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1. The Idea behind Mixtures of Experts
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Machine Learning 2 1. The Idea behind Mixtures of Experts

B
Underlying ldea “

So far, we build ensemble models where the combination weights do not
depend on the predictors:

C
)7(X) = Z (075 }7C(X)
c=1

i.e., all instances x are reconstructed from their predictions y.(x) by the
component models in the same way a.
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B
Underlying ldea “

So far, we build ensemble models where the combination weights do not
depend on the predictors:

C
)7(X) = Z (075 }7C(X)
c=1

i.e., all instances x are reconstructed from their predictions y.(x) by the
component models in the same way a.

New idea: allow each instance to be reconstructed in an instance-specific
way.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Machine Learning 2 1. The Idea behind Mixtures of Experts

Mixtures of Experts

Xn GRM7yn ER’CH 6 {17""C}79:: (ﬁ?0277)7/8’76RCXM

P(}/n ’ Xny Cn; 9) ::N(y | /BcTan’Gzn)
p(cn | xn; 0) :=Cat(c | S(vx))

with softmax function

e*m
S(xX)m =—p—— XE RM

Zm’:l eXm'
» C component models (experts) N(y | 3] x, 0?)

» each model c is expert in some region of predictor space,
defined by its component weight (gating function) S(vyx).

» a mixture model with latent nominal variable z, := c,.
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P(}/n ’ Xny Cn; 9) ::N(y | /BcTan’Gzn)
p(cn | xn; 0) :=Cat(c | S(vx))

with softmax function

Oz=

e*m
S(xX)m =—p—— XE RM

Zm’:l eXm'
» C component models (experts) N(y | 3] x, 0?)

» each model c is expert in some region of predictor space,
defined by its component weight (gating function) S(vyx).

» a mixture model with latent nominal variable z, := c,.
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S

Mixtures of Experts

X
<
i

Xn GRM?Yn ERaCn € {17"'aC}79:: (ﬁ,0277)7ﬁa76RC S(yx)
X

P(Yn ’ Xny Cn; 9) ::N(y | /BcTan’ng)
p(cn | xn; 0) :=Cat(c | S(vx))

©

cTBx

-

with softmax function

©

e*m

S(X)mi=—g——, xERM

Zm’:l eXm'
» C component models (experts) N(y | 3] x, 0?)

» each model c is expert in some region of predictor space,
defined by its component weight (gating function) S(vyx).

» a mixture model with latent nominal variable z, := c,.
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Machine Learning 2 1. The Idea behind Mixtures of Experts

NN
Mixtures of Experts/ Example “

0 58 g »

1 LUOO &) C90 OL@ 08

0 05
component models component weight mixture of experts

2, fig. 11.6]
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Machine Learning 2 1. The Idea behind Mixtures of Experts

Mixtures of Experts
Generic Mixtures of Experts model:
» variables: x, € X, y, € Y
» latent variables: ¢, € {1,...,C}
» component models: p(y, | xn, cn; 6¥)
> a separate model for each ¢: p(y, | xn, ¢; 07) = p(yn | Xn; 6%),
with 0¥ and 67, being disjoint for ¢ # ¢’.
» combination model: p(c, | xn; 6°)

Example Mixture of Experts model:
» variables: X :=RM. ) =R
» component models: linear regression models N'(y | 3/ x, 02)
» combination model: logistic regression model Cat(c | S(vx))

For prediction: p(y | x) Zp | x,c)p(c| x)
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Mixtures of Experts
Generic Mixtures of Experts model:
» variables: x, € X, y, € Y
» latent variables: ¢, € {1,...,C}
» component models: p(y, | xn, cn; 6¥)
> a separate model for each ¢: p(y, | xn, ¢; 07) = p(yn | Xn; 6%),
with 0¥ and 67, being disjoint for ¢ # ¢’.
» combination model: p(c, | xn; 6°)

Example Mixture of Experts model:
» variables: X :=RM. ) =R
» component models: linear regression models N'(y | 3/ x, 02)
» combination model: logistic regression model Cat(c | S(vx))

For prediction: p(y | x) E ply | x,c)p(c | x)
W
=9c(x) =ac(x)
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Outline

2. Learning Mixtures of Experts
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Machine Learning 2 2. Learning Mixtures of Experts

Learning Mixtures of Experts
complete data likelihood:

N
L(6Y,6°,c; D) .= H P(¥n|Xn, cni 0¥)p(cnlxni 0°), cne€{l,...,C}
n=1

Cannot be computed, as ¢, is unknown.
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B
Learning Mixtures of Experts “

complete data likelihood:

N
L(6Y,6°,c; D) .= H P(¥n|Xn, cni 0¥)p(cnlxni 0°), cne€{l,...,C}
n=1

Cannot be computed, as ¢, is unknown.

marginalize out unknown cp:

N C
L(Qy, 96; Dtraln) = H Z p(Yn’Xna c; ay) p(C|X”; 06)
n=1c=1

08”,6°) = — log L(6”,6°)

N C
== log ) p(yalxn, c: 0”) log p(clxn; 0°)

n=1 c=1

log-sum is difficult to optimize (as it does not decompose in_a big sum).
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Optimizing log-sums (review)

Lemma
For x1,x2,..., XN €R+

IogZx,, = max Zq,, Iog—

Proof: “>"

IogZx,,—Iongn > anlog—, Vg e Ay

Gn Jensen's ineq.

Xn
log Z Xp > max Z qnlog .
n=1 n=1 n

Xn .
N .
Z 7 —1 Xn!
N

N
Z qnlog X Z log Z Xy = log Z Xyt
n=1 An n=1 Zn’ 1 Xn! =1
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Machine Learning 2 2. Learning Mixtures of Experts

Joint Objective Function

N c
0607,6°) = ZlogZp(y,,]x,,,c;ey)logp(c]x,,;ﬁc)
n=1 c=1
6 P(alxn; €: 6%) p(clxm: 0°)
Z max an,c log ’
n=1 an€hc c=1 An,c
N £ P(nlxm, €; 607) p(c|xn; 6°)
00,6°,q) - Zanc r
n=1c me
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Learning Mixtures of Experts

nlXxn, €; 0Y)p(c|x,; 8¢
(Hy gch) = ZZQnC y‘ )P( ‘ )

n=1c=1 An,c

coordinate descent:
1. minimize w.r.t. ¢ (maximization step)

00,07, q) Zanclogp C|xn; 0°)

n=1 c=1
s DY = {(gp e, Xmc) [n=1:N,c=1:C}
alternatively, DF2" := {(1, xn, (qn.c)e=1.c) | n=1: N}

P train combination model on all completed instances, each with case
weight g, ¢ (alternatively: on all instances to predict gn. )
Note: D is given as triples (g, x, y) with instances (x, y) with case weights g.
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Learning Mixtures of Experts

n|Xn, C; 67 C|xn; 0°
(0 0,0) = — 303 e log P 0 Dplel )

n=1c=1 An,c

coordinate descent:
1. minimize w.r.t. 6¢: (maximization step)
2. minimize w.r.t. 6¥: (maximization step)

007 6° q) o Zanclogp YalXn; € 6%)
n=1c=1
decomposes over c:
N
0(6%:6°,) o< Y qn.c log p(¥a|xn, c; 6%)
n=1
2 Dg-fva,lg = {(qn,mxnvyn) | n=1: N}, c=1:C
» train each component model 6% on all instances, each with case weight
An,c
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Machine Learning 2 2. Learning Mixtures of Experts

. . N
Learning Mixtures of Experts “
N C
nlxn, €; 0¥ )p(c|xn; 0°
00,0°9) =53 quclog P(yn| : )p(clxn; 6°)
n=1c=1 me

coordinate descent:
1. minimize w.r.t. #¢: (maximization step)
2. minimize w.r.t. #¥: (maximization step)

3. minimize w.r.t. g: (expectation step)

p(Ynlxn, €; 0%) p(c|xn; 6°)
S8t P(Ynlxn, €3 67)p(c'xn; 6°)

dn,c =

P can be solved analytically.
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Machine Learning 2 2. Learning Mixtures of Experts

Remarks

» Mixtures of experts can use any model as component model.

> Mixtures of experts can use any classification model as
combination model.

» both models need to be able to deal with case weights
» both models need to be able to output probabilities
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Remarks

» Mixtures of experts can use any model as component model.

> Mixtures of experts can use any classification model as
combination model.
» both models need to be able to deal with case weights
» both models need to be able to output probabilities

» if data is sparse, sparsity can be naturally used in both, component
and combination models.
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Remarks

» Mixtures of experts can use any model as component model.

> Mixtures of experts can use any classification model as
combination model.

» both models need to be able to deal with case weights
» both models need to be able to output probabilities

» if data is sparse, sparsity can be naturally used in both, component
and combination models.

» Updating the three types of parameters can be interleaved.

» this way, g, never has to be materialized
(but for a mini batch, possibly a single n)
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Machine Learning 2 2. Learning Mixtures of Experts

Outlook: Hierarchical Mixture of Experts

() ()
(o) I
) @)

mixture of experts hierarchical mixture of experts
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Outline

3. Interpreting Ensemble Models

[m]

=

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

DA

13 /17



Machine Learning 2 3. Interpreting Ensemble Models

Variable Importance

Some models allow to assess the importance of single variables
(or more generally subsets of variables; variable importance), e.g.,

» linear models: the z-score

» decision trees: the number of times a variable occurs in its splits
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Variable Importance

Some models allow to assess the importance of single variables
(or more generally subsets of variables; variable importance), e.g.,

» linear models: the z-score

» decision trees: the number of times a variable occurs in its splits
Variable importance of ensembles of such models can be measured as
average variable importance in the component models:

C
1
importance(Xm, 7) = Z importance(Xm, Vc), me{l,..., M}

c=1
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Machine Learning 2 3. Interpreting Ensemble Models

Variable Importance / Example
Synthetic data:
x ~uniform([0, 1]*%)

y ~N(y | 10sin(mx1x2) + 20(x3 — 0.5)? + 10x4 + 5x5, 1)

Model: Bayesian adaptive regression tree
(variant of a random forest; see [?, p. 551]).

usage
0.00 0.05 0.10 0.15 020 0.25

T T T T T
2 4 6 8 10

2, fig. 16.21]

Color denotes the number C of component models.
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Machine Learning 2 3. Interpreting Ensemble Models

NN
Variable Dependence: Partial Dependence Plot “

For any model y (and thus any ensemble), the dependency of the model
on a variable X,,, can be visualized by a partial dependence plot:

plot z € range(Xp) vs.

N
N i 1 N
_ypartial(Z; Xm, Dtraln) Z:N ZY((Xn,la <o s Xnm—1,Z, Xn,m+1, - - - 7Xn,M))7
n=1

or for a subset of variables

N
. i 1 N
.Vpartial(Z; XV’Dtra n) ::N Z}/(p(x, V,Z)), 4 - {17 sy M}

n=1

m, if 4
Zme NMEY 1, M)

with p(x, V., z)m, 1=
Xm, e€lse
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Variable Dependence / Example

Synthetic data:

x ~uniform([0, 1]1%)

y ~N(y | 10sin(mx1x2) + 20(x3 — 0.5)% + 10x4 + 5x5,1)
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Machine Learning 2 3. Interpreting Ensemble Models

Summary

» Mixtures of Experts additionally allow the combination weights to
depend on x (gating function)
P jointy model
» a latent component each instance belongs to and
» a model for y for each component
» can be learned via block coordinate descent / EM.

» requiring just learning algorithms for the component models
» as well as for the combination model.

» Ensemble models can be diagnosed by partial dependence plots
(as any model).
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Further Readings

» Mixtures of Experts: [?, chapter 14.5]. [?, chapter 11.2.4, 11.4.3], [?,
chapter 9.5].
» Optimizing log-sums and EM algorithm as coordinate descent:

P lecture Machine Learning, C.1 Clustering, section 2 on Gaussian
Mixture Models.

Acknowledgements: Thanks a lot to my PhD student Randolf Scholz for spotting a bad
mistake on an earlier version of these slides!
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