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Machine Learning 2

Syllabus
A. Advanced Supervised Learning

Fri. 24.4. (1) A.1 Generalized Linear Models
Fri. 1.5. — — Labour Day —
Fri. 8.5. (2) A.2 Gaussian Processes
Fri. 15.5. (3) A.3 Advanced Support Vector Machines

B. Ensembles
Fri. 22.5. (4) B.1 Stacking

& B.2 Boosting
Fri. 29.5. (5) B.3 Mixtures of Experts
Fri. 5.6. — — Pentecoste Break —

C. Sparse Models
Fri. 12.6. (6) C.1 Homotopy and Least Angle Regression
Fri. 19.6. (7) C.2 Proximal Gradients
Fri. 26.6. (8) C.3 Laplace Priors
Fri. 3.7. (9) C.4 Automatic Relevance Determination

D. Complex Predictors
Fri. 10.7. (10) D.1 Latent Dirichlet Allocation (LDA)
Fri. 17.7. (11) Q & A
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Machine Learning 2 1. The Prediction Problem / Supervised Learning

The Prediction Problem Formally
Let X1,X2, . . . ,XM be random variables called predictors

(aka inputs, covariates, features),
X 1,X 2, . . . ,XM be their domains.

X := (X1,X2, . . . ,XM) the vector of random predictor variables and
X := X 1×X 2× · · · × XM its domain.

Y be a random variable called target (or output, response),
Y be its domain.

D ⊆ X ×Y be a (multi)set of instances of the unknown joint
distribution p(X ,Y ) of predictors and target called data.
D is often written as enumeration

D = {(x1, y1), (x2, y2), . . . , (xN , yN)}

Y = R: regression, Y a set of nominal values: classification.
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Machine Learning 2 1. The Prediction Problem / Supervised Learning

The Prediction Problem Formally / Test Set Formulation
Let X be any set (called predictor space),
Y be any set (called target space), e.g., and
p : X ×Y → R+

0 be a joint distribution / density.
Given

I a sample Dtrain ⊆ X ×Y (called training set), drawn from p,

I a loss function ` : Y ×Y → R that measures how bad it is to predict
value ŷ if the true value is y ,

compute a model
ŷ : X → Y

s.t. for another sample Dtest ⊆ X ×Y (called test set) drawn from the
same distribution p, not available during training, the test error

err(ŷ ;Dtest) :=
1

|Dtest|
∑

(x ,y)∈Dtest

`(y , ŷ(x))

is minimal.
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Machine Learning 2 1. The Prediction Problem / Supervised Learning

The Prediction Problem Formally / Risk Formulation
Let X be any set (called predictor space),
Y be any set (called target space), and
p : X ×Y → R+

0 be a joint distribution / density.
Given a sample Dtrain ⊆ X ×Y (called training set), drawn from p,

a loss function ` : Y ×Y → R that measures how bad it is to predict
value ŷ if the true value is y ,

compute a model

ŷ :X → Y
with minimal risk

risk(ŷ ; p) :=

∫
X ×Y

`(y , ŷ) p(x , y) d(x , y)

Explanation: risk(ŷ ; p) can be estimated by the empirical risk

risk(ŷ ;Dtest) :=
1

|Dtest|
∑

(x ,y)∈Dtest

`(y , ŷ(x))
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Machine Learning 2 2. The Exponential Family

Definition Exponential Family

A parametric pdf p(x|θ) belongs to the exponential family if it is of the
form

p(x | θ) =
h(x)

Z (θ)
e〈η(θ),Φ(x)〉 = h(x)e〈η(θ),Φ(x)〉−A(θ) (1)

I η are called natural or canonical parameters

I η(θ) is a reparametrization

I Z (θ) =

∫
X
h(x)eη(θ)·Φ(x) dx is called partition function

I A(θ) = logZ (θ) is called log partition or cumulant function

I h(x) is a scaling factor called base measure

I Φ(x) is called sufficient statistic
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Machine Learning 2 2. The Exponential Family

Subfamilies

I dim(θ) < dimη(θ): curved exponential family.
(more sufficient statistics than parameters)

I η(θ) = θ: canonical form

p(x | θ) =h(x)e〈θ,Φ(x)〉−A(θ)

I Φ(x) = x: natural exponential family.

p(x | θ) =h(x)e〈η(θ),x〉−A(θ)

I natural exponential family in canonical form:

p(x | θ) =h(x)e〈θ,x〉−A(θ)
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Machine Learning 2 2. The Exponential Family

Exponential Distribution?

I exponential family:

p(x | θ) =
h(x)

Z (θ)
e〈η(θ),Φ(x)〉 = h(x)e〈η(θ),Φ(x)〉−A(θ) (2)

I exponential distribution:

p(x | λ) := λe−λx

I Is the exponential distribution a member of the exponential family?

A. yes, for h(x) := e−λx

B. yes, for η(θ) := −θ and φ(x) := x
C. no, because there is no Z
B. no, because there is no θ
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Machine Learning 2 2. The Exponential Family

Examples: Bernoulli

X = {0, 1} Ber(x | µ) = µx(1− µ)1−x

ex log(µ)+(1−x) log(1−µ)

ex log µ
1−µ+log(1−µ)

θ = µ

θ = µ

φ(x) =

(
x

1− x

)

φ(x) = x

η(θ) =

(
log θ

log(1− θ)

)

η(θ) = logit(θ) = log θ
1−θ

θ = logistic(η) = 1
1+e−η

A(θ) = 0

A(θ) = − log(1− θ)

A(η) = 0

A(η) = log(1 + eη)

curved

natural

(3)
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Machine Learning 2 2. The Exponential Family

Examples: Multinoulli / Categorical

X :={1, 2, . . . , L} ≡ {x ∈ {0, 1}L |
L∑

l=1

xl = 1}, µ ∈ ∆L

Cat(x | µ) :=
L∏
`=1

µx`` = e
∑L
`=1 x` logµ`

=e
∑L−1
`=1 x` log µ`+(1−

∑L−1
`=1 x`)(1−

∑L−1
`=1 µ`)

=e

∑L−1
`=1 x` log

µ`

1−
∑L−1
`′=1

µ`′
+(1−

∑L−1
`=1 µ`)

= eη(θ)T x−A(η(θ))

φ(x) :=x1:L−1, θ = µ1:L−1

η(θ) :=

(
log

θ`

1−
∑L−1

`′=1 θ`′

)
`=1,...,L−1

, θ(η) =

(
eη`

1 +
∑L−1

`′=1 e
η`′

)
`=1,...,L−1

A(η) := log(1 +
L−1∑
`=1

eη`)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

8 / 33

Note: ∆L := {µ ∈ [0, 1]L |
∑L

l=1 µl = 1} simplex, softmax(x) := ( exn∑N
n=1 exn

)n=1,...,N



Machine Learning 2 2. The Exponential Family

Examples: Univariate Gaussian

X :=R

N (x | µ, σ2) :=
1

(2πσ2)
1
2

e−
(x−µ)2

2σ2

=
1

(2πσ2)
1
2

e−
x2

2σ2 + xµ

σ2−
µ2

2σ2
!

= eη(θ)Tφ(x)−A(η(θ))

φ(x) :=

(
x
x2

)
, θ =

(
µ
σ2

)
η(θ) :=

(
θ1/θ2

− 1
2θ2

)
A(θ) =

θ2
1

2θ2
+

1

2
log(2πθ2)

 A(η) :=− η2
1

4η2
− 1

2
log(−η2) +

1

2
log(π), h(x) := 1
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Machine Learning 2 2. The Exponential Family

Non-Examples

Uniform distribution:

Unif(x ; a, b) :=
1

b − a
δ(x ∈ [a, b])
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Machine Learning 2 2. The Exponential Family

Cumulants

∂A

∂η
= E (φ(x)),

∂2A

∂2η
= var(φ(x)), ∇2A(η) = cov(φ(x))
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Machine Learning 2 2. The Exponential Family

Likelihood and Sufficient Statistics

Data:

D := {x1, x2, . . . , xN}

Likelihood:

p(D | θ) =
N∏

n=1

h(xn)eη(θ)Tφ(xn)−A(η(θ))

=

(
N∏

n=1

h(xn)

)(
e−A(η(θ))

)N
eη(θ)T (

∑N
n=1 φ(xn))

=

(
N∏

n=1

h(xn)

)
eη(θ)Tφ(D)−NA(η(θ)), φ(D) :=

N∑
n=1

φ(xn)
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Machine Learning 2 2. The Exponential Family

Maximum Likelihood Estimator (MLE)

log p(D | θ) =

(
N∑

n=1

log h(xn)

)
+ η(θ)Tφ(D)− NA(η(θ))

for h ≡ 1, η(θ) = θ:

=N + θTφ(D)− NA(θ)

∂ log p

∂θ
=φ(D)− N

∂A(θ)

∂θ
= φ(D)− NE (φ(x))

!
= 0

 E (φ(x))
!

=
1

N

N∑
n=1

φ(xn) (moment matching)

Example: Bernoulli

θ̂ = µ :=
1

N

N∑
n=1

xn
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Machine Learning 2 2. The Exponential Family

Why the exponential family matters

I Many common distributions belong to it

I It is the only family of pdfs for which conjugate priors exist (later)

I All members of the exponential family are maximum entropy pdfs.

I given certain constraints, they are the pdfs. satisfying those
constraints which make ”the least assumptions about the data”
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Machine Learning 2 3. Generalized Linear Models (GLMs)
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Machine Learning 2 3. Generalized Linear Models (GLMs)

Make it Simple
I full exponential family:

p(x | θ) = h(x) eη(θ)Tφ(x)−A(θ)

I canonical link (η(θ) = θ), natural sufficient statistics (φ(x) = x):

p(x | θ) = h(x) exTθ−A(θ)

I and one-dimensional x and θ:

p(x | θ) = h(x) exθ−A(θ)

I and positive h(x):

p(x | θ) = exθ−A(θ)+c(x)

I But how can we represent a normal distribution this way?
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Machine Learning 2 3. Generalized Linear Models (GLMs)

Make it Simple (2/2)

I simplified exponential distribution:

p(x | θ) = exθ−A(θ)+c(x)

I cannot represent a normal distribution
I because the sufficient statistics is only one-dimensional,

but a normal distribution requires two dimensions

I introduce a parameter again: dispersion σ2:

p(x | θ, σ2) = e
xθ−A(θ)

σ2 +c(x ,σ2)

I we will see soon, that now a normal distribution can be represented
by choosing σ2 simply as the variance.
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Machine Learning 2 3. Generalized Linear Models (GLMs)

Parametrization

I a (simplified) exponential family distribution for the target y :

p(y | θ, σ2) :=e
yθ−A(θ)

σ2 +c(y ,σ2)

where σ2 dispersion parameter (often =1),
θ natural parameter (a scalar!),
A(θ) (log) partition function,
c(y , σ2) normalization constant.

I parametrize θ:

θ = wT x
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Machine Learning 2 3. Generalized Linear Models (GLMs)

Parametrization (2/2)

I a (simplified) exponential family distribution for the
(one-dimensional regression) target y :

p(y | x ;w , σ2) :=e
y wT x−A(wT x)

σ2 +c(y ,σ2)

I subsequently learn w
I but assume σ2 to be known

I for normal targets: σ2 := var(y)
I for most others: σ2 := 1
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Machine Learning 2 3. Generalized Linear Models (GLMs)

Expectation and Variance

µ = E (y | x ;w , σ2) =A′(wT x)

τ2 = Var(y | x ;w , σ2) =A′′(wT x)σ2

I A′ mean function, usually denoted by g−1 := A′

I σ2A′′ variance function
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Machine Learning 2 3. Generalized Linear Models (GLMs)

Examples: Linear Regression

N (y ;µ, σ2) :=
1

(2πσ2)
1
2

e−
(y−µ)2

2σ2 , y ∈ R

µ(x) :=wT x

log p(y | x ,w , σ2) =− (y − µ)2

2σ2
− 1

2
log(2πσ2)

=
yµ− 1

2µ
2

σ2
− 1

2
(
y2

σ2
+ log(2πσ2))

=
y wT x − 1

2 (wT x)2

σ2
− 1

2
(
y2

σ2
+ log(2πσ2))

 A(θ) =
θ2

2

E (y) =µ = wT x

Var(y) =σ2

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

20 / 33

remember: p(y | x ;w , σ2) := e
y wT x−A(wT x)

σ2 +c(y,σ2)



Machine Learning 2 3. Generalized Linear Models (GLMs)

Examples: Binomial Regression

Bin(y ;N, π) :=

(
N
y

)
πy (1− π)N−y , y ∈ {0, 1, . . . ,N}

π(x) :=logistic(wT x)

log p(y | x ,w) =y log
π

1− π
+ N log(1− π) + log

(
N
y

)
 A(θ) =N log(1 + eθ)

E (y) =µ = Nπ = N logistic(wT x)

Var(y) =Nπ(1− π) = N logistic(wT x)(1− logistic(wT x))

where θ = log
π

1− π
= wT x

σ2 =1
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Machine Learning 2 3. Generalized Linear Models (GLMs)

Examples: Poisson Regression

Poi(y ;µ) :=e−µ
µy

y !
, y ∈ {0, 1, 2, . . .}

µ(x) :=ew
T x

log p(y | x ,w) =y logµ− µ− log y !

 A(θ) =eθ

E (y) =µ = ew
T x

Var(y) =ew
T x

where θ = logµ = wT x

σ2 =1
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Machine Learning 2 3. Generalized Linear Models (GLMs)

Models

Distribution mean µ = g−1(θ) link θ = g(µ)

N (y ;µ, σ2) µ = g−1(θ) = θ θ = g(µ) = µ
Bin(y ;N, µ) µ = g−1(θ) = N logistic(θ) θ = g(µ) = logit( µN )
Poi(y ;µ) µ = g−1(θ) = eθ θ = g(µ) = log µ
Ber(y ;µ) µ = g−1(θ) = logistic(θ) θ = g(µ) = logit(µ)
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Machine Learning 2 4. Learning Algorithms
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Machine Learning 2 4. Learning Algorithms

Gradient Descent
model:

p(y | x ;w , σ2) :=e
y wT x−A(wT x)

σ2 +c(y ,σ2)

with θ =wT x

negative log likelihood:

`(w ; x , y) =−
N∑

n=1

yn w
T xn − A(wT xn)

σ2
=: − 1

σ2

N∑
n=1

`n(wT xn)

∂`n
∂wm

=
∂`n
∂θn

∂θn
∂wm

= (yn − µn)
∂θn
∂wm

= (yn − µn)xn,m

and thus:

∇w `(w) =− 1

σ2

N∑
n=1

(yn − µn)xn
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Machine Learning 2 4. Learning Algorithms

Newton

∇w `(w) =− 1

σ2

N∑
n=1

(yn − µn)xn

∂2`

∂2w
=

1

σ2

N∑
n=1

∂µn
∂θn

xnx
T
n =

1

σ2
XTSX

where S :=diag(
∂µ1

∂θ1
, . . . ,

∂µN
∂θN

)

Use within IRLS:

θ(t) :=Xw (t)

µ(t) :=g−1(θ(t))

z(t) :=θ(t) + (S (t))−1(y − µ(t))

w (t+1) :=(XTS (t)X )−1XTS (t)z(t)
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Machine Learning 2 4. Learning Algorithms

Stochastic Gradient Descent

∇w `(w) =− 1

σ2

N∑
n=1

(yn − µn)xn

Use a smaller subset of data to estimate the (stochastic) gradient:

∇w `(w) ≈− 1

σ2

∑
n∈S

(yn − µn)xn, S ⊆ {1, . . . ,N}

Extreme case: use only one sample at a time (online):

∇w `(w) ≈− 1

σ2
(yn − µn)xn, n ∈ {1, . . . ,N}

Beware: ∇w `(w) ≈ 0 then is not a useful stopping criterion!
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Machine Learning 2 4. Learning Algorithms

L2 Regularization

For all models, do not forget to add L2 regularization.

Straight-forward to add to all learning algorithms discussed.
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Machine Learning 2 5. Organizational Stuff

Character of the Lecture

This is an advanced lecture:

I I will assume good knowledge of Machine Learning I.

I Slides will contain major keywords, not the full story.

I For the full story, you need to read the referenced chapters in one of
the books.
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Machine Learning 2 5. Organizational Stuff

Exercises and Tutorials

I Two tutorials (course 3102):
I Tuesdays, 8:00-10:00 - Zoom 920-3439-1690
I Wednesdays, 14:00-16:00 - Zoom 961-3756-7779

I Tutorial sheet upload: each Friday, 12:00 AM (LearnWeb)

I Tutorial sheet deadline: Thursday, 12:00 AM
(upload in Learnweb as PDF)

I 50% Tutorial sheet points required to PASS the course
No exam or final grade this year

I Next week: Tutorial via Zoom
Check Learnweb or our ISMLL-Website for the Meeting-ID.
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Machine Learning 2 5. Organizational Stuff

Passing Requirements

I 50% Tutorial sheet points

I Participation in class:
Present your Solution at least twice

I No Group Submissions allowed

I Plagiarism will lead to immediately failing the course
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Machine Learning 2 5. Organizational Stuff

Credit Points

I The course gives 6 ECTS (2+2 SWS).

I The course can be used in
I IMIT MSc. / Informatik / Gebiet KI & ML
I Wirtschaftsinformatik MSc / Informatik / Gebiet KI & ML

& Wirtschaftsinformatik MSc / Wirtschaftsinformatik / Gebiet BI
I as well as in both BSc programs.
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Machine Learning 2 5. Organizational Stuff

Some Books

I Kevin P. Murphy (2012):
Machine Learning, A Probabilistic Approach, MIT Press.

I Trevor Hastie, Robert Tibshirani, Jerome Friedman (22009):
The Elements of Statistical Learning, Springer.
Also available online as PDF at http://www-stat.stanford.edu/~tibs/ElemStatLearn/

I Christopher M. Bishop (2007):
Pattern Recognition and Machine Learning, Springer.

I Richard O. Duda, Peter E. Hart, David G. Stork (22001):
Pattern Classification, Springer.
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Summary

I Generalized linear models allow to model regression targets with
I specific domains: R, R+

0 , {0, 1}, {1, . . . ,K}, N0 etc.
I specific parametrized shapes of pdfs/pmfs.

I The model is composed of

1. a linear combination of the predictors and
2. a scalar transform to the domain of the target

(mean function, inverse link function)

I Many well-known models are special cases of GLMs:
I linear regression (= GLM with normally distributed target)
I logistic regression (= GLM with bernoulli distributed target)
I Poisson regression (= GLM with Poisson distributed target)

I Generic simple learning algorithms exist for GLMs independent of the
target distribution.

I GLMs have a principled probabilistic interpretation and provide
posterior distributions (uncertainty/risk).
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Further Readings

I See also [?, chapter 9].
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