
Machine Learning 2

Machine Learning 2
3. (Advanced) Support Vector Machines (SVMs)

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science

University of Hildesheim, Germany

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 20

Machine Learning 2

Syllabus
A. Advanced Supervised Learning

Fri. 24.4. (1) A.1 Generalized Linear Models
Fri. 1.5. — — Labour Day —
Fri. 8.5. (2) A.2 Gaussian Processes
Fri. 15.5. (3) A.3 Advanced Support Vector Machines

B. Ensembles
Fri. 22.5. (4) B.1 Stacking

& B.2 Boosting
Fri. 29.5. (5) B.3 Mixtures of Experts
Fri. 5.6. — — Pentecoste Break —

C. Sparse Models
Fri. 12.6. (6) C.1 Homotopy and Least Angle Regression
Fri. 19.6. (7) C.2 Proximal Gradients
Fri. 26.6. (8) C.3 Laplace Priors
Fri. 3.7. (9) C.4 Automatic Relevance Determination

D. Complex Predictors
Fri. 10.7. (10) D.1 Latent Dirichlet Allocation (LDA)
Fri. 17.7. (11) Q & A

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 20

Machine Learning 2

Outline

1. Stochastic (Sub)gradient Descent

2. Dual Coordinate Descent

3. The Adaptive Multi Hyperplane Machine

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 20

Machine Learning 2 1. Stochastic (Sub)gradient Descent

Outline

1. Stochastic (Sub)gradient Descent

2. Dual Coordinate Descent

3. The Adaptive Multi Hyperplane Machine

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 20

Machine Learning 2 1. Stochastic (Sub)gradient Descent

SVM Optimization Problem / Slack Variables

minimize
1

2
||β||2 + γ

N∑

n=1

ξn

w.r.t. yn(β0 + βT xn) ≥1− ξn, n = 1, . . . ,N

ξ ≥0

β ∈Rp, β0 ∈ R

can be rewritten:

minimize f (β) :=
1

2
||β||2 + γ

N∑

n=1

max(0, 1− yn(β0 + βT xn)) | : N : γ

∝ 1

N

N∑

n=1

max(0, 1− yn(β0 + βT xn)) +
1

2
λ||β||2, λ :=

1

γN

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 20

Machine Learning 2 1. Stochastic (Sub)gradient Descent

SVM Optimization Problem / Slack Variables

minimize
1

2
||β||2 + γ

N∑

n=1

ξn

w.r.t. yn(β0 + βT xn) ≥1− ξn, n = 1, . . . ,N

ξ ≥0

β ∈Rp, β0 ∈ R

can be rewritten:

minimize f (β) :=
1

2
||β||2 + γ

N∑

n=1

max(0, 1− yn(β0 + βT xn)) | : N : γ

∝ 1

N

N∑

n=1

max(0, 1− yn(β0 + βT xn)) +
1

2
λ||β||2, λ :=

1

γN

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 20

Machine Learning 2 1. Stochastic (Sub)gradient Descent

SVM Optimization Problem / Hinge Loss

can be rewritten (ctd.):

minimize f (β) :=
1

2
||β||2 + γ

N∑

n=1

max(0, 1− yn(β0 + βT xn)) | : N : γ

∝ 1

N

N∑

n=1

max(0, 1− yn(β0 + βT xn)) +
1

2
λ||β||2, λ :=

1

γN

=
1

N

N∑

n=1

`hinge(yn, β0 + βT xn) +
1

2
λ||β||2

with

`hinge(y , ŷ) := max(0, 1− y ŷ)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 20

Machine Learning 2 1. Stochastic (Sub)gradient Descent

Brief Digression: Losses `(y = 1, ŷ)

4 3 2 1 0 1 2 3 4
ŷ

0.0

0.5

1.0

1.5

2.0

2.5

3.0
lo

ss
(1

,ŷ
)

blue: squared error: (1− ŷ)2

green: logistic loss: ln(1 + e−1·ŷ)/ ln(2)

red: hinge loss: max(0, 1− 1 · ŷ)
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 20

Machine Learning 2 1. Stochastic (Sub)gradient Descent

Brief Digression: Losses `(y = 1, ŷ)

4 3 2 1 0 1 2 3 4
ŷ

0.0

0.5

1.0

1.5

2.0

2.5

3.0
lo

ss
(1

,ŷ
)

blue: squared error: (1− ŷ)2

green: logistic loss: ln(1 + e−1·ŷ)/ ln(2)

red: hinge loss: max(0, 1− 1 · ŷ)
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 20

Machine Learning 2 1. Stochastic (Sub)gradient Descent

Brief Digression: Losses `(y = 1, ŷ)

4 3 2 1 0 1 2 3 4
ŷ

0.0

0.5

1.0

1.5

2.0

2.5

3.0
lo

ss
(1

,ŷ
)

blue: squared error: (1− ŷ)2

green: logistic loss: ln(1 + e−1·ŷ)/ ln(2)

red: hinge loss: max(0, 1− 1 · ŷ)
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 20

Machine Learning 2 1. Stochastic (Sub)gradient Descent

(Sub)gradients

f (β) :=
1

N

N∑

n=1

max(0, 1− yn(β0 + βT xn)) +
1

2
λ||β||2

=
1

N

N∑

n=1
yn(β0+βT xn)<1

1− yn(β0 + βT xn) +
1

2
λ||β||2

subgradients:

∂f

∂β
=

1

N

N∑

n=1
yn(β0+βT xn)<1

−ynxn + λβ

stochastic subgradients:

∂f

∂β
|D(t) =

1

|D(t)|

N∑

(x ,y)∈D(t)

y(β0+βT x)<1

−yx + λβ, D(t) ⊆ Dtrain, iteration t

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

3 / 20

Machine Learning 2 1. Stochastic (Sub)gradient Descent

(Sub)gradients

f (β) :=
1

N

N∑

n=1

max(0, 1− yn(β0 + βT xn)) +
1

2
λ||β||2

=
1

N

N∑

n=1
yn(β0+βT xn)<1

1− yn(β0 + βT xn) +
1

2
λ||β||2

subgradients:

∂f

∂β
=

1

N

N∑

n=1
yn(β0+βT xn)<1

−ynxn + λβ

stochastic subgradients:

∂f

∂β
|D(t) =

1

|D(t)|

N∑

(x ,y)∈D(t)

y(β0+βT x)<1

−yx + λβ, D(t) ⊆ Dtrain, iteration t

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

3 / 20

Machine Learning 2 1. Stochastic (Sub)gradient Descent

(Sub)gradients

f (β) :=
1

N

N∑

n=1

max(0, 1− yn(β0 + βT xn)) +
1

2
λ||β||2

=
1

N

N∑

n=1
yn(β0+βT xn)<1

1− yn(β0 + βT xn) +
1

2
λ||β||2

subgradients:

∂f

∂β
=

1

N

N∑

n=1
yn(β0+βT xn)<1

−ynxn + λβ

stochastic subgradients:

∂f

∂β
|D(t) =

1

|D(t)|

N∑

(x ,y)∈D(t)

y(β0+βT x)<1

−yx + λβ, D(t) ⊆ Dtrain, iteration t

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

3 / 20

Machine Learning 2 1. Stochastic (Sub)gradient Descent

Bound on Parameter Norm

f (β) :=
1

N

N∑

n=1

max(0, 1− yn(β0 + βT xn)) +
1

2
λ||β||2N

I Q: what is f (0)?

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

4 / 20

Machine Learning 2 1. Stochastic (Sub)gradient Descent

Bound on Parameter Norm

The optimal parameters are bound from above:

||β∗|| ≤ 1√
λ

Trivially,

1

2
λ||β∗||2 ≤ f (β∗) ≤ f (0) = 1

 ||β∗|| ≤
√

2√
λ

[SSS07] have a more complex proof to show the tighter bound (p. 4, end
of proof of theorem 1).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

5 / 20

Machine Learning 2 1. Stochastic (Sub)gradient Descent

Primal Estimated Subgradient Solver for SVMs (Pegasos)
I use stochastic (sub)gradient descent

β̃(t+1) := β(t) − η(t) ∂f

∂β
|D(t)

I use gradient sample size K (aka mini batches)
I though no empirical evidence that K > 1 has any benefits

I after each SGD step, reproject/rescale β:

β(t+1) := β̃(t+1) 1

max(1,
√
λ ||β̃(t+1)||)

I use fixed hyperbola schedule as learning rate:

η(t) :=
1

λt

I see [SSS07]
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

6 / 20

Machine Learning 2 1. Stochastic (Sub)gradient Descent

Performance Comparison
Pegasos: Primal Estimated sub-GrAdient SOlver for SVM

algorithm remains intact, thus the bias term is not explicitly
introduced. The analysis can be repeated verbatim and we
therefore obtain the same convergence rate for this modifi-
cation. Note however that by equating then+1 component
of w with b, the norm-penalty counterpart off becomes
‖w‖2 + b2. The disadvantage of this approach is thus that
we solve a slightly different optimization problem. On the
other hand, an obvious advantage of this approach is that it
requires no modifications to the algorithm itself rather than
a modest increase in the dimension and it thus can be used
without any restriction onAt.

The second approach incorporatesb explicitly by defining
the loss as given in Eq. (10) whilenot penalizing forb.
Formally, the task is to find an approximate solution to the
following problem,

min
w,b

λ

2
‖w‖2 + 1

m

∑

(x,y)∈S

[1− y(〈w,x〉+ b)]+ . (11)

Note that all the sub-gradients calculations w.r.tw remain
intact. The sub-gradient with respect tob is also simple to
compute. For a sampleAt it amounts to,−1

|At|
∑

(x,y)∈A+
t
y

and thus requires onlyk additions and subtractions and a
single devision. This approach is also very simple to im-
plement and can be used with any choice ofAt, in par-
ticular, sets consisting of a single instance. The caveat of
this approach is that the functionf ceases to be strongly
convex. This is due to the fact that with the incorporation
of b, the objective functionf becomes piece-wise linear in
the direction ofb and is thus no longer strongly convex.
Therefore, the analysis presented in the previous section
no longer holds. An alternative proof technique yields a
slower convergence rate ofO(1/

√
T).

The last method entertains the advantages of the two meth-
ods above at the price of a more complex algorithm that
is applicable only for large values ofk. The main idea is
to rewrite the optimization problem given in Eq. (11) as
minw

λ
2 ‖w‖2 + g(w;S) where

g(w;S) = min
b

1
m

∑
(x,y)∈S [1− y(〈w,x〉+ b)]+ . (12)

Based on the above, we redefinef(w;At) to be λ
2 ‖w‖2 +

g(w;At). On each iteration of the algorithm, we find a
subgradient off(w;At) and subtract it (multiplied byηt)
from wt. Finally, we project the resulting vector so that its
norm will not exceed1/

√
λ. The problem however is how

to find a subgradient ofg(w;At), asg(w;At) is defined
through a minimization problem overb. It can be shown
that the complexity of finding a subgradient ofg(w;At) is
equivalent to the complexity of solving the minimization
problem in Eq. (12). The latter problem is a generalized
weighted median problem that can be solved efficiently in
time O(k). We omit the details due to the lack of space.

Table 1.Training time in CPU-seconds
Pegasos SVM-Perf SVM-Light

CCAT 2 77 20,075
Covertype 6 85 25,514
astro-ph 2 5 80

The above adaptation indeed work for the caseAt = S and
we obtain the same rate of convergence as in the no-bias
case. However, whenAt 6= S we cannot apply the analysis
from the previous section to our case since the expectation
of f(w;At) over the choice ofAt is no longer equal to
f(w;S). WhenAt is large enough, we can use more in-
volved measure concentration tools to show that the expec-
tation of f(w;At) is close enough tof(w;S). We again
omit the details due to the lack of space.

Using Mercer kernels: One of the main benefits of support
vector machines is their ability to incorporate and construct
non-linear predictors using kernels which satisfy Mercer’s
conditions. The crux of this property stems from the rep-
resenter theorem (Kimeldorf & Wahba, 1971), which im-
plies that the optimal solution of SVM can be expressed
as a linear combination of its constraints. In the classifi-
cation problem, the representer theorem implies thatw is
a linear combination of the instancesxi. The common ap-
proach for solving the optimization problem for SVM when
kernels are employed is to switch to the dual problem and
find the optimal set of dual variables. Following (Freund &
Schapire, 1999; Kivinen et al., 2002), we outline a different
approach and directly minimize the primal problem while
still using kernels. The main observation is that ifw1 is
initialized to be the zero vector, then at each iteration of the
algorithmwt can be written aswt =

∑
i∈It

αixi, where
It is a subset of{1, . . . ,m}. The above claim can be eas-
ily proved using an inductive argument. Therefore, we can
store the setIt and the coefficientsαi instead of storingwt.
It is now easy to verify that the algorithm in Fig. 1 can be
used in conjunction with kernels, by representingwt us-
ing It andαi, calculating inner product operations using
〈wt,xt〉 =

∑
i∈It

αi 〈xi,xt〉, and evaluating the norm of
wt using‖wt‖2 =

∑
i,j∈It

αiαj 〈xi,xj〉. Based on the
analysis in previous sections, Pegasos finds anǫ-accurate
solution usingÕ(1/(δλǫ)) iterations, while each iteration
involves a single inner product betweenw andx. Note
however that each inner product operation betweenw and
x may requiremin{m, Õ(1/(δλǫ)}) evaluations of the ker-
nel function.

5. Experiments

In this section we present experimental results that demon-
strate different merits of our algorithm and its accompa-
nying analysis. We start by showing that Pegasos is in-

Pegasos: Primal Estimated sub-GrAdient SOlver for SVM

deed a practical tool for solving large scale problems. In
particular, we compare its runtime to a new state-of-the-
art solver (Joachims, 2006) on three large datasets. Next,
we compare Pegasos to two previously proposed methods
that are based on stochastic gradient descent, namely to
Norma (Kivinen et al., 2002) and to the method given in
(Zhang, 2004). Finally, we explore the empirical behavior
of the algorithm with respect to the parameterk. In all of
the experiments we did not incoprorate a bias term since
(Joachims, 2006; Kivinen et al., 2002; Zhang, 2004) do
not incorporate that term either. Additionally, we used the
algorithm as in Fig. 1, omitting the stage of boosting the
confidence, as we found empirically that in practice it was
not necessary.

In our first experiment we compared Pegasos to the SVM-
Perf algorithm (Joachims, 2006). We used the following
datasets, which were provided to us by T. Joachims.
(1) The binary text classification task CCAT from the
Reuters RCV1 collection. There are 804,414 examples
and there are 47,236 features with sparsity 0.16% in this
dataset.
(2) Classification of abstracts of scientific papers from the
Physics ArXiv according to whether they are in the Astro-
physics section. There are 99,757 features of high sparsity
(0.08%). There are 62,369 examples in this dataset.
(3) Class 1 in the Covertype dataset of Blackard, Jock &
Dean, which is comparably low-dimensional with 54 fea-
tures and a sparsity of 22.22%. There are 581,012 examples
in this dataset.

Table 4 lists the cpu-time of Pegasos and SVM-Perf on the
datasets described above. SVM-Perf (Joachims, 2006) is
a cutting plane algorithm for solving SVM that is based
on a reformulation of the SVM problem. It was shown
in (Joachims, 2006) that SVM-Perf is substantially faster
than SVM-Light, achieving a speedup of several orders
of magnitude on most datasets. We run both Pegasos
and SVM-Perf on the three datasets with values ofλ as
given in (Joachims, 2006), namely,λ = 10−4 for CCAT,
λ = 2 · 10−4 for Astro-physics, andλ = 10−6 for Cover-
type. We used the latest version of SVM-perf, implemented
in C, as provided by T. Joachims. We implemented Pegasos
in C++ and run all the experiments on a 2.8GHz Intel Xeon
processor with 4GB of main memory under Linux. For
completeness, we added to the table the runtime of SVM-
Light as reported in (Joachims, 2006). As can be seen in
the table, although SVM-Perf is by itself very fast, Pegasos
still achieves a significant improvement in run-time. We
calculated the objective value of the solutions obtained by
Pegasos and SVM-Perf. For all three datasets, the objec-
tive value of Pegasos never exceeded that of SVM-Perf by
more than 0.001. In addition, the generalization error of
both methods was virtually identical. It is interesting to
note that the performance of Pegasos does not depend on

10
2

10
3

10
4

10
5

10
6

10
−1

10
0

10
1

10
2

T

Pegasos
Norma

10
2

10
3

10
4

10
5

10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T

Pegasos
Zhang

Figure 2.Comparisons of Pegasos to Norma (left) and Pegasos to
stochastic gradient descent with a fixed learning rate (right) on the
Astro-Physics datset. In the left plot, the solid lines designate the
objective value and the dashed lines depict the loss on the test set.

the number of examples but rather on the value ofλ. In-
deed, the runtime of Pegasos for the Covertype dataset is
larger than its runtime for CCAT, although the latter dataset
is larger.

In our next experiment, we compared Pegasos to
Norma (Kivinen et al., 2002) and to a variant of stochastic
gradient descent described in (Zhang, 2004). Both meth-
ods are similar to Pegasos when settingk = 1 with two
differences. First, there is no projection step. Second,
the scheduling of the learning rate,ηt, is different. In
Norma (Thm. 4), it is suggested to setηt = p/(λ

√
t),

where p ∈ (0, 1). Based on the bound given in Thm.
4 of (Kivinen et al., 2002), the optimal choice ofp is
0.5(2 + 0.5T−1/2)1/2, which for t ≥ 100 is in the range
[0.7, 0.716]. Plugging the optimal value ofp into Thm. 4 in
(Kivinen et al., 2002) yields the boundO(1/(λ

√
T)). We

therefore hypothesized that Pegasos would converge much
faster than Norma. In Fig. 5 (left) we compare Pegasos to
Norma on the Astro-Physics dataset. We split the dataset
into a training set with 29,882 examples and a test set with
32,487 examples and report the final objective value and
the average hinge-loss over the test set. As in (Joachims,
2006), we setλ = 2 ·10−4. As can be seen, Pegasos clearly
outperforms Norma. In fact, Norma fails to converge even
after106 iterations. This can be attributed to the fact that
the value ofλ here is rather small. As mentioned before,
the differences between Pegasos and Norma are both the
different learning rate and the projection step which is ab-
sent in Norma. We also experimented with a version of
Pegasos without the projection step and with a version of
Norma that includes a projection step. We found that the
projection step is important for the convergence of Pegasos,
especially whenT is small, and that a projection step also
improves the performance of Norma. However, Pegasos
still outperforms the version of Norma that includes an ad-
ditional projection step. We omit the graphs due to the lack
of space. We now turn to comparing Pegasos to the algo-
rithm from (Zhang, 2004) which simply setsηt = η, where
η is a (fixed) small number. A major disadvantage of this

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

7 / 20

[SSS07]

Machine Learning 2 1. Stochastic (Sub)gradient Descent

Performance Comparison (2/2) Pegasos: Primal Estimated sub-GrAdient SOlver for SVM

10
0

10
1

10
2

10
3

0.1

0.15

0.2

0.25

0.3

0.35

0.4

k

T=1250
T=31250

10
0

10
1

10
2

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

k

kT=104

kT=105

kT=106

Figure 3.The effect ofk on the objective value of Pegasos on the
Astro-Physics dataset. Left:T is fixed. Right:kT is fixed.

approach is that finding an adequate value forη is a diffi-
cult task on its own. Based on the analysis given in (Zhang,
2004) we started by settingη to be10−5. Surprisingly, this
turned out to be a poor choice and the optimal choice ofη
was substantially larger. In Fig. 5 (right) we illustrate the
convergence of stochastic gradient descent withηt set to be
a fixed value from the set{0.001, 0.01, 0.1, 1, 10}. It is ap-
parent that for some choices ofη the method converges at
about the same rate of Pegasos while for other choices ofη
the method fails to converge. We would like to emphasize
that for large datasets, the time required for evaluating the
objective is much longer than the time required for training
a model. Therefore, searching forη is significantly more
expensive than running the algorithm a single time. The
apparent advantage of Pegasos is due to the fact that we do
not need to search for a good value forη but rather have a
predefined schedule ofηt.

In our last experiment, we examined the effect of the pa-
rameterk on the convergence of the algorithm. Our analy-
sis implies that the convergence of Pegasos does not depend
onk. Based on this fact, the optimal choice ofk in terms of
run time should bek = 1. In Fig. 3 (left) we depict the ob-
jective value obtained by Pegasos as a function ofk when
T is fixed. It is clear from the figure that, in contrast to
our bounds, the convergence of Pegasos improves ask gets
larger. This fact may be important in a distributed comput-
ing environment. As long ask is smaller than the number
of CPUs, the complexity of Pegasos still depends solely on
T (and onlog(k)), while the throughput greatly improves.
An interesting question is how to setk for a single CPU. In
this case, the runtime of Pegasos is of the order ofkT . In
Fig. 3 (right) we show that the convergence rate of Pega-
sos as a function ofk is approximately constant, for a wide
range of values ofk, so long askT is kept fixed. We leave
further research of both of the theoretical and practical as-
pects of the choice ofk to future work.

6. Conclusions

We described and analyzed a simple and effective algo-
rithm for approximately minimizing the objective func-

tion of SVM. The algorithm, called Pegasos, is a modified
stochastic gradient method in which every gradient descent
step is accompanied with a projection step. We derived fast
rate of convergence results and experimented with the algo-
rithm. Our empirical results indicate that for linear kernels,
Pegasos achieves state-of-the-art results, despite or because
of its simplicity. We plan to investigate all the questions we
surfaced in this paper as well as to conduct thorough exper-
iments with non-linear kernels. In addition, we have started
investigating the usage of similar paradigms in other learn-
ing problems such asL1-SVM and other loss functions.

Acknowledgements Part of this work was done while SS and
NS were visiting IBM research labs, Haifa, Israel. This work
was supported by grant I-773-8.6/2003 from the German Israeli
Foundation (GIF).

References
Boyd, S., & Vandenberghe, L. (2004).Convex optimization. Cam-

bridge University Press.
Censor, Y., & Zenios, S. (1997).Parallel optimization: Theory,

algorithms, and applications. Oxford University Press, NY.
Cesa-Bianchi, N., Conconi, A., & Gentile, C. (2004). On the gen-

eralization ability of on-line learning algorithms.IEEE Trans-
actions on Information Theory, 50, 2050–2057.

Cesa-Bianchi, N., & Gentile, C. (2006). Improved risk tail bounds
for on-line algorithms.NIPS.

Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., & Singer,
Y. (2006). Online passive aggressive algorithms.JMLR, 7.

Cristianini, N., & Shawe-Taylor, J. (2000).An introduction to
support vector machines. Cambridge University Press.

Duda, R. O., & Hart, P. E. (1973).Pattern classification and scene
analysis. Wiley.

Fine, S., & Scheinberg, K. (2001). Efficient svm training using
low-rank kernel representations.JMLR, 2, 242–264.

Freund, Y., & Schapire, R. E. (1999). Large margin classification
using the perceptron algorithm.Mach. Learning, 37, 277–296.

Hazan, E., Kalai, A., Kale, S., & Agarwal, A. (2006). Logarithmic
regret algorithms for online convex optimization.COLT.

Hush, D., Kelly, P., Scovel, C., & Steinwart, I. (2006). Qp al-
gorithms with guaranteed accuracy and run time for support
vector machines.JMLR.

Joachims, T. (1998). Making large-scale support vector machine
learning practical. In B. Scḧolkopf, C. Burges and A. Smola
(Eds.),Advances in kernel methods - support vector learning.
MIT Press.

Joachims, T. (2006). Training linear svms in linear time.KDD.
Kimeldorf, G., & Wahba, G. (1971). Some results on tchebychef-

fian spline functions.J. Math. Anal. Applic., 33, 82–95.
Kivinen, J., Smola, A. J., & Williamson, R. C. (2002). Online

learning with kernels.IEEE’ TSP, 52, 2165–2176.
Platt, J. C. (1998). Fast training of Support Vector Machines using

sequential minimal optimization. In B. Schölkopf, C. Burges
and A. Smola (Eds.),Advances in kernel methods - support
vector learning. MIT Press.

Shalev-Shwartz, S., & Singer, Y. (2007).Logarithmic regret algo-
rithms for strongly convex repeated games(Technical Report).
The Hebrew University.

Vapnik, V. N. (1998).Statistical learning theory. Wiley.
Zhang, T. (2004). Solving large scale linear prediction problems

using stochastic gradient descent algorithms.ICML.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

8 / 20

[SSS07]Note: k: size of minibatch, T : number of iterations.

Machine Learning 2 1. Stochastic (Sub)gradient Descent

(Non-Linear) Kernels
SGD in the primal first works for linear kernels.

Any linear model can be kernelized by representing instances in terms
of kernel features:

original feature representation:

xn ∈RM , n ∈ {1, . . . ,N}
kernel feature representation:

x̃n ∈RN , xn,m := k(xn, xm), m ∈ {1, . . . ,N}
then:

ŷlinear(x̃n;β) =βT x̃n =
N∑

m=1

βmx̃n,m

=
N∑

m=1

αmk(xm, xn) = ŷkernel k(xn;α), αm := βm

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

9 / 20

Machine Learning 2 2. Dual Coordinate Descent

Outline

1. Stochastic (Sub)gradient Descent

2. Dual Coordinate Descent

3. The Adaptive Multi Hyperplane Machine

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

10 / 20

Machine Learning 2 2. Dual Coordinate Descent

Dual Problem
Remember, the dual problem was:

minimize f (α) :=
1

2
αTQα− 1Tα, Qn,m := ynymx

T
n xm

w.r.t. α ∈[0,
1

Nλ
]

coordinate descent w.r.t. coordinate αn:

fn(αn) :=f (αn;α−n) ∝ 1

2
Qn,nα

2
n + Qn,−nα−nαn − αn

∂fn
∂αn

=Qn,nαn + Qn,−nα−n − 1
!

= 0

 αn =
1− Qn,−nα−n

Qn,n

possibly clip αn:

αn = max(0,min(
1

Nλ
,

1− Qn,−nα−n
Qn,n

))

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

10 / 20

Machine Learning 2 2. Dual Coordinate Descent

Dual Problem
Remember, the dual problem was:

minimize f (α) :=
1

2
αTQα− 1Tα, Qn,m := ynymx

T
n xm

w.r.t. α ∈[0,
1

Nλ
]

coordinate descent w.r.t. coordinate αn:

fn(αn) :=f (αn;α−n) ∝ 1

2
Qn,nα

2
n + Qn,−nα−nαn − αn

∂fn
∂αn

=Qn,nαn + Qn,−nα−n − 1
!

= 0

 αn =
1− Qn,−nα−n

Qn,n

possibly clip αn:

αn = max(0,min(
1

Nλ
,

1− Qn,−nα−n
Qn,n

))

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

10 / 20

Machine Learning 2 2. Dual Coordinate Descent

Complexity

Qn,m := ynymx
T
n xm, xn ∈ RM , yn ∈ R

αn = max(0,min(
1

Nλ
,

1− Qn,−nα−n
Qn,n

)), Q ∈ RN×N , α ∈ RN

I Q: what is the complexity of computing αn and
what is the complexity of a full epoch?

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

11 / 20

Machine Learning 2 2. Dual Coordinate Descent

Avoid Computing Qn,−nα−n

α
(t+1)
n :=

1− Qn,−nα
(t)
−n

Qn,n

=
1− Qn,.α

(t) + Qn,nα
(t)
n

Qn,n

=α
(t)
n −

Qn,.α
(t) − 1

Qn,n

=α
(t)
n −

ynŷ
(t)
n − 1

Qn,n

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

12 / 20

Machine Learning 2 2. Dual Coordinate Descent

Avoid Computing Qn,−nα−n

α
(t+1)
n =α

(t)
n −

ynŷ
(t)
n − 1

Qn,n

with

ŷ
(t)
n =(β(t))T xn

and due to

β(t) =
N∑

n=1

α
(t)
n ynxn

as only α
(t)
n changes:

β(t+1) :=β(t) + (α
(t+1)
n − α(t)

n)ynxn

I accelerates from O(N2) to O(M) (for a single αn)
I even O(Mnz) for sparse predictor vectors x

(Mnz being the average number of nonzeros)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

12 / 20

Machine Learning 2 2. Dual Coordinate Descent

Performance Comparison

A Dual Coordinate Descent Method for Large-scale Linear SVM

Table 2. On the right training time for a solver to reduce the primal objective value to within 1% of the optimal value;
see (20). Time is in seconds. The method with the shortest running time is boldfaced. Listed on the left are the statistics
of data sets: l is the number of instances and n is the number of features.

Data set
Data statistics Linear L1-SVM Linear L2-SVM

l n # nonzeros DCDL1 Pegasos SVMperf DCDL2 PCD TRON
a9a 32,561 123 451,592 0.2 1.1 6.0 0.4 0.1 0.1
astro-physic 62,369 99,757 4,834,550 0.2 2.8 2.6 0.2 0.5 1.2
real-sim 72,309 20,958 3,709,083 0.2 2.4 2.4 0.1 0.2 0.9
news20 19,996 1,355,191 9,097,916 0.5 10.3 20.0 0.2 2.4 5.2
yahoo-japan 176,203 832,026 23,506,415 1.1 12.7 69.4 1.0 2.9 38.2
rcv1 677,399 47,236 49,556,258 2.6 21.9 72.0 2.7 5.1 18.6
yahoo-korea 460,554 3,052,939 156,436,656 8.3 79.7 656.8 7.1 18.4 286.1

maintain w by (13). Both (13) and (19) use one single
instance xi, but they take different directions yixi and
∇w(yi,xi). The selection of the learning rate η may be
the subtlest thing in stochastic gradient descent, but
for our method this is never a concern. The step size
(αi− ᾱi) in (13) is governed by solving a sub-problem
from the dual.

5. Experiments

In this section, we analyze the performance of our dual
coordinate descent algorithm for L1- and L2-SVM. We
compare our implementation with state of the art lin-
ear SVM solvers. We also investigate how the shrink-
ing technique improves our algorithm.

Table 2 lists the statistics of data sets. Four of them
(a9a, real-sim, news20, rcv1) are at http://www.csie.
ntu.edu.tw/~cjlin/libsvmtools/datasets. The
set astro-physic is available upon request from
Thorsten Joachims. Except a9a, all others are from
document classification. Past results show that lin-
ear SVM performs as well as kernelized ones for such
data. To estimate the testing accuracy, we use a strat-
ified selection to split each set to 4/5 training and 1/5
testing. We briefly describe each set below. Details
can be found in (Joachims, 2006) (astro-physic) and
(Lin et al., 2008) (others). a9a is from the UCI “adult”
data set. real-sim includes Usenet articles. astro-physic
includes documents from Physics Arxiv. news20 is a
collection of news documents. yahoo-japan and yahoo-
korea are obtained from Yahoo!. rcv1 is an archive of
manually categorized newswire stories from Reuters.

We compare six implementations of linear SVM. Three
solve L1-SVM, and three solve L2-SVM.

DCDL1 and DCDL2: the dual coordinate descent
method with sub-problems permuted at each outer it-
eration (see Section 3.1). DCDL1 solves L1-SVM while
DCDL2 solves L2-SVM. We omit the shrinking setting.

Pegasos: the primal estimated sub-gradient solver
(Shalev-Shwartz et al., 2007) for L1-SVM. The source

is at http://ttic.uchicago.edu/~shai/code.

SVMperf (Joachims, 2006): a cutting plane method for
L1-SVM. We use the latest version 2.1. The source is
at http://svmlight.joachims.org/svm_perf.html.

TRON: a trust region Newton method (Lin et al., 2008)
for L2-SVM. We use the software LIBLINEAR version
1.22 with option -s 2 (http://www.csie.ntu.edu.
tw/~cjlin/liblinear).

PCD: a primal coordinate descent method for L2-SVM
(Chang et al., 2007).

Since (Bottou, 2007) is related to Pegasos, we do not
present its results. We do not compare with another
online method Vowpal Wabbit (Langford et al., 2007)
either as it has been made available only very recently.
Though a code for the bundle method (Smola et al.,
2008) is available, we do not include it for comparison
due to its closeness to SVMperf . All sources used for
our comparisons are available at http://csie.ntu.

edu.tw/~cjlin/liblinear/exp.html.

We set the penalty parameter C = 1 for comparison2.
For all data sets, the testing accuracy does not increase
after C ≥ 4. All the above methods are implemented
in C/C++ with double precision. Some implementa-
tions such as (Bottou, 2007) use single precision to
reduce training time, but numerical inaccuracy may
occur. We do not include the bias term by (3).

To compare these solvers, we consider the CPU time
of reducing the relative difference between the primal
objective value and the optimum to within 0.01:

|fP (w)− fP (w∗)|/|fP (w∗)| ≤ 0.01, (20)

where fP is the objective function of (1), and fP (w∗)
is the optimal value. Note that for consistency, we use
primal objective values even for dual solvers. The ref-
erence solutions of L1- and L2-SVM are respectively
obtained by solving DCDL1 and DCDL2 until the du-
ality gaps are less than 10−6. Table 2 lists the re-
sults. Clearly, our dual coordinate descent method

2The equivalent setting for Pegasos is λ = 1/(Cl). For
SVMperf , its penalty parameter is Cperf = 0.01Cl.

413

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

13 / 20

[HCL+08]Note: L1-SVM uses the hinge loss, L2-SVM the squared hinge loss.

Machine Learning 2 2. Dual Coordinate Descent

Performance Comparison (2/2)
A Dual Coordinate Descent Method for Large-scale Linear SVM

(a) L1-SVM: astro-physic (b) L2-SVM: astro-physic

(c) L1-SVM: news20 (d) L2-SVM: news20

(e) L1-SVM: rcv1 (f) L2-SVM: rcv1

Figure 1. Time versus the relative error (20). DCDL1-S,
DCDL2-S are DCDL1, DCDL2 with shrinking. The dotted
line indicates the relative error 0.01. Time is in seconds.

for both L1- and L2-SVM is significantly faster than
other solvers. To check details, we choose astro-physic,
news20, rcv1, and show the relative error along time
in Figure 1. In Section 3.2, we pointed out that the
shrinking technique is very suitable for DCD. In Fig-
ure 1, we also include them (DCDL1-S and DCDL2-S)
for comparison. Like in Table 2, our solvers are effi-
cient for both L1- and L2-SVM. With shrinking, its
performance is even better.

Another evaluation is to consider how fast a solver ob-
tains a model with reasonable testing accuracy. Using
the optimal solutions from the above experiment, we
generate the reference models for L1- and L2-SVM. We
evaluate the testing accuracy difference between the
current model and the reference model along the train-
ing time. Figure 2 shows the results. Overall, DCDL1
and DCDL2 are more efficient than other solvers. Note
that we omit DCDL1-S and DCDL2-S in Figure 2, as
the performances with/without shrinking are similar.

Among L1-SVM solvers, SVMperf is competitive with
Pegasos for small data. But in the case of a huge num-
ber of instances, Pegasos outperforms SVMperf . How-
ever, Pegasos has slower convergence than DCDL1. As
discussed in Section 4.2, the learning rate of stochas-
tic gradient descent may be the cause, but for DCDL1
we exactly solve sub-problems to obtain the step size

(a) L1-SVM: astro-physic (b) L2-SVM: astro-physic

(c) L1-SVM: news20 (d) L2-SVM: news20

(e) L1-SVM: rcv1 (f) L2-SVM: rcv1

Figure 2. Time versus the difference of testing accuracy be-
tween the current model and the reference model (obtained
using strict stopping conditions). Time is in seconds.

in updating w. Also, Pegasos has a jumpy test set
performance while DCDL1 gives a stable behavior.

In the comparison of L2-SVM solvers, DCDL2 and PCD
are both coordinate descent methods. The former one
is applied to the dual, but the latter one to the pri-
mal. DCDL2 has a closed form solution for each sub-
problem, but PCD has not. The cost per PCD outer
iteration is thus higher than that of DCDL2. There-
fore, while PCD is very competitive (only second to
DCDL1/DCDL2 in Table 2), DCDL2 is even better.
Regarding TRON, as a Newton method, it possesses
fast final convergence. However, since it takes signifi-
cant effort at each iteration, it hardly generates a rea-
sonable model quickly. From the experiment results,
DCDL2 converges as fast as TRON, but also performs
well in early iterations.

Due to the space limitation, we give the following ob-
servations without details. First, Figure 1 indicates
that our coordinate descent method converges faster
for L2-SVM than L1-SVM. As L2-SVM has the diag-
onal matrix D with Dii = 1/(2C), we suspect that
its Q̄ is better conditioned, and hence leads to faster
convergence. Second, all methods have slower conver-
gence when C is large. However, small C’s are usually
enough as the accuracy is stable after a threshold. In
practice, one thus should try from a small C. More-

414

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

14 / 20

[HCL+08]

Machine Learning 2 3. The Adaptive Multi Hyperplane Machine

Outline

1. Stochastic (Sub)gradient Descent

2. Dual Coordinate Descent

3. The Adaptive Multi Hyperplane Machine

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

15 / 20

Machine Learning 2 3. The Adaptive Multi Hyperplane Machine

Multi-Class SVM

multi-class SVM:

ŷ(x) := arg max
y∈Y

sy (x)

sy (x ;β) :=βTy x , βy ∈ RM ∀y ∈ Y = {ỹ1, . . . , ỹL}

f (β) :=
1

N

N∑

n=1

`(yn, xn) +
λ

2
||β||2, β := (βỹ1 , βỹ2 , . . . , βỹL)

`(y , x ;β) := max(0, 1− sy (x))

Q: Is this a useful loss?

margin-based loss:

`(y , x ;β) := max(0, 1 + max
y ′∈Y,y ′ 6=y

sy ′(x)− sy (x))

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

15 / 20

Machine Learning 2 3. The Adaptive Multi Hyperplane Machine

Multi-Class SVM

multi-class SVM:

ŷ(x) := arg max
y∈Y

sy (x)

sy (x ;β) :=βTy x , βy ∈ RM ∀y ∈ Y = {ỹ1, . . . , ỹL}

f (β) :=
1

N

N∑

n=1

`(yn, xn) +
λ

2
||β||2, β := (βỹ1 , βỹ2 , . . . , βỹL)

`(y , x ;β) := max(0, 1− sy (x))

Q: Is this a useful loss?

margin-based loss:

`(y , x ;β) := max(0, 1 + max
y ′∈Y,y ′ 6=y

sy ′(x)− sy (x))

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

15 / 20

Machine Learning 2 3. The Adaptive Multi Hyperplane Machine

Multi-Class SVM

multi-class SVM:

ŷ(x) := arg max
y∈Y

sy (x)

sy (x ;β) :=βTy x , βy ∈ RM ∀y ∈ Y = {ỹ1, . . . , ỹL}

f (β) :=
1

N

N∑

n=1

`(yn, xn) +
λ

2
||β||2, β := (βỹ1 , βỹ2 , . . . , βỹL)

`(y , x ;β) := max(0, 1− sy (x))

Q: Is this a useful loss?

margin-based loss:

`(y , x ;β) := max(0, 1 + max
y ′∈Y,y ′ 6=y

sy ′(x)− sy (x))

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

15 / 20

Machine Learning 2 3. The Adaptive Multi Hyperplane Machine

Multi-Hyperplane Machine

multi-hyperplane score function:

sy (x ;β) := max
k=1,...,K

βTy ,kx , βy ,k ∈ RM , k ∈ {1, . . . ,K}

margin-based loss:

`(y , x ;β) := max(0, 1 + max
y ′∈Y,y ′ 6=y

sy ′(x)− sy (x))

relaxation / convex upper bound:

`(yn, xn;β, zn) := max(0, 1 + max
y ′∈Y,y ′ 6=yn

sy ′(xn)− βTyn,znxn)

I block coordinate descent / EM type training (β, z)

I use SGD to train β.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

16 / 20

Machine Learning 2 3. The Adaptive Multi Hyperplane Machine

SGD for Training the Multi-Hyperplane Machine

relaxation / convex upper bound:

`(yn, xn;β, zn) := max(0, 1 + max
y ′∈Y,y ′ 6=yn

sy ′(xn)− βTyn,znxn)

gradient:

∂`

∂βy ,k
(yn, xn; zn) =





xn, if (y , k) = arg maxy ′∈Y,y ′ 6=yn
k ′=1,...,K

βTy ′,k ′xn

−xn, if (y , k) = (yn, zn)

0, otherwise

Adaptive Multi-Hyperplane Machine:

I initialize β ≡ 0.

I if all βTy ′,k ′x < 0T xn = 0, create a new hyperplane K + 1
with βy ,K+1 = 0
(conceptually infinite number of hyperplanes)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

17 / 20

Machine Learning 2 3. The Adaptive Multi Hyperplane Machine

Performance Comparison

Table 2: Summary of large datasets
Datasets #train #test #dim #class non-zero % file size domain
a9a 32,561 16,281 123 2 11.3% 2M social survey
ijcnn 49,990 91,701 22 2 66.7% 7.5M time series
webspam 280,000 70,000 254 2 41.9% 327M web text
rcv1 bin 677,399 20,242 47,236 2 0.2% 35M news text
url 1,976,130 420,000 3,231,961 2 0.004% 1.7G Internet data
mnist8m bin 8,000,000 10,000 784 2 19.3% 18G OCR images
mnist8m mc 8,000,000 10,000 784 10 19.3% 18G OCR images

Table 3: Error rate and training time comparison with large-scale algorithms (RBF SVM is solved by LibSVM
unless specified otherwise. Poly2 and LibSVM results are from [5]).

Datasets

Error rate (%) Training time (seconds)1

AMM AMM Linear Poly2 RBF AMM AMM Linear Poly2 RBF
batch online (Pegasos) SVM SVM batch online (Pegasos) SVM SVM

a9a 15.03±0.11 16.44±0.23 15.04±0.07 14.94 14.97 2 0.2 1 2 99
ijcnn 2.40±0.11 3.02±0.14 7.76±0.19 2.16 1.31 2 0.1 1 11 27

webspam 4.50±0.24 6.14±1.08 7.28±0.09 1.56 0.80 80 4 12 3,228 15,571

mnist bin 0.53±0.05 0.54±0.03 2.03±0.04 NA 0.432 3084 300 277 NA 2 days2

mnist mc 3.20±0.16 3.36±0.20 8.41±0.11 NA 0.673 13864 1200 1180 NA 8 days3

rcv1 bin 2.20±0.01 2.21±0.02 2.29±0.01 NA NA 1100 80 25 NA NA
url 1.34±0.21 2.87±1.49 1.50±0.39 NA NA 400 24 100 NA NA
1 excludes data loading time.
2 achieved by parallel training P-packSVMs on 512 processors; results from [28].
3 achieved by LaSVM; results from [12].

classification model. These numbers divided by the num-
ber of classes directly reflect the increased prediction time of
AMM as compared to Linear SVM. We can see that AMM
classifiers are around one order of magnitude slower than
Linear SVM, which has O(MD) prediction time. This is
very impressive result considering that AMM achieves sig-
nificantly lower error rate than Linear SVM. This indicates
that AMM is superior to linear SVM because it provides a
better tradeoff between accuracy and speed in all but the
most resource-constrained applications.

AMM vs. Kernel SVM Comparison against Poly2
SVM on three relatively small datasets (a9a, ijcnn, web-
spam) shows that AMM had similar error rates as Poly2
SVM, while achieving several orders of magnitude faster
training. Also, the O(MD) prediction time of AMM is
much more favorable than the O(MD2) prediction time of
Poly2 SVM. By comparing AMM with RBF SVM on 5 low-
dimensional datasets (where RBF SVM’s results were re-
ported in the previous literature), we can see that AMM
has somewhat lower (0.1%−2.9%) but still comparable error
rate. Particularly, on the two largest datasets (mnist8m bin
and mnnist8m mul), the error rate achieved by AMM af-
ter running on a single processor for a couple of hours is
very competitive to P-packSVM’s classifier trained in 2 days
on 512 processors and LaSVM’s classifier trained in 8 days
on a single processor. These results show that the AMM
algorithms are appealing alternative to kernel SVMs when
learning from very large data.

Train Online AMM in Batch Mode Table 3 lists On-
line AMM results when it was run with a single pass through
the data. We also performed experiments when it was al-

lowed to make multiple passes through the data. The de-
tailed results on the two largest datasets for the multi-pass
Onine AMM are shown in Figure 2. The top left and bot-
tom left panels in Figure 2 show the evolution of the error
rate and the total training time as a function of the number
of epochs (one epoch denotes a full pass through the data).
We can see that the error rate rapidly decreases during the
first epoch and that it continues to improve slightly after
the first epoch. The training time increases linearly, as ex-
pected. The results suggests that, if the training time is not
of major concern and if data could be stored in memory, mul-
tiple accesses to the training data should be recommended.
The top right and bottom right panels of Figure 2 show the
number of AMM weights as training progresses. In addition
to the current number of weights, the panels also show the
total number of weights created and pruned at any stage of
training process. It can be seen that the pruning has the de-
sired effect of controlling the total number of model weights
without negatively influencing the error rate.

5. CONCLUSIONS
Recent advances in large-scale learning resulted in many

successful algorithms for linear classification. However, cre-
ating sufficiently efficient kernel SVM is still an open prob-
lem that prevents its application on the largest data sets.
This study aimed at filling the scalability and representabil-
ity gap between linear and kernel SVMs. We presented
two multi-hyperplane algorithms for multi-class classifica-
tion that have several favorable features: fast training and
prediction, simple implementation, ability to represent non-
linear concepts, and theoretical justification of their proper-

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

18 / 20

[WDCV11]

Machine Learning 2 3. The Adaptive Multi Hyperplane Machine

Outlook

See [?] for

I two further scalable learning algorithms for non-linear SVMs,

I an implementation, and

I an evaluation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

19 / 20

Machine Learning 2 3. The Adaptive Multi Hyperplane Machine

Summary
I Linear SVMs can be interpreted as linear models with a specific

classification loss, the hinge loss.
I not penalizing scores for positive labels > 1 (as squared error)

nor encouraging such scores (as logistic loss).
I Linear SVMs simply can be learned by stochastic (sub)gradient

descent.
I an additional reprojection step can accelerate convergence.

I Linear and nonlinear SVMs can be trained using coordinate descent
in the dual.
I for nonlinear SVMs each step is expensive: O(N2)
I for linear SVMs, the primal parameters can be maintained,

yielding a training procedure in O(M) or even O(Mnonzero)
I Both learning algorithms for linear SVMs are among the fastest

currently known.
I Nonlinear SVMs can be approximated by multiple hyperplanes.

I always using the most positive one (maximum over score functions)
I hyperplanes can be added as needed, once a point is on the wrong side

of all hyperplanes.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

20 / 20

Machine Learning 2

Further Readings

I See the cited original papers.
I Multi-class SVM:

I [WW98]
I [?, section 14.5.2.4]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

21 / 20

Acknowledgement: Thanks to Randolf Scholz for pointing out a mistake in an earlier
version of these slides.

Machine Learning 2

References

C. J Hsieh, K. W Chang, C. J Lin, S. S Keerthi, and S. Sundararajan.

A dual coordinate descent method for large-scale linear SVM.
In Proceedings of the 25th International Conference on Machine Learning, pages 408–415, 2008.

S. Shalev-Shwartz, Y. Singer, and N. Srebro.

Pegasos: Primal estimated sub-gradient solver for svm.
In Proceedings of the 24th International Conference on Machine Learning, pages 807–814, 2007.

Zhuang Wang, Nemanja Djuric, Koby Crammer, and Slobodan Vucetic.

Trading representability for scalability: Adaptive multi-hyperplane machine for nonlinear classification.
In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
24–32. ACM, 2011.

Jason Weston and Chris Watkins.

Multi-class support vector machines.
Technical report, Royal Holloway, University of London, 1998.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

22 / 20

	1. Stochastic (Sub)gradient Descent
	2. Dual Coordinate Descent
	3. The Adaptive Multi Hyperplane Machine
	Appendix

