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Machine Learning 2 1. The Prediction Problem / Supervised Learning

The Prediction Problem Formally

Let Xi,Xo,..., Xy be random variables called predictors
(aka inputs, covariates, features),
X1, X0,..., X be their domains.

X = (X1, Xa,...,Xpm) the vector of random predictor variables and
X=X xXyx---x X its domain.

Y be a random variable called target (or output, response),
Y be its domain.

D C X x )Y be a (multi)set of instances of the unknown joint
distribution p(X, Y') of predictors and target called data.
D is often written as enumeration

D = {(x1,y1), (x2,y2), - - -, (xn, yw)}

Y = R: regression, ) a set of nominal values: classification.
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Machine Learning 2 1. The Prediction Problem / Supervised Learning

NS
The Prediction Problem Formally / Test Set Formulatioh‘z'

Let X' be any set (called predictor space),
Y be any set (called target space), e.g., and
p: X xY — R{ be a joint distribution / density.
Given
» asample DN C X x ) (called training set), drawn from p,
» a loss function £: )Y x Y — R that measures how bad it is to predict
value y if the true value is y,
compute a model
y:xXx =Y
s.t. for another sample D™t C X x ) (called test set) drawn from the
same distribution p, not available during training, the test error

N 1 .
e”(y; DteSt) = |Dtest| Z E(y’ y(X))
7y GDteSt

is minimal.
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Machine Learning 2 1. The Prediction Problem / Supervised Learning

The Prediction Problem Formally / Risk Formulation i
Let X be any set (called predictor space),

Y be any set (called target space), and

p: X xY — R{ be a joint distribution / density.
Given a sample D" C X’ x ) (called training set), drawn from p,

a loss function £ : )) x Y — R that measures how bad it is to predict
value y if the true value is y,
compute a model

with minimal risk yix—=Y

risk(; p) := /X - Uy, 9)p(x,y)d(x,y)

Explanation: risk(y; p) can be estimated by the empirical risk

. A es 1 ~
I’ISk(y; Dt t) = |Dt85t| Z g(y7 .y(X))
(

X,y)E'DteSt
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Machine Learning 2 2. The Exponential Family

Definition Exponential Family a

A parametric pdf p(x|@) belongs to the exponential family if it is of the
form

h(x y .
p(x | 8) = de))e“’(e)""( ) — h(x)e(0):269)-A(®) 1)

7 are called natural or canonical parameters

1(8) is a reparametrization

Z(0) = / h(x)e®)®*() dx is called partition function
X

A

0) = log Z(0) is called log partition or cumulant function
h(x) is a scaling factor called base measure

VVVVVV

®(x) is called sufficient statistic
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Machine Learning 2 2. The Exponential Family

Subfamilies .

» dim(0) < dimn(0): curved exponential family.
(more sufficient statistics than parameters)

» n(0) = 6: canonical form

p(x | 6) =h(x)el® @) ~A®
» ®(x) = x: natural exponential family.

p(x | @) =h(x)e(M@)x)—A(®)
» natural exponential family in canonical form:

pl(x | 6) =h(x)e(®-40)
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Machine Learning 2 2. The Exponential Family

: . 2%
Exponential Distribution? “

> exponential family:

h(x y o
p(x | 6) = ZEO))em(om( ) = h(x)em@)06)-A®) o)

» exponential distribution:
p(x | A) == e ™

» Is the exponential distribution a member of the exponential family?
yes, for h(x) := e= ™

yes, for n(#) := —0 and ¢(x) := x

no, because there is no Z

no, because there is no 6

wAaw>
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Machine Learning 2 2. The Exponential Family

Examples: Bernoulli

X ={0,1}  Ber(x|p)=p (1 —p)
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Machine Learning 2 2. The Exponential Family

Examples: Bernoulli

X=1{0,1}  Ber(x| )= p (1 — )

e log(1)+(1—x) log(1—p)

¢(x)=<1fx)

o= ( it

A(0) =0
A(n) =0
curved
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Machine Learning 2 2. The Exponential Family

Examples: Bernoulli

X ={0,1}

e log(1)+(1—x) log(1—p)

0=p
9(x) = ( L )

log 6
n(0) = ( Iog(olg— 0)
A6) =0
A(n) =0
curved

Ber(x | 1)

)

= (1 — p)
xlog e +Iog(1 )
0=np
P(x) = x
1(0) = logit(6) = log 1% (3)
0 = logistic(n) = +1
A(f) = — log(1 — 0)
A(n) = log(1 + €")
natural
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Machine Learning 2 2. The Exponential Family

Examples: Multinoulli / Categorical

L
X::{12 o= {xe {0, 1} Y x=1}, peh

1=1
Cat(x | ) HM ¢ — eZe 1 Xelog g
/=1
—eze 1 xelog pe+(1= 51 xe) (1=32521 ue)
:eze 1 x¢log 72[/ o +(1-32451 pe) _ 10 x—Aw®))

d(x) =x1.1-1, 0 = pa:1-1

n(6) == (Iog ”) o) = ()
1— 365 o ¢=1,..,L-1 ’ L+ X0 e =1

A(n) :=log(1 + Z e)

Note: A; := {u € [0,1]" | Z, 1;“ = 1} simplex, softmax(x) := (Z,\,L)nzl ,,,,, N

eXn
n=
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Machine Learning 2 2. The Exponential Family

Examples: Univariate Gaussian

X =R
1 _ be=p)?
N(x|p,o0?) =———e 202
(2mo?)2
I
(2102)2

wo-(5): o-(2)
n(6) = < 9_12522 )

02
A) =55+ |og(27r02)

n(0) T ¢ (x)—An(9))

2
g 1 1
~ Aln) i =— — — = log(—m) + = =
(n) by 2 og(—m2) 5 log(m), h(x):=1
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Machine Learning 2 2. The Exponential Family

Non-Examples

Uniform distribution:

Unif(x; a, b) = ﬁé(x € [2.b])

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
10 / 33



Machine Learning 2 2. The Exponential Family

Cumulants

2
= L) G =var(9(x), TA(r) = cou(6(x)
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Machine Learning 2 2. The Exponential Family

Likelihood and Sufficient Statistics

Data:
D :={xy,x2,...,xn}

Likelihood:

N
p(D|0)=]] h(x)e(®) T 0xn)=A(®))

n=1

N
N
— (H h(xn)> (e—A(n(e))) 107 (Znly ¢(xn))

n=1
N

(ﬁ h(Xn)> eNOTHDINAGON  4(D) 1= 3 p(xy)

n=1

n=1
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Machine Learning 2 2. The Exponential Family

Maximum Likelihood Estimator (MLE)

log p(D | 0) = (Z log h(xn) > 1(8)" $(D) — NA(1(6))
for h=1,7n(0) = 0:
=N + 07 ¢(D) — NA(H)

N8P _ o) - NP2 _ (D) - NE(9(x)) L 0
~ E(¢p(x)) ;% Zqﬁ(x,,) (moment matching)
n=1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

i3 /88



Machine Learning 2 2. The Exponential Family

Why the exponential family matters

» Many common distributions belong to it
» It is the only family of pdfs for which conjugate priors exist (later)
» All members of the exponential family are maximum entropy pdfs.

P given certain constraints, they are the pdfs. satisfying those
constraints which make "the least assumptions about the data”
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Machine Learning 2 3. Generalized Linear Models (GLMs)

Make it Simple

» full exponential family:

p(x | 6) = h(x) €O ¢(x)=A6)

» canonical link (n(0) = 6), natural sufficient statistics (¢(x) = x):

p(x | 8) = h(x) e 0=AC)
» and one-dimensional x and 6:

plx | ) = h(x) /A0
» and positive h(x):

p(x | 0) = 0-AB)+<()

» But how can we represent a normal distribution this way?
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Machine Learning 2 3. Generalized Linear Models (GLMs)

Make it Simple (2/2)

» simplified exponential distribution:
p(X ’ 9) _ exG—A(é’)—i—c(x)

P cannot represent a normal distribution
P because the sufficient statistics is only one-dimensional,
but a normal distribution requires two dimensions
» introduce a parameter again: dispersion o

x0—A(0)

p(x|0,0°)=e o2

+c(x,0?)

» we will see soon, that now a normal distribution can be represented
by choosing o2 simply as the variance.
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Machine Learning 2 3. Generalized Linear Models (GLMs)

Parametrization

» a (simplified) exponential family distribution for the target y:

where o2 dispersion parameter (often =1),
¢ natural parameter (a scalar!),
A(9) (log) partition function,
c(y,o?) normalization constant.

» parametrize 6:
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Machine Learning 2 3. Generalized Linear Models (GLMs)

Parametrization (2/2)

> a (simplified) exponential family distribution for the
(one-dimensional regression) target y:

y WTX7A(WTX)

p(y | X, W, 0'2) —e 2 +c(y,0?)

» subsequently learn w
» but assume o2 to be known

» for normal targets: o2 := var(y)
» for most others: 02 :=1
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Machine Learning 2 3. Generalized Linear Models (GLMs)

Expectation and Variance

1= Ely | x;w,02) =A'(w7x)

72 = Var(y | x; w,0?) =A"(w' x)o?

» A’ mean function, usually denoted by g~ := A’

» o2A” variance function

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 3. Generalized Linear Models (GLMs)
remember: p(y | x; w,02) = e

Examples: Linear Regression

1 _=w?
N(yipo?)=—"—re ? , yeR
(2mo?)2
w(x) =w'x
2
y— 1
log p(y | x, w,0%) = — (202) 3 log(270?)
_yp— 3

1,y?

0-2
T 1 T,\2 2
Cywix—3(w'x)* 1y 2
= o2 - 5(; + |Og(27‘(’0’ ))
92
~ A(f) =—
0) =2
E(y) == wTx
Var(y) =o?
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Machine Learning 2 3. Generalized Linear Models (GLMs)

Examples: Binomial Regression

Bin(y; N, ) ::< /}\/I )Wy(l—w)N_y, ye{0,1,...,N}

7(x) :=logistic(w x)

T N
Nlog(1 — |
—* og( 7r)+og(y)

A(0) =N log(1 + €%)
E(y) =p = N = Nlogistic(w " x)
Var(y) =Nn(1 — 7) = Nlogistic(w " x)(1 — logistic(w " x))

log p(y | x, w) =y log 1

= WTX

where 0 =log 1 T
o? =1
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Machine Learning 2 3. Generalized Linear Models (GLMs)

Examples: Poisson Regression

Poi(y; 1) :=e — y€{0,1,2,...}

~ A9) =€’
WTX
E(y)=n=e
Var(y) —e"'x

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 3. Generalized Linear Models (GLMs)

Models
Distribution mean = g~1(6) link 0 = g(u)
N(yipo®) p=g(0)=10 =g(p)=n
Bin(y; N,u) n=g *(0) = Nlogistic(9) 0 = g(u) = logit(f)
Poi(y;)  pw=g *(0) =¢ = g(p) = log
Ber(y;n)  p =g *(0) = logistic(0) = g(u) = logit(y)
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Machine Learning 2 4. Learning Algorithms

Gradient Descent

model: .
yw' x— A(w x)
ply | xiw,0%) =™ a2 )
with @ =w ' x

negative log likelihood:

Yaw T x, — Aw'x,) 1 &
n n n) ., T
Uw; x,y) nE 1 " = ng_l ln(w' xp)
oL, 0of, 90, 00,
B 00, By~ 1 )Gy = o = pin)Xam

and thus:
1 N
We = —5 n — Mn)Xn
Viwl(w) azg(y in)X
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Machine Learning 2 4. Learning Algorithms

Newton

N

VWK(W) = — % Z()/n - ,Un)Xn

n=1
8Mn T 1 T
2y o2 Z - ?X X

where S —dlag(g'gl ’(892“,\\,/)
Use within IRLS:
o) -— X, (1)

) =g~ (00)
W(t+1) I:(XTS(t)X)_IXTS(t)Z(t)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 4. Learning Algorithms

Stochastic Gradient Descent

N
1
Vil(w) = — - § (Yn — fn)Xn
n=1

g

Use a smaller subset of data to estimate the (stochastic) gradient:

1
Vwﬁ(w)%—; (Yn— ptn)xn, SCH{1,...,N}
nesS

Extreme case: use only one sample at a time (online):
1
VWE(W)%_?()/H_MH)Xm nG{l,...,N}

Beware: V,,/(w) = 0 then is not a useful stopping criterion!
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Machine Learning 2 4. Learning Algorithms

L2 Regularization

For all models, do not forget to add L2 regularization.

Straight-forward to add to all learning algorithms discussed

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 5. Organizational Stuff

Character of the Lecture

This is an advanced lecture:
» | will assume good knowledge of Machine Learning |.
» Slides will contain major keywords, not the full story.
» For the full story, you need to read the referenced chapters in one of
the books.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 5. Organizational Stuff

. _ N R
Exercises and Tutorials v

» Two tutorials (course 3102):

» Tuesdays, 8:00-10:00 - Zoom 920-3439-1690
» Wednesdays, 14:00-16:00 - Zoom 961-3756-7779

» Tutorial sheet upload: each Friday, 12:00 AM (LearnWeb)

» Tutorial sheet deadline: Thursday, 12:00 AM
(upload in Learnweb as PDF)

» 50% Tutorial sheet points required to PASS the course
No exam or final grade this year

> Next week: Tutorial via Zoom
Check Learnweb or our ISMLL-Website for the Meeting-ID.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 5. Organizational Stuff

Passing Requirements

» 50% Tutorial sheet points

» Participation in class:
Present your Solution at least twice

» No Group Submissions allowed

» Plagiarism will lead to immediately failing the course

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 5. Organizational Stuff

Credit Points

» The course gives 6 ECTS (2+2 SWS).

> The course can be used in
» IMIT MSc. / Informatik / Gebiet KI & ML
» Wirtschaftsinformatik MSc / Informatik / Gebiet KI & ML
& Wirtschaftsinformatik MSc / Wirtschaftsinformatik / Gebiet Bl
P as well as in both BSc programs.
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Machine Learning 2 5. Organizational Stuff

Some Books

» Kevin P. Murphy (2012):
Machine Learning, A Probabilistic Approach, MIT Press.

» Trevor Hastie, Robert Tibshirani, Jerome Friedman (22009):
The Elements of Statistical Learning, Springer.

Also available online as PDF at http://www-stat.stanford.edu/~tibs/ElemStatLearn/

» Christopher M. Bishop (2007):
Pattern Recognition and Machine Learning, Springer.

» Richard O. Duda, Peter E. Hart, David G. Stork (?2001):
Pattern Classification, Springer.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 5. Organizational Stuff

NN
Summary “

» Generalized linear models allow to model regression targets with
» specific domains: R, R{, {0,1}, {1,..., K}, Ny etc.
» specific parametrized shapes of pdfs/pmfs.
» The model is composed of
1. a linear combination of the predictors and
2. a scalar transform to the domain of the target
(mean function, inverse link function)
» Many well-known models are special cases of GLMs:

» linear regression (= GLM with normally distributed target)
> logistic regression (= GLM with bernoulli distributed target)
» Poisson regression (= GLM with Poisson distributed target)

» Generic simple learning algorithms exist for GLMs independent of the
target distribution.

» GLMs have a principled probabilistic interpretation and provide
posterior distributions (uncertainty/risk).
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Machine Learning 2

Further Readings

> See also [?, chapter 9].
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