
Machine Learning 2

Machine Learning 2
B. Ensembles / B.1. Stacking & Bagging

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science

University of Hildesheim, Germany

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 20

Machine Learning 2

Syllabus
A. Advanced Supervised Learning

Fri. 24.4. (1) A.1 Generalized Linear Models
Fri. 1.5. — — Labour Day —
Fri. 8.5. (2) A.2 Gaussian Processes
Fri. 15.5. (3) A.3 Advanced Support Vector Machines

B. Ensembles
Fri. 22.5. (4) B.1 Stacking

& B.2 Boosting
Fri. 29.5. (5) B.3 Mixtures of Experts
Fri. 5.6. — — Pentecoste Break —

C. Sparse Models
Fri. 12.6. (6) C.1 Homotopy and Least Angle Regression
Fri. 19.6. (7) C.2 Proximal Gradients
Fri. 26.6. (8) C.3 Laplace Priors
Fri. 3.7. (9) C.4 Automatic Relevance Determination

D. Complex Predictors
Fri. 10.7. (10) D.1 Latent Dirichlet Allocation (LDA)
Fri. 17.7. (11) Q & A

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 20

Machine Learning 2

Outline

1. Model Averaging & Voting

2. Stacking

3. Bagging & Random Forests

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 20

Machine Learning 2 1. Model Averaging & Voting

Outline

1. Model Averaging & Voting

2. Stacking

3. Bagging & Random Forests

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 20

Machine Learning 2 1. Model Averaging & Voting

Model Selection

I Assume you have learned C many models ŷc for a given problem:

ŷc : RM → Y, c = 1, . . . ,C

e.g.,
I ŷ1: a linear model
I ŷ2: a decision tree
I ŷ3: a support vector machine
I ŷ4: a neural network

I Which one would you deploy and use now for your application?

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 20

Machine Learning 2 1. Model Averaging & Voting

Model Selection

If we have several models

ŷc : RM → Y, c = 1, . . . ,C

for the same task, so far we tried to select the best one

ŷ :=ŷc∗ with

c∗ := arg min
c∈{1,...,C}

`(ŷc ,Dval)

using validation data Dval and deploy it (model selection).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 20

Machine Learning 2 1. Model Averaging & Voting

Model Averaging & Voting
Alternatively, having several models

ŷc : RM → Y, c = 1, . . . ,C

one also can combine them (model combination, ensemble), e.g.,

model averaging, for continuous outputs
(regression, classification with uncertainty):

ŷ(x) :=
1

C

C∑

c=1

ŷc(x)

voting, for nominal outputs
(classification without uncertainty):

ŷ(x) := y∗ with ny∗(x) maximal among all ny (x)

ny (x) := |{c ∈ {1, . . . ,C} | ŷc(x) = y}|

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

3 / 20

Machine Learning 2 1. Model Averaging & Voting

Why Ensembles ?

I an ensemble usually improves accuracy
I if component models make different types of errors

X
ŷ1

ŷ2

ŷ3

ŷ4

ŷ5

ŷ

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

4 / 20

Machine Learning 2 1. Model Averaging & Voting

Weighted Model Averaging I: Bayesian Model Averaging

ŷ(x) :=
C∑

c=1

αc ŷc(x)

with component model weights α ∈ RC .

Bayesian Model Averaging:

p(y | x) :=

∫

M
p(y | x ,m,D) p(m | D)dm

MC≈
C∑

c=1

p(y | x ,mc ,D)︸ ︷︷ ︸
=ŷc (x)

p(mc | D)︸ ︷︷ ︸
=αc

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

5 / 20

Machine Learning 2 1. Model Averaging & Voting

Weighted Model Averaging I: Bayesian Model Averaging

ŷ(x) :=
C∑

c=1

αc ŷc(x)

with component model weights α ∈ RC .

Bayesian Model Averaging:

p(y | x) :=

∫

M
p(y | x ,m,D) p(m | D)dm

MC≈
C∑

c=1

p(y | x ,mc ,D)︸ ︷︷ ︸
=ŷc (x)

p(mc | D)︸ ︷︷ ︸
=αc

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

5 / 20

Machine Learning 2 1. Model Averaging & Voting

Model Averaging / Algorithm

1 learn-modelaveraging(Dtrain, (ac)c=1:C) :
2 for c := 1, . . . ,C :

3 ŷc := ac(Dtrain)

4 ŷ := 1
C

∑C
c=1 ŷc

5 return ŷ

where

I ac is a learning algorithm for component model c

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

6 / 20

Machine Learning 2 2. Stacking

Outline

1. Model Averaging & Voting

2. Stacking

3. Bagging & Random Forests

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

7 / 20

Machine Learning 2 2. Stacking

Can we Learn the Combination Weights?

I we have learned C many models ŷc (c = 1, . . . ,C) for a task.

I and aim to combine their outputs like:

ŷ(x) :=
C∑

c=1

αc ŷc(x)

I can we learn the combination weights αc ?

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

7 / 20

Machine Learning 2 2. Stacking

Weighted Model Averaging II: Linear Stacking

ŷ(x) :=
C∑

c=1

αc ŷc(x)

with component model weights α ∈ RC .

Linear Stacking:
I learn α’s minimizing the loss on validation data:

α := arg min
α

`(
C∑

c=1

αc ŷc(x),Dval)

I actually a Generalized Linear Model with C features

x ′c(x) := ŷc(x), c = 1, . . . ,C

and parameters α.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

8 / 20

Machine Learning 2 2. Stacking

(General) Stacking
I Build the second stage dataset:

Dval
2nd stage := {(x ′, y) | x ′c := ŷc(x), c = 1, . . . ,C , (x , y) ∈ Dval} ⊆ YC ×Y

I Learn a second stage prediction model for the 2nd stage data set

ŷ2nd stage : YC → Y

I e.g., a linear model/GLM, a SVM/SVR, a neural network etc.

I to predict a new instance x ,
I first, compute the predictions of the (1st stage) component models

x ′c := ŷc(x), c = 1, . . . ,C

I then compute the final prediction of the 2nd stage model:

ŷ(x) := ŷ2nd stage(x ′1, . . . , x
′
C)

I non-linear second stage models can capture interactions between the
different component models.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

9 / 20

Machine Learning 2 2. Stacking

(General) Stacking
I Build the second stage dataset:

Dval
2nd stage := {(x ′, y) | x ′c := ŷc(x), c = 1, . . . ,C , (x , y) ∈ Dval} ⊆ YC ×Y

I Learn a second stage prediction model for the 2nd stage data set

ŷ2nd stage : YC → Y

I e.g., a linear model/GLM, a SVM/SVR, a neural network etc.

I to predict a new instance x ,
I first, compute the predictions of the (1st stage) component models

x ′c := ŷc(x), c = 1, . . . ,C

I then compute the final prediction of the 2nd stage model:

ŷ(x) := ŷ2nd stage(x ′1, . . . , x
′
C)

I non-linear second stage models can capture interactions between the
different component models.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

9 / 20

Machine Learning 2 2. Stacking

Optimizing Hyperparameters of Component Models

1. Optimize each component model’s hyperparameters on its own.
I strong component models

2. Optimize hyperparameters of all component models jointly.
I usually too many hyperparameters
I not done

3. Do not optimize hyperparameters.
I just choose some
I see next section

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

10 / 20

Machine Learning 2 2. Stacking

Stacking / Algorithm

1 learn-stacking(Dtrain, (ac)c=1:C , a2nd) :

2 Dtrain′,Dval = split(Dtrain)
3 for c := 1, . . . ,C :

4 ŷc := ac(Dtrain′)

5 Dtrain
2nd := {(x ′1, x ′2, . . . , x ′C , y) | x , y ∈ Dval, x ′c := ŷc(x)}

6 ŷ2nd := a2nd(Dtrain
2nd)

7 ŷ := y2nd ◦ (ŷ1, ŷ2, . . . , ŷC)
8 return ŷ

where

I ac is a learning algorithm for component model c and

I a2nd is a learning algorithm for the combination model

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

11 / 20

Note: Model averaging is a special case where split assigns all data to the train’ partition
and a2nd always returns 1

C

∑C
c=1 x

′
c .

Machine Learning 2 3. Bagging & Random Forests

Outline

1. Model Averaging & Voting

2. Stacking

3. Bagging & Random Forests

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

12 / 20

Machine Learning 2 3. Bagging & Random Forests

Origins of Model Heterogeneity

Model heterogeneity can stem from different roots:
I different model families

I e.g., GLMs, SVMs, NNs etc.
I used to win most challenges, e.g., Netflix challenge

I different hyperparameters (for the same model family)
I e.g., regularization weights, kernels, number of nodes/layers etc.

I different input variables used
I e.g., Random Forests

I trained on different subsets of the dataset
I Bagging

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

12 / 20

Machine Learning 2 3. Bagging & Random Forests

Bootstrap Aggregation (Bagging)
I bootstrap is a resampling method

I sample with replacement uniformly from the original sample Dtrain

I as many instances as the original sample contains
I in effect, some instances may be missing in the resample,

others may occur twice or even more frequently

I draw C bootstrap samples from Dtrain:

Dtrain
c ∼ bootstrap(Dtrain), c = 1, . . . ,C

I train a model ŷc for each of these datasets Dtrain
c .

I aggregate/average these models:

ŷ(x) :=
1

C

C∑

c=1

ŷc(x)

I Q: can we represent boostrap aggregation by case weights?

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

13 / 20

Machine Learning 2 3. Bagging & Random Forests

Bootstrap

I resample explicitly:

1 bootstrap(X = {X1,X2, . . . ,XN}):
2 X ′ := ∅
3 do N times:
4 n ∼ unif({1, . . . ,N})
5 X ′ := X ′ ∪ {Xn}
6 return X ′

I use case weights:

1 bootstrap-cw(X = {X1,X2, . . . ,XN}):
2 for n = 1, . . . ,N:

3 wn ∼ binomial(N, 1
N)

4 return {(Xn,wn) | n = 1, . . . ,N}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

14 / 20

Machine Learning 2 3. Bagging & Random Forests

Excursion: Importance Sampling

I vanilla SGD samples instances uniformly:

1 n ∼ unif{1, . . . ,N}
2 θ(t+1) := θ(t) − η(∇`(xn, yn) +∇reg(θ))

I importance sampling: twist the sampling for faster convergence

1 for n := 1, . . . ,N:
2 pn := ||∇`(xn, yn)||
3 n ∼ cat((pn)n=1:N)

4 θ(t+1) := θ(t) − η 1
pn

(∇`(xn, yn) +∇reg(θ))

I also must correct the stepsize by 1
pn

I ∇`(xn, yn) too expensive, use cheaper proxy [?, ?]
I and/or compute only for a minibatch, not for all N samples

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

15 / 20

Machine Learning 2 3. Bagging & Random Forests

Bagging / Algorithm

1 learn-bagging(Dtrain, a,C) :
2 for c := 1, . . . ,C :

3 Dtrain
c ∼ bootstrap(Dtrain)

4 ŷc := ac(Dtrain
c)

5 ŷ := 1
C

∑C
c=1 ŷc

6 return ŷ

or more compact:

1 learn-bagging(Dtrain, a,C) :

2 return learn-modelaveraging(Dtrain, (a ◦ bootstrap)c=1:C)

where

I a is a learning algorithm for a component model

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

16 / 20

Machine Learning 2 3. Bagging & Random Forests

Random Forests
I bagging often creates datasets that are too similar to each other

I consequently, models correlate heavily and ensembling does not work
well

I to decorrelate the component models, one can train them on different
subsets of variables

I Random Forests
I use decision trees as component models

I binary splits
I regularized by minimum node size (e.g., 1, 5 etc.)
I no pruning
I sometimes using just decision tree stumps (= a single split)

I trained on bootstrap samples
I using only a random subset of variables

I actually, using a random subset of variables for each single split.
I e.g., b

√
mc, bm/3c.

I finally model averaging/voting the decision trees

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

17 / 20

Machine Learning 2 3. Bagging & Random Forests

Bagging & Random Forests / Example (spam data)

15.2 Definition of Random Forests 589

Typically values for m are
√
p or even as low as 1.

After B such trees {T (x; Θb)}B1 are grown, the random forest (regression)
predictor is

f̂B
rf (x) =

1

B

B∑

b=1

T (x; Θb). (15.2)

As in Section 10.9 (page 356), Θb characterizes the bth random forest tree in
terms of split variables, cutpoints at each node, and terminal-node values.
Intuitively, reducing m will reduce the correlation between any pair of trees
in the ensemble, and hence by (15.1) reduce the variance of the average.

0 500 1000 1500 2000 2500

0.
04

0
0.

04
5

0.
05

0
0.

05
5

0.
06

0
0.

06
5

0.
07

0

Spam Data

Number of Trees

T
es

t E
rr

or

Bagging
Random Forest
Gradient Boosting (5 Node)

FIGURE 15.1. Bagging, random forest, and gradient boosting, applied to the
spam data. For boosting, 5-node trees were used, and the number of trees were
chosen by 10-fold cross-validation (2500 trees). Each “step” in the figure corre-
sponds to a change in a single misclassification (in a test set of 1536).

Not all estimators can be improved by shaking up the data like this.
It seems that highly nonlinear estimators, such as trees, benefit the most.
For bootstrapped trees, ρ is typically small (0.05 or lower is typical; see
Figure 15.9), while σ2 is not much larger than the variance for the original
tree. On the other hand, bagging does not change linear estimates, such
as the sample mean (hence its variance either); the pairwise correlation
between bootstrapped means is about 50% (Exercise 15.4).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

18 / 20

[?, fig. 15.1]

Machine Learning 2 3. Bagging & Random Forests

Summary (1/2)
I Combining models (Ensembling) can be simply accomplished by

averaging the models.

I Weighted averages often provide better ensembles.
I Estimating weights antiproportional to the error of the component

models (Bayesian Model Averaging).
I Learning combination weights by linear regression/classification

(linear stacking).

I Stacking can use any model to learn how to combine the predictions
of a set of component models (2nd stage model)
I component models and combination model are learned sequentially

I simple, easy to parallelize
I not optimal

I Component models must have uncorrelated errors to yield a good
ensemble.
I different models, with different hyperparameters,

using different variables, using different instances

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

19 / 20

Machine Learning 2 3. Bagging & Random Forests

Summary (2/2)

I Bagging is a ensemble strategy based on different instances /
subsamples.

I Random Forests combine
I Bagging and
I random variable subsets
I esp. for trees as component models.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

20 / 20

Machine Learning 2

Further Readings

I Averaging, Voting, Stacking: [?, chapter 16.6], [?, chapter 8.8], [?,
chapter 14.2].

I Bayesian model averaging: [?, chapter 14.1], [?, chapter 16.6.3], [?,
chapter 8.8].

I Bagging: [?, chapter 16.2.5], [?, chapter 8.7], [?, chapter 14.2].

I Random Forests: [?, chapter 15], [?, chapter 16.2.5], [?, chapter
14.3].

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

21 / 20

Machine Learning 2

References

Christopher M. Bishop.

Pattern recognition and machine learning, volume 1.
springer New York, 2006.

Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin.

The elements of statistical learning: data mining, inference and prediction, volume 27.
Springer, 2005.

Tyler B Johnson and Carlos Guestrin.

Training Deep Models Faster with Robust, Approximate Importance Sampling.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems 31, pages 7265–7275. Curran Associates, Inc., 2018.

Angelos Katharopoulos and Francois Fleuret.

Not All Samples Are Created Equal: Deep Learning with Importance Sampling.
In International Conference on Machine Learning, pages 2525–2534, July 2018.

Kevin P. Murphy.

Machine learning: a probabilistic perspective.
The MIT Press, 2012.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

22 / 20

	1. Model Averaging & Voting
	2. Stacking
	3. Bagging & Random Forests
	Appendix

