,m} = k, \phi) &:= \mathsf{Cat}(x_{n,m} \mid \phi_k), \quad n = 1, \dots, N, m = 1, \dots, M_n \\ \rho(z_{n,m} \mid \pi_n, y_n = t) &:= \mathsf{Cat}(z_{n,m} \mid A_t \pi_n), \quad n = 1, \dots, N, m = 1, \dots, M_n \\ \rho(\phi_k \mid \beta) &:= \mathsf{Dir}(\phi_k \mid \beta \, 1_A), \quad k = 1, \dots, K \\ \rho(\pi_n \mid \gamma) &:= \mathsf{Dir}(\pi_n \mid \gamma \, 1_K), \quad n = 1, \dots, N \end{split}$$

 $ightharpoonup A_t \in \mathbb{R}^{K imes K}$ stochastic $(t = 1, \dots, T)$

Summary

- ► Latent Dirichlet Allocation (LDA) solves a clustering problem for sequence data (really: histograms)
 - clusters are called topics.
 - ► topics are described by word/symbol probabilities.
 - documents/sequences by topic probabilities.
 - a latent variable "word topic" for each word/element of each sequence.
 - semantically: disambiguation of the word (w.r.t. its topic)
- ► LDA can be learned via **Gibbs sampling**:
 - re-sample single variables from their full conditionals on all others in a round-robin fashion.
 - ▶ leads to sampling from categorical and Dirichlet distributions.
- ► LDA can be learned via **collapsed Gibbs sampling**:
 - ▶ integrate out word and document probabilities, leaving just the latent word topics.
 - leads to a way faster sampling from a categorical distribution only.

Summary (2/2)

- ► LDA can be learned via variational inference using mean field approximation.
 - approximate a distribution by a fully factorized distribution.
 - here: the distribution of the latent word topics and topic probabilities in the E-step of an EM algorithm for LDA.
 - leads to closed-form reestimation formulas.
- ► LDA can be extended different ways to take **document labels**/ classes into account.
 - vielding a model for text classification.
 - ▶ joint LDA and logistic regression, generative supervised LDA, discriminative supervised LDA

Further Readings

- ► LDA:
 - ► [Mur12, chapter 27.3],
- ► Supervised LDA and other extensions:
 - ► [Mur12, chapter 27.4],

References

Kevin P. Murphy.

Machine learning: a probabilistic perspective. The MIT Press, 2012.