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A. Advanced Supervised Learning
A.1 Generalized Linear Models

— Labour Day —

A.2 Gaussian Processes

A.3 Advanced Support Vector Machines

B. Ensembles

B.1 Stacking

& B.2 Boosting

B.3 Mixtures of Experts
— Pentecoste Break —

C. Sparse Models

C.1 Homotopy and Least Angle Regression
C.2 Proximal Gradients

C.3 Laplace Priors

C.4 Automatic Relevance Determination

D. Complex Predictors
D.1 Latent Dirichlet Allocation (LDA)
Q&A
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1. Model Averaging & Voting
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3. Bagging & Random Forests
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1. Model Averaging & Voting
Qutline

1. Model Averaging & Voting
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Machine Learning 2 1. Model Averaging & Voting

M
Model Selection v

» Assume you have learned C many models y. for a given problem:
9o :RM 5y c=1,....C

e.g.,
> {1: a linear model
» {»: a decision tree
P 3. a support vector machine
» y,: a neural network

» Which one would you deploy and use now for your application?
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Machine Learning 2 1. Model Averaging & Voting

Model Selection

If we have several models

Jeo:RM 5y, c=1,...,C

for the same task, so far we tried to select the best one

¥ =y~ with
c* := argmin E(}?C,D"a')
ce{l,...,C}

using validation data D2 and deploy it (model selection).
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Machine Learning 2 1. Model Averaging & Voting
Model Averaging & Voting
Alternatively, having several models
Je:RM 5y, c=1,...,C
one also can combine them (model combination, ensemble), e.g.,

model averaging, for continuous outputs
(regression, classification with uncertainty):

C
09 = ¢ )
voting, for nominal outpcu_ts
(classification without uncertainty):
y(x) := y* with ny(x) maximal among all n,(x)
ny(x) = {ce{l,.... C} | Je(x) = y}|
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Machine Learning 2 1. Model Averaging & Voting

B
Why Ensembles ? A

P an ensemble usually improves accuracy
P if component models make different types of errors
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Machine Learning 2 1. Model Averaging & Voting

B
Weighted Model Averaging |: Bayesian Model Averaginﬁ

C
y(X) = Z ac)/}c(x)

with component model weights o € R€.
Bayesian Model Averaging:

ply | x) = /M ply | x, m, D) p(m | D)dm

MC
~ p(y|X7mC7D)p(mC |D)

c=1
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Machine Learning 2 1. Model Averaging & Voting

B
Weighted Model Averaging |: Bayesian Model Averaginﬁ

C
y(X) = Z ac)/}c(x)

with component model weights o € R€.

Bayesian Model Averaging:

ply | x) = /M ply | x, m, D) p(m | D)dm

MC
~ p(y|X7mC7D)p(mC |D)

c=1

=yc(x) =Cc
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Machine Learning 2 1. Model Averaging & Voting

Model Averaging / Algorithm

1 learn-modelaveraging(D'" (a.)c=1.c) :
2 for c:=1,...,C:
3 }';C = aC(Dtrai")

AL 1 C &
o Y=g eale
5 return y

where

» a. is a learning algorithm for component model ¢
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Machine Learning 2 2. Stacking

Outline

2. Stacking
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Machine Learning 2 2. Stacking

Can we Learn the Combination Weights?

» we have learned C many models y. (¢ =1,..., C) for a task.

» and aim to combine their outputs like:

C
)A/(X) = Z ac)l}c(x)
c=1

» can we learn the combination weights a7
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Machine Learning 2 2. Stacking

Weighted Model Averaging Il: Linear Stacking

C
y(X) = Z ac}?c(x)
c=1

with component model weights o € R€.

Linear Stacking:
P learn a's minimizing the loss on validation data:

C
o := argmin E(Z acde(x), D)

@ c=1

» actually a Generalized Linear Model with C features
xL(x) = Jc(x), c¢=1,...,C

and parameters .
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Machine Learning 2 2. Stacking

(General) Stacking

» Build the second stage dataset
Dval

2nd stage

= (X y) I X = 9e(x), e = 1,..., C, (x,y) € D™} C Y€ x
» Learn a second stage prediction model for the 2nd stage data set

0 . 1€
Y2nd stage - Y- =Y

» e.g., a linear model/GLM, a SVM/SVR, a neural network etc.
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Machine Learning 2 2. Stacking

. N
(General) Stacking “
» Build the second stage dataset:
ID\ZI?\Id stage - {(X/)y) | Xé = yC(X)7 c=1...,C (Xay) € Dval} - yC X

» Learn a second stage prediction model for the 2nd stage data set

0 . 1€
Y2nd stage - Y- =Y

» e.g., a linear model/GLM, a SVM/SVR, a neural network etc.

» to predict a new instance x,
» first, compute the predictions of the (1st stage) component models

x.:=9:(x), ¢=1,...,C
P then compute the final prediction of the 2nd stage model:
V(%) = Pond stage(X1s - - -, X¢)
P non-linear second stage models can capture interactions between the

different component models.
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Machine Learning 2 2. Stacking

Optimizing Hyperparameters of Component Models

1. Optimize each component model’s hyperparameters on its own.

P strong component models

2. Optimize hyperparameters of all component models jointly.

» usually too many hyperparameters
» not done

3. Do not optimize hyperparameters.

P just choose some
» see next section
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Machine Learning 2 2. Stacking

Stacking / Algorithm

1 learn-stacking(D'" (a.)c=1.c, aond)

5 Dtraln/ Dval _ Spllt(Dtram)

3 for c:=1,...,C:

4 yc = ac(Dtraln/)

s Dy = {(x],x},...,xe,y) | X,y € D XL = Pe(x)}
6 y2nd = a2nd(D5rr?cljn

7 §i=Ymd o (V1,52,.--,Yc)
8 return y

where
» a. is a learning algorithm for component model ¢ and

» a5,4 is a learning algorithm for the combination model

Note: Model averaging is a special case where split assigns all data to the train’ partition

1 C ’
and axng always returns = 3>- ", x,
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Machine Learning 2 3. Bagging & Random Forests

Outline

3. Bagging & Random Forests
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Machine Learning 2 3. Bagging & Random Forests

Origins of Model Heterogeneity

Model heterogeneity can stem from different roots:
» different model families

» e.g., GLMs, SVMs, NNs etc.
P used to win most challenges, e.g., Netflix challenge

» different hyperparameters (for the same model family)
> ec.g., regularization weights, kernels, number of nodes/layers etc.

» different input variables used
» e.g., Random Forests

» trained on different subsets of the dataset
> Bagging
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Machine Learning 2 3. Bagging & Random Forests

Bootstrap Aggregation (Bagging)
» bootstrap is a resampling method
» sample with replacement uniformly from the original sample D2
P as many instances as the original sample contains
P in effect, some instances may be missing in the resample,
others may occur twice or even more frequently

» draw C bootstrap samples from Dtrin:
Drain  pootstrap(D™"), c¢=1,...,C

» train a model . for each of these datasets D",

» aggregate/average these models:

1 C
Px) =2 _9e(x)
c=1

» Q: can we represent boostrap aggregation by case weights?
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Machine Learning 2 3. Bagging & Random Forests

Bootstrap

P> resample explicitly:

1 bootstrap(X = {X1, Xo,..., Xn}):
2 X =10

3 do N times:

4 n~unif({1,...,N})

5 X=X U{X,}

6 return X’

P> use case weights:

1 bootstrap-cw(X = { X1, Xa,..., Xn}):
2 for n=1,...,N:

3 W, ~ binomial(N, 1)

4 return {(X,,w,) | n=1,...,N}
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Machine Learning 2 3. Bagging & Random Forests

Excursion: Importance Sampling

» vanilla SGD samples instances uniformly:

1 n~unif{l,... N}
2 9 =00 — (VL(xa, yn) + Vreg(6))

» importance sampling: twist the sampling for faster convergence

1 for n:=1,...,N:

2 Pn = ||V£(men)||

3 n~cat((pn)n=1:n)

. D) .— p(n) _ ni(W(men) + Vreg(0))

P also must correct the stepsize by pi

» VU(xn, yn) too expensive, use cheaper proxy [?, ?]
» and/or compute only for a minibatch, not for all N samples
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Machine Learning 2 3. Bagging & Random Forests

Bagging / Algorithm

learn-bagging(D™?", a, C) :
for c:=1,...,C:
DUain  pootstrap(Dn)
5 = ac(pm)
yi=¢ ZCC:I Ve
return y

or more compact:

learn-bagging(D™?", a, C) :
return learn-modelaveraging(D'?", (a o bootstrap).—i.c)

where

» ais a learning algorithm for a component model
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Machine Learning 2 3. Bagging & Random Forests

P2
Random Forests “
P> bagging often creates datasets that are too similar to each other

P consequently, models correlate heavily and ensembling does not work
well

» to decorrelate the component models, one can train them on different
subsets of variables
» Random Forests
P use decision trees as component models
» binary splits
» regularized by minimum node size (e.g., 1, 5 etc.)
» no pruning
> sometimes using just decision tree stumps (= a single split)

P trained on bootstrap samples
P using only a random subset of variables

» actually, using a random subset of variables for each single split.
> eg., |vm], [m/3].

» finally model averaging/voting the decision trees
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Machine Learning 2 3. Bagging & Random Forests

NS
Bagging & Random Forests / Example (spam data) i
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Machine Learning 2 3. Bagging & Random Forests

Summary (1/2) YA

» Combining models (Ensembling) can be simply accomplished by
averaging the models.

> Weighted averages often provide better ensembles.
» Estimating weights antiproportional to the error of the component
models (Bayesian Model Averaging).
» Learning combination weights by linear regression/classification
(linear stacking).

» Stacking can use any model to learn how to combine the predictions
of a set of component models (2nd stage model)
» component models and combination model are learned sequentially
» simple, easy to parallelize
» not optimal

» Component models must have uncorrelated errors to yield a good
ensemble.
» different models, with different hyperparameters,
using different variables, using different instances
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Machine Learning 2 3. Bagging & Random Forests

Summary (2/2)

subsamples.

» Random Forests combine
» Bagging and

» random variable subsets

P esp. for trees as component models
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Machine Learning 2

B
Further Readings “

» Averaging, Voting, Stacking: [?, chapter 16.6], [?, chapter 8.8], [?,
chapter 14.2].

» Bayesian model averaging: [?, chapter 14.1], [?, chapter 16.6.3], [?,
chapter 8.8].

Bagging: [?, chapter 16.2.5], [?, chapter 8.7], [?, chapter 14.2].

» Random Forests: [?, chapter 15], [?, chapter 16.2.5], [?, chapter
14.3].

v
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