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Outline

1. Stochastic (Sub)gradient Descent

2. Dual Coordinate Descent
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Machine Learning 2

1. Stochastic (Sub)gradient Descent
Outline

1. Stochastic (Sub)gradient Descent
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Machine Learning 2 1. Stochastic (Sub)gradient Descent

NN
SVM Optimization Problem / Slack Variables i
N
minimize %HBH2 +’)’an
n=1

wrt ya(Bo+B87x) >1 =€, n=1,...,N
£>0
6 ERpa BO eR
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Machine Learning 2 1. Stochastic (Sub)gradient Descent

NN
SVM Optimization Problem / Slack Variables i
N
minimize %HBH2 +’)’Z€n
n=1

wrt ya(Bo+B87x) >1 =€, n=1,...,N
£ >0
5 GRP, 50 eR

can be rewritten:
1 N
minimize £(5) =7 [|B]I” + ) _ max(0,1— yn(Bo + 57 x»)) |: Ny
n=1

N
1 ; 1. 1
oanZ:;max(O,l Yn(Bo + B X"))+§)"|f8” , \ = Y
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Machine Learning 2 1. Stochastic (Sub)gradient Descent

B
SVM Optimization Problem / Hinge Loss i

can be rewritten (ctd.):

1 N
minimize £(8) =3 [[6]1* +7)_ max(0,1— ya(fo + 57 xn)) [tN:y
n=1

N
1 1 )
OCNnZ_:lmaX(O71_yn(/80+/8TXn))+2)\Hﬁ|’2, \ o= W

N
1 1
=N )~ Lhinge(yn: o + BT xa) + 5)\H5H2
n=1
with

ghinge(}@ },}) = max(O, 1- )/)A/)
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Machine Learning 2 1. Stochastic (Sub)gradient Descent

Brief Digression: Losses ¢(y =1, 7)
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blue: squared error: (1 — 9)?
green: logistic loss: In(1+e~1¥)/In(2)
red: hinge loss: max(0,1—1-7)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

20



Machine Learning 2 1. Stochastic (Sub)gradient Descent

Brief Digression: Losses ¢(y =1, 7)

3.0

2.5}
T S

TC SN ST S N N S— —

loss(1,y)

of N

| ER N N R NN R

0.0 ?
- 3

>

blue: squared error: (1 — 9)?
green: logistic loss: In(1+e~1¥)/In(2)
red: hinge loss: max(0,1—1-7)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

20



Machine Learning 2 1. Stochastic (Sub)gradient Descent

Brief Digression: Losses ¢(y =1, 7)
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loss(1,y)

1.0f e S

osf o NN~
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blue: squared error: (1 — 9)?

green: logistic loss: In(1+e~1¥)/In(2)
red: hinge loss: max(0,1—1-7) D ==
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Machine Learning 2 1. Stochastic (Sub)gradient Descent

NS
(Sub)gradients i

N
F(8) = = 3" max(0.1— yo(f + Bx) + SAIS

N

1
= Y. 1=ynlBo+BTxn) + SAIBIR
n=1
}’n(/80+5TXn)<1

[m] = = =
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Machine Learning 2 1. Stochastic (Sub)gradient Descent

(Sub)gradients

N
F(8) = = 3" max(0.1— yo(f + Bx) + SAIS

N n=1
1 A 1
— N Z 1_Yn(BO+BTXn)+§/\HIB||2
n=1
Yn(/80+5TX")<1
subgradients:
N
of 1
_— = Z —Yan + A/B
8’8 N n=1
Yn(60+BTX”)<1
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Machine Learning 2 1. Stochastic (Sub)gradient Descent

. P2
(Sub)gradients “
N 1
T 2
NZ_; 1—yn(Bo+ 8 Xn))+§)\|\/3||
1 N 1
=5 X Lowlfot8Tx) + 58I
n=1
}’n(60+5TXn)<1
subgradients:
N
of 1
= Z —YnXn + A8
o N —
yn(Bo+B7xn)<1
stochastic subgradients:
N
of 1 :
%h}(t) :W Z —yx + A3, DB C DI teration t
(x.y)eD®
y(Bo+B7x)<1
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Machine Learning 2 1. Stochastic (Sub)gradient Descent

Bound on Parameter Norm

oo+ BTxn)) + SAIBIPN

f(5): Z max(0

» Q: what is £(0)?

[m] = = =
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Machine Learning 2 1. Stochastic (Sub)gradient Descent

Bound on Parameter Norm

The optimal parameters are bound from above:

1

16 Hgﬁ

Trivially,

AR < 7(8%) < F(0) =1

e < Y2

VA

[SSS07] have a more complex proof to show the tighter bound (p. 4, end
of proof of theorem 1).
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Machine Learning 2 1. Stochastic (Sub)gradient Descent

N
Primal Estimated Subgradient Solver for SVMs (Pegasogﬁ

> use stochastic (sub)gradient descent

BlE+1) . ge) _ )af

» use gradient sample size K (aka mini batches)
» though no empirical evidence that K > 1 has any benefits

> after each SGD step, reproject/rescale [:

5(t+1 5(t+1) 1 _
max(1, VA |[(ED]])
» use fixed hyperbola schedule as learning rate:

1
(t) . — =
T

» see [SSS07]
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Machine Learning 2 1. Stochastic (Sub)gradient Descent

Performance Comparison

Table 1.Training time in CPU-seconds

”\?i/_e | Pegasog SVM-Perf | SVM-Light
CCAT 2 77 20,075
Covertype 6 85 25514
astro-ph 2 5 80
at
\E‘ 09|

0.|
0.7]
0.6|
0.5)
0.4
0.3]
0.2]
0.1

IC(Ia:igure 2.Comparisons of Pegasos to Norma (left) and Pegaso
stochastic gradient descent with a fixed learning rate (right) on
Astro-Physics datset. In the left plot, the solid lines designate

lfiobjective value and the dashed lines depict the loss on the test [55507]
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Machine Learning 2 1. Stochastic (Sub)gradient Descent

Performance Comparison (2/2)
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Figure 3.The effect ofk on the objective value of Pegasos on th
Astro-Physics dataset. Leff: is fixed. Right:£T is fixed.

Note: k: size of minibatch, T: number of iterations. [SSS07]
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Machine Learning 2 1. Stochastic (Sub)gradient Descent

B
(Non-Linear) Kernels i

SGD in the primal first works for linear kernels.

Any linear model can be kernelized by representing instances in terms
of kernel features:

original feature representation:
x, €RM, ne{1,...,N}

kernel feature representation:

Xn ERN,X,,,m = k(Xp,xm), me{l,...,N}
then:

ylinear()?n; B) Xn = Z Bmxn m

N

= Z amk(XmaXn) = ykernel k(Xn; 04)7 Om = 5m

m=1
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Machine Learning 2 2. Dual Coordinate Descent

Outline

2. Dual Coordinate Descent
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Machine Learning 2 2. Dual Coordinate Descent

Dual Problem

Remember, the dual problem was

minimize f(«) ::%aTQa —17aq,

Qn,m = )/nYerz—Xm
w.rt. a €[0, —
[0, 3]

[m]

=
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Machine Learning 2 2. Dual Coordinate Descent

Dual Problem A

Remember, the dual problem was:
S 1
minimize f(«) :ZEaTQa - 1Ta, Qnm = y,,ymx,z—xm
t. a €0 ! ]
w.rt. o ,——
N
coordinate descent w.r.t. coordinate a,:

1
fn(an) ::f(an; a—n) X EQn,na% + Qn,—na—nan — Qp

gfn :Qn,nan + Qn,fnafn -1 ; 0
Qn
- :1 - Qn,fnafn
Qn,n
possibly clip ay:
. 1 1- Qn,—na—n
an =max(0, mln(N)\, QO )
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Machine Learning 2 2. Dual Coordinate Descent

Complexity

Qn,m = .yn.me[;er’ Xn € RMaYn eR
1 1- Qn,fnafn

ap = max(O,min(N—/\,Q—)), Q e RVN o ¢ RV

» Q: what is the complexity of computing o, and
what is the complexity of a full epoch?
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Machine Learning 2 2. Dual Coordinate Descent

Avoid Computing @, —pav—p

NG _1- Qn—nc’)
§ . Qn,n

1 - Qn .a(t) + Qn nagt)
B Qn,n
ol _ Qn.alt) —1
Qn,n
yn}/}rgt) -1
Qn,n

:agt) —_

[m]

=
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Machine Learning 2 2. Dual Coordinate Descent

Avoid Computing @, —pav—p

a(t+1) :a(t) _ Yn)A/rgt) -1
" " Qn,n
with
)7r(1t) :(,B(t))TXn
and due to

N
5(t) _ Z ozg,t)y,,x,,
n=1

as only osz) changes:

B(t—‘rl) ::B(t) + (agt—i-l)

- Oég‘rt)))/nxn
» accelerates from O(N?) to O(M) (for a single )
» even O(M,;) for sparse predictor vectors x

(M, being the average number of nonzeros)
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Machine Learning 2 2. Dual Coordinate Descent

Performance Comparison

Table 2. On the right training time for a solver to reduce the primal objective value to within 1% of the optimal value;
see (20). Time is in seconds. The method with the shortest running time is boldfaced. Listed on the left are the statistics
of data sets: [ is the number of instances and n is the number of features.

Data set Data statistics Linear L1-SVM Linear L2-SVM

o I n  # nonzeros | DCDL1 Pegasos SVMP' | DCDL2 PCD TRON
a% 32,561 123 451,592 0.2 1.1 6.0 0.4 0.1 0.1
astro-physic 62,369 99,757 4,834,550 0.2 2.8 2.6 0.2 0.5 1.2
real-sim 72,309 20,958 3,709,083 0.2 2.4 2.4 0.1 0.2 0.9
news20 19,996 1,355,191 9,097,916 0.5 10.3 20.0 0.2 2.4 5.2
yahoo-japan | 176,203 832,026 23,506,415 1.1 12.7 69.4 1.0 2.9 38.2
revl 677,399 47,236 49,556,258 2.6 21.9 72.0 2.7 5.1 18.6
yahoo-korea | 460,554 3,052,939 156,436,656 8.3 79.7 656.8 71 184  286.1

Note: L1-SVM uses the hinge loss, L2-SVM the squared hinge Iosg.

5 =
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Machine Learning 2 2. Dual Coordinate Descent

Performance Comparison (2/2)

(a) L1-SVM: astro-physic  (b) L2-SVM: astro-physic

(c) L1-SVM: news20 (d) L2-SVM: news20

(e) L1I-SVM: revl (f) L2-SVM: revl
Figure 1. Time versus the relative error (20). DCDL1-S,
DCDL2-S are DCDL1, DCDL2 with shrinking. The dotted
line indicates the relative error 0.01. Time is in seconds.

(a) L1-SVM: astro-physic  (b) L2-SVM: astro-physic

(c) L1-SVM: news20 (d) L2-SVM: news20

(e) L1I-SVM: revl (f) L2-SVM: revl
Figure 2. Time versus the difference of testing accuracy be-
tween the current model and the reference model (obtained
using strict stopping conditions). Time is in seconds.

[} = =
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Machine Learning 2 3. The Adaptive Multi Hyperplane Machine

3. The Adaptive Multi Hyperplane Machine
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Machine Learning 2 3. The Adaptive Multi Hyperplane Machine

Multi-Class SVM .

multi-class SVM:

y(x) :=argmaxs,(x)
yey

sy(x: B) :=6Tx, By eRM VyeY={p,.... 5}

A
Z Yy Xn) 5‘|ﬁ”27 B = (/8}7176}727"'7/8}1)

[m] = = =
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Machine Learning 2 3. The Adaptive Multi Hyperplane Machine

Multi-Class SVM

multi-class SVM:
y(x) :=argmaxs,(x)
yey
s(xiB) =B/ x, B, eRM Vyey={n,. . 7}

1 A
f(8) ::N Zg(yrhxn) + 5”5”27 p= (/8}7175}727 e 7ﬁ}7L)
n=1
Uy, x; ) ==max(0, 1—s,(x))
Q: Is this a useful loss?

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 3. The Adaptive Multi Hyperplane Machine

Multi-Class SVM

multi-class SVM:

y(x) :=argmaxs,(x)
yey

sy(x; B) ::6},TX, By eRM Wy eY={n,....9}

1Y A
f(B) ::N Zg(yn,Xn) + 5“5”27 /8 = (/8}7175}727“-
n=1

Uy, x; ) ==max(0, 1—s,(x))
Q: Is this a useful loss?

margin-based loss:

Uy, x;B) :=max(0, 1+ max s,(x)—s,(x))
y'eV.y'#y

7ﬁ}7L)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Machine Learning 2 3. The Adaptive Multi Hyperplane Machine

Multi-Hyperplane Machine

multi-hyperplane score function:

sy(x; B) := maxK ;kx, By.k € RM ke{1,...,K}
margin-based loss:
Uy, x;B) :=max(0, 1+ max s,(x)—s,(x))
Y'EVy'#y
relaxation / convex upper bound:
: o T
UYn, Xn; B, 2n) :=max(0, 1+ y’Gr)]),?/ééyn Sy'(Xn) = By, 2,X%n)

» block coordinate descent / EM type training (53, z)
» use SGD to train 5.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Machine Learning 2 3. The Adaptive Multi Hyperplane Machine

NN
SGD for Training the Multi-Hyperplane Machine “

relaxation / convex upper bound:

UYn, Xn; B, zn) :=max(0, 1+ y’er)?,?/z(;éyn Sy'(Xn) = By, 2,%n)
gradient:
XI'H |f (y? k) = arg maxyley)y/i.y" B};’:7klxn
. K'=1,..,
Wy’k(yrn Xnv Zn) = —)(n7 If (y, k) = ()/na Zn)
0, otherwise

Adaptive Multi-Hyperplane Machine:
» initialize 8 = 0.

> if all ﬁyT,k,x < 07x, =0, create a new hyperplane K + 1
with 5},7K+1 =0
(conceptually infinite number of hyperplanes)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Machine Learning 2 3. The Adaptive Multi Hyperplane Machine

Performance Comparison

Table 3: Error rate and training time comparison with large-scale algorithms (RBF SVM is solved by LibSVM

unless specified otherwise. Poly2 and LibSVM results are from [5])

Error rate (%) Training time (seconds)”
Datasets AMM AMM Linear Poly2 | RBF | AMM [ AMM Linear Poly2 RBF
batch online (Pegasos) | SVM | SVM | batch (Pegasos) | SVM SVM
a%a, 15.0340.11 | 16.444+0.23 | 15.04+0.07 | 14.94 | 14.97 2 1 2 99
ijenn 2.40£0.11 3.02£0.14 7.76£0.19 2.16 1.31 2 1 11 27
webspam | 4.50£0.24 | 6.14+1.08 | 7.28+0.09 1.56 | 0.80 80 12 3,228 | 15,571
mnist_bin | 0.5340.05 0.54+0.03 2.03+0.04 NA 0.43 3084 277 NA
mnist_mc | 3.20£0.16 3.36+0.20 8.41+0.11 NA 0.67° | 13864 1200 1180 NA
rcvl_bin 2.20£0.01 2.21£0.02 2.29£0.01 NA NA 1100 80 25 NA
url 1.34+0.21 2.87+1.49 1.50+0.39 NA NA 400 24 100 NA
! excludes data loading time.
2 achieved by parallel training P-packSVMs on 512 processors; results from [28].
3 achieved by LaSVM; results from [12].
[WDCV11]
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Machine Learning 2 3. The Adaptive Multi Hyperplane Machine

B
Outlook v

See [?] for
» two further scalable learning algorithms for non-linear SVMs,
» an implementation, and

» an evaluation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 3. The Adaptive Multi Hyperplane Machine

Summary
» Linear SVMs can be interpreted as linear models with a specific
classification loss, the hinge loss.
» not penalizing scores for positive labels > 1 (as squared error)
nor encouraging such scores (as logistic loss).
» Linear SVMs simply can be learned by stochastic (sub)gradient
descent.
» an additional reprojection step can accelerate convergence.
» Linear and nonlinear SVMs can be trained using coordinate descent
in the dual.
» for nonlinear SVMs each step is expensive: O(N?)
» for linear SVMs, the primal parameters can be maintained,
yielding a training procedure in O(M) or even O(Mponzero)
» Both learning algorithms for linear SVMs are among the fastest
currently known.
» Nonlinear SVMs can be approximated by multiple hyperplanes.
» always using the most positive one (maximum over score functions)
P hyperplanes can be added as needed, once a point is on the wrong side
of all hyperplanes.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2

Further Readings

» See the cited original papers.
» Multi-class SVM:

> [WWos]
» [?, section 14.5.2.4]

Acknowledgement: Thanks to Randolf Scholz for pointing out a mistake in an earlier
version of these slides.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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