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Machine Learning 2 1. The Gaussian Process Regression Model

Gaussian Process Model

Gaussian Processes describe
» the vector y := (y1,...,yn)" of all targets
» as a sample from a normal distribution
P> where targets of different instances are correlated by a kernel X:
» and thus depend on the matrix X of all predictors:

y [ X~ Ny | w(X), 2(X))
with
1(X)n :=m(xn)
Y(X)n,m :=k(Xn,xm), n,me{l,...,N}

with a kernel function k and mean function m (often m = 0).
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Machine Learning 2 1. The Gaussian Process Regression Model

Kernels

The kernel k measures how much targets y, y’ correlate given their
predictors x, x’.

» k(x,x') is larger the more similar x, x" are
> esp. k(x,x) > k(x,x") Vx,x'

Example: squared exponential kernel / Gaussian kernel

k(x,x') = o2 ezl
with kernel (hyper)parameters
¢ horizontal length scale (x)

o2 vertical variation (y)

[m] = = =
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1. The Gaussian Process Regression Model

GPs as Prior on Functions

identity kernel

squared exponential kernel
2 1.0
1 0.5
> 0 > 0.0
= -0.5
-2 -1.0
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Machine Learning 2 1. The Gaussian Process Regression Model
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GPs as Prior on Functions A
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Machine Learning 2 2. Inference with Gaussian Processes

Conditional Distributions of Multivariate Normals
Let ya, vy be jointly Gaussian
(A o[ A 1A Yan Xas ))
e <YB> <<YB>‘<NB>’<ZBA Y BB
then the conditional distribution is

p(ye | ya) = N(vB | 1184, L 5|A)

with

pBlA = pe + YeaX ia(va — 11a)
Ypia =88 — LeAT A4 AB
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Machine Learning 2 2. Inference with Gaussian Processes

Predictions w/o Noise

Let y, X be the training data,
X, be the test data and
¥« be the test targets to predict.

) ixxon (X)) (S )
(o )i 1() (o 2

p=m(X),  pe = m(X)
Yo=k(X, X), T.:=k(X,X), Tei= k(X X))

with

Then y
p(Ys | y) = N (Ve | s, Z4)

fis 1= px + ZIZ_I(Y — i)

Y, =Y. -]y ly,
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Machine Learning 2 2. Inference with Gaussian Processes

Example w/o Noise

fig/03-gaussian-process-models/{¥ptPRyLad2sTagipr

Without noise the data is interpolated.

2, fig. 15.2]
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Machine Learning 2 2. Inference with Gaussian Processes

Predictions with Noise .
No noise:
> =K
With noise:
Y =K+ 03,/

Then as before

Py | ¥) = Ny | i, 2)
now with
fi ==pu + KT (K + 03 1) "y — 1)
Yo=K + 02l — K] (K +021) 7K,
where
K =k(X,X), K.:=k(X,X.), Ko :=k(X.X)
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Machine Learning 2 2. Inference with Gaussian Processes

Predictions with Noise, Zero Means

P(ye | ¥) =N (v | fins 24)

with
fi :=ps + KT (K + 030) "y — 1)
S =Ku + 021 — K] (K + 021) 1K,
With m = 0:
p(ye | y) = N (v | i: 22
with

i =K (K+021)"ly
> =Ko + 02l — KT (K + 021) 72K,
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Machine Learning 2 2. Inference with Gaussian Processes

. : : s
Prediction for a single instance “

p(ye | ¥) = N(yu | fins £4)
with

fi =K (K —Faf,/)_1
Y. =K+ ool — K[ (K+ o)) 'K,

Prediction y for a single instance x:

P(x) =k (K + 02/ Za,, Xp,X), a:=(K+ 0)2,/)_1
with

k. :=k(X, x)

But GPs can provide a joint inference for multiple instances.
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Machine Learning 2 2. Inference with Gaussian Processes

Example with Noise

fig/0

fig/0B3-gaussian-process-models/{Mu

3-gaussian-pre

H

hy2012-figl5.:

(6, O'f70'y) — (1’ 1701) (f, O'f,O'y) == (03,01?,000005)

[?, fig. 15.3]
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Machine Learning 2 2. Inference with Gaussian Processes

Example with Noise

fig/0
fig/03-gaussian-process-modelsy{Murp

3-gaussian—pr¢
hy OlQ—figl%.:

(f’ of, O'y) = (17 17 01)

(¢,0¢,0,) = (3,1.16,0.89)

[?, fig. 15.3]
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Machine Learning 2 3. Learning Gaussian Processes

. . N
Estimating Kernel Parameters “

Either treating them as hyperparameters (grid search, random search) or
maximize the marginal likelihood (empirical Bayes; grad. desc.).

Model:

py | X,0) =N(y | 0,(K+0;0)), 0:=(,0%07)

Negative log-likelihood:
L(6) = —log p(y | X,0)

1 r 2;y-1 1 2 N
=5y (K+o,l) "y + 3 log det(K + o, /) + 5 log(27)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Machine Learning 2 3. Learning Gaussian Processes

Estimating Kernel Parameters

Negative log-likelihood (6 := (¢,07,07)):

1 1
L(6) = §yT(K + 02ty + 5 log det(K + ol) +

y
Gradients:
g;j ; T(K +021) 8(K(;;)102I)(K+o N~
+ ;tr((K+a§/)—1W)
= %tr ((aa™ = (K + aﬁ/)—l)a(K;j"§ ')),
Note: (X~ 1) = X~1(X)X L, ddet X = dixtr (X~HToaxX),

and tr(aa’ B) = a’ Ba. 01 := ¢, 0 = 02,03 := o2

N
5 log(27)

Lars Schmidt-Thieme, Information Sys‘rems and Mach|r1e Learmn«7 Lab (ISMLL) University of Hildesheim, Germany
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Machine Learning 2 3. Learning Gaussian Processes

Cholesky decompositon

How to solve Ax = b?

Matrix inversion: x = A~1b is problematic because
» Numerically unstable
» A~lis dense, even if A is sparse

Better: LU-decomposition

Ax — b A=LU Lz=b
Ux =z

» L and U lower/upper triangular

» if A symmetric pos.-definite, then (L, U) can be chosen s.t. U= LT
(Cholesky-decomposition)
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Machine Learning 2 3. Learning Gaussian Processes

Local Minima for Kernel Parameters

fig/03-gaussian-processrm

ofleg AJIMgaphy2an 2pfagdSs

Smddpds

> top

1
fig/OS—gaussian—process—mod,lF/{Mh;ph}?Of(ng %1@
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Machine Learning 2 3. Learning Gaussian Processes

Semi-parametric GPs

F(x) =BT ¢(x) + r(x)
r(X) ~GP(r | 0, k(X, X))

Assuming

B~N(3|bB), eg.,b:=0B:=05
yields just another GP

F(X) ~ GP(¢(X) b, k(X, X) + ¢(X)Bp(X)T)

where

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 4. Gaussian Processes for Classification
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Model

Machine Learning 2 4. Gaussian Processes for Classification

p(y | x) :=s(y f(x)),

» f: latent score

[m]

=
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Machine Learning 2 4. Gaussian Processes for Classification

Inference

Two-step inference:

1. infer latent score variable:
e | Xoyox) = [ Bl | Xoxes ) plF | X.y) o

2. infer target:

T bl =41 Xoyox) = [ S(6)plfe | Xy, o,

Non Gaussians are analytically intractable.
~» Gaussian approximation (Laplace approximation)
~» Expectation Propagation (EP)

~~ further methods

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 4. Gaussian Processes for Classification

Posterior

_py [ £, X) p(f | X)

p(f | X,y) = o p(y | f)p(f | X)

ply | X)
U(f) =logp(y | f) + log p(f | X)

1 1 N
=logp(y|f)— EfTKflf— Elog]K\ — Elog27r

VI(f) =Viogp(y | f) — K~1f
V2U(f) =V?logp(y | f) — K™
for logistic:
Viegp(y | f) =y —m
V2logp(y | f) =diag(—mo (1 —7m)) = —W
at maximum:

Vi(f)=0 = f=KVlogp(y]|f)
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Machine Learning 2 4. Gaussian Processes for Classification

. N R
Posterior v

at maximum:
Vi(f)=0 = f=KVlogp(y]|f)
Use Newton to find a maximum:
FED =t — (V20)~tve

=) 4 (KL WY (Vg p(y | F) — K~1F(®)
(K1 + WOy L(wO ) L Tiogp(y | £))

eventually yielding the maximum posterior fl

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Machine Learning 2 4. Gaussian Processes for Classification

Gaussian Approximation

p(F I X,y) = q(f | X,y) = N(f| F. (KT +W)™H)

using the Hessian as covariance matrix.

[} = =
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Machine Learning 2 4. Gaussian Processes for Classification

Predictions
exact mean

Ex(f. | X,y %) = / E(f, | £,X.x) p(F | X, y)df

:/k(x*)TK_lfp(f | X, y)df
=k(x)TKYES(F | X, )
approximated mean:
Eq(f* ‘ X7y7X*) :k(x*)TKilf
variance:

Varg(fe | X, y, %) =k(xe, ) — kT (K + W)Lk,
predictions:

Tu i=Eq(me | X, y, x%) = /s(f*)q(f* | X, y,x)df,

solve integral via MCMC or
probit approximation (Murphy 8.4.4.2)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 4. Gaussian Processes for Classification

B
Algorithm (Step 1) i

input: K (covariance matrix), y (%1 targets), p(y|f) (likelihood function)
2: f:=0 initialization
repeat Newton iteration
4: = —VVlogp(y\f) eval. W e.g. using eq. (3.15) or (3. 16)
L := cholesky(I + W2 KW?) B=I+W3KW3
6: b :=Wf+ Vlogp(yl|f)
a:=b-WiLT\(L\(W2Kb)) } eq. (3.18) using eq. (3.27)
8: f:=Ka
until convergence objective: —%an + log p(y|f)
10: logq(y|X,0) := —3af +logp(y|f) — >, log Lsi eq. (3.32)
return: f :=f (post. mode), log ¢(y|X, 8) (approx. log marg. likelihood)

Algorithm 3.1: Mode-finding for binary Laplace GPC. Commonly used convergence

[Rasmussen/Williams 20C

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 4. Gaussian Processes for Classification

NS
Algorithm (Step 1) i

input: K (covariance matrix), y (+1 targets), p(y|f) (likelihood function)
2. f:=0 initialization
repeat Newton iteration
4: W:=-=VVlogp(yl|f) eval. W e.g. using eq. (3.15) or (3. 16)
L := cholesky(I + W2z KW?) B=IT+WiKW2
6:  b:=Wf+ Vliogp(yl|f)
a:=b—W2LT\(L\(W2Kb)) } eq. (3.18) using eq. (3.27)
8 f:=Ka
until convergence objective: —%an + log p(y|f)
10: logq(y|X,0) := —3a™f +logp(y[f) — >_;1log Lii eq. (3.32)
return: f :=f (post. mode), log ¢(y|X,6) (approx. log marg. likelihood)

Algorithm 3.1: Mode-finding for binary Laplace GPC. Commonly used convergence

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
23 /28



Machine Learning 2 4. Gaussian Processes for Classification

Algorithm (Step 2)

input: f (mode), X

2 W = —VVlog p(ylf)

L := cholesky (I + W KW2)
4 foi=k(x.)"Viog plylf)

v = L\(Wz2k(x,))
6: V[fi] := k(Xa, %) = Vv

72 1= [o()N (|, VIL))dz

8: return: 7, (predictive class probability (for class 1))

(inputs), y (&1 targets), k (covariance function),
p(y|f) (likelihood function), x, test input

B=I+W3KW3

eq. (3.21)

} eq. (3.24) using eq. (3.29)
eq. (3.25)

Algorithm 3.2: Predictions for binary Laplace GPC. The posterior mode f (which
can be computed using Algorithm 3.1) is input. For multlple test inputs lines 4 — 7 are
applied to each test input. Computational complexity is n /6 operations once (line
3) plus n? operations per test case (line 5). The one-dimensional integral in line 7
can be done analytically for cumulative Gaussian likelihood, otherwise it is computed

using an approximation or numerical quadrature.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 4. Gaussian Processes for Classification

MCMC

How to compute integrals of the form

/a ’ h(x)p(x)dx

where p is a probability density on [a, b].
b 1 N
/a HO)p(x)dx = Bylh] ~ Z; h(x;)

when x; are sampled iid from p. (Monte-Carlo-integration)
Markov-Chain-Monte-Carlo: Clever sampling strategy of x;

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 4. Gaussian Processes for Classification

Approximation Methods for Large Datasets

See recent literature:

» Filippone, M. and Engler, R. 2015.
Enabling scalable stochastic gradient-based inference for Gaussian

processes by employing the Unbiased Llnear System SolvEr (ULISSE),

arXiv preprint arXiv:1501.05427. (2015).

» Dai, B., Xie, B., He, N., Liang, Y., Raj, A., Balcan, M.-F. and Song,
L. 2014.
Scalable Kernel Methods via Doubly Stochastic Gradients.
arXiv:1407.5599 [cs, stat]. (Jul. 2014).

» Hensman, J., Fusi, N. and Lawrence, N.D. 2013.
Gaussian processes for big data. arXiv preprint arXiv:1309.6835.
(2013).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Machine Learning 2 4. Gaussian Processes for Classification

NN
Summary “

» Gaussian processes model continuous targets as jointly normally
distributed.

> correlated by covariance matrix depending on the predictors (kernel)

» The squared exponential kernel often is used as kernel.

P having 2 kernel parameters: horizontal length scale and vertical
variation

» Noise variation has to be added to the model
— otherwise Gaussian processes interpolate the observed data.

» Kernel parameters can be learnt through gradient descent.
P the objective is not convex, local minima need to be treated

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 4. Gaussian Processes for Classification

Summary (2/2) YA

» For classification, Gaussian processes can be used to model

» a score function f
P that is mapped through the logistic function to probabilities 7 of target
labels.

» The posterior is not Gaussian, but can be approximated by a Gaussian
(Laplace approximation).

» Also the posterior predictive E(m, | x«, X, y) cannot be computed
analytically.
» but it can be approximated by an integral over the (approximatly)

normally distributed predictive score f,
» and thus be computed by MCMC.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
28



Machine Learning 2

B
Further Readings “

> ‘Rasmussen & Williams: Gaussian Processes for Machine Learning‘
(free ebook!)

» See also [?, chapter 15].

» Conditioning Gaussians: [?, section 4.3].

» Derivatives of inverse of a matrix etc., see, e.g., The Matrix
Cookbook, http:

//www.mit.edu/~wingated/stuff_i_use/matrix_cookbook.pdf

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Some Matrix Derivatives

X = —XxX"Hax)x 1
d(log(|X])) = tr(X*aX)

Computing with traces:

tr(aa’ B) = a’ Ba

[m] = = =
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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