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Machine Learning 2

Outline

1. Homotopy Methods: Least Angle Regression
2. Proximal Gradient Methods

3. Laplace Priors (Bayesian Lasso)
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Machine Learning 2

1. Homotopy Methods: Least Angle Regression
Qutline

1. Homotopy Methods: Least Angle Regression

[m]

=
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

Sparse Models so far

» Variable subset selection
» forward search, backward search

» L1 regularization / Lasso
» Coordinate descent (shooting algorithm)
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

L1 Regularization

min. £(9) == 0y, 9(6, X)) +A[101]x

§ e RP

is equivalent to

min. f(@A) = E(y,f/(é\, X))
10 < B
6 ¢ RP

with
B :=|6*|2

=] (=)
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

B
L1 Regularization / Equivalence i

More generally, given

x*:=argminf(x)+Ag(x), A>0 (1)
X:= argmin f(x) (2)
x:g(x)<g(x*)

then

x* =X
because

F(%) <F(x") < F(5)+ A (g(%) - g(x")) < f(X)
) 1) —

assuming x* is unique.
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

Homotopy Methods

min. f(8) := €(y,9(6,X)) + A|0|lx
or equivalently
min. £(8) := ((y, (8, X))
19l < B

> start with a solution for large A(9) (or equiv. B(®) := 0)
> then A©) = 0.

> stepwise decrease A(!) (or equiv. increase B(1))

> learn A(*) starting from 6(t=1) (warmstart).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

Homotopy Methods / Prerequisites

For homotopy to work,

1. the parameters as function of A

O() := argmin £(y, (6, X)) + Alld]
0

must be continuous, i.e.,

» { must be continuous in 6 and
» { be continuous in y.

2. the steps in A(!) must be small enough.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

B
Homotopy for the L1 Weight of Linear Regression “

Most simple model: linear regression
» model y(4,X) := X0
> loss (y,7) = ly — 9lI3

Advantage: can find optimal A\(!) sequence analytically! (actually B(t))
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

Homotopy for the L1 Weight of Linear Regression

Most simple model: linear regression
» model y(4,X) := X0
> loss (y,7) = ly — 9lI3

Advantage: can find optimal A\(!) sequence analytically! (actually B(t))

Imagine the following situation:
P initially all parameters 0 = 0.
» you can add one variable x,, to the model
P by setting its parameter 0, to a small positive or negative value €.
P the goal is to reduce the error as much as possible.

» Q: which parameter 6., would you choose?
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression
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Q: which parameter will you pick initially

to reduce the loss maximally?

[m] = = =
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

vi
cyano 1
«
blue ° :
2 o
o o
=
o
[4
I
5 o
) o
yellow o
red El
o
-
gray 4 3
green <
o |
2 -

I I I I
0 5 10 15

L1 Arc Length

Q: which parameter will you pick initially
to reduce the loss maximally?

Q>: How will the cyano curve go?
[m] = = =
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany




Machine Learning 2 1. Homotopy Methods: Least Angle Regression
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Q: which parameter will you pick initially
to reduce the loss maximally?

Q>: How will the cyano curve go?
[m] = = =
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany




Machine Learning 2 1. Homotopy Methods: Least Angle Regression

Least Angle Regression (LAR)
in step t:

1. choose the predictors with largest correlation with the residuum
(active predictors):

C(tfl) ::XT(y . j}(tfl))

A® = arg max | C¢ Y| (a set!)
m
2. regress these predictors on the residuum:

X .= =X a®

A8 :=argmin ||y — (1 — X))
Y

=(XOT x(©)=1x O T (), _ plt=1)y

3. update parameters in this direction:

FOPCPYNCING

NG - t) . (1t ._ ;
Note: Amk,k =1 for Alt) .= {m1, ma,...,mg}, Am,k := 0 otherwise.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

. B2
Least Angle Regression (LAR): step length “
Residuum correlations after the update

€0 =XT(y — 99) = XT(y = XFO) = XT(y = X(H¢ D) + an930)
=c(t=1) —_ o XT X A®3(0)
=c(t=1) _ o xT x(03(1)

are uniformly reduced for active predictors:
CO| i =C g — aXOTXOFO = (1 — a) D] 4
and may also change for non-active predictors:

i =Y —axT x0300)

Note: Maybe a mistake somewhere here. Final formula for « differs from the one in_the
pap

aper.
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

. N
Least Angle Regression (LAR): step length (2/2) i
Reduce until another predictor has same (max) residuum correlation

i =l — axT x50 L (1 - )l

max
o = Crgnta;l) - Clg"lt_l)
ClEY — XT x(0)45()
or for negative correlations:
cle=1) 4 clt=1)
o = max m
Crgnta;l) +X7;71X(t)’/)\/(t)
yielding | Cr(nta;l) B Cr(ntfl) Cr(nta—xl) + C,(ntfl)

D _XT x40 D + XT x(0)4(0)

Ime{1,...,M}\ AD} minpos(X) := min{x € X | x > 0}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

Example
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

Example
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

NN
Example “
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FIGURE 3.14. Progression of the absolute correlations during each step of the
LAR procedure, using a simulated data set with siz predictors. The labels at the
top of the plot indicate which variables enter the active set at each step. The step
length are measured in units of L1 arc length.

o« = =T, Zlz Dac
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

Example

Least Angle Regression
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

Remarks

» algorithm can be used two ways:

1. Estimate parameters for all A (regularization path)
2. Estimate parameters for a specific A (Homotopy method)

P start with large 2O, stop once A < X reached.

» not straightforward to extend from regression to GLMs

» LAR can be modified to solve the LASSO:

» if the parameter ﬁ,(,f) for an active predictor m becomes 0 or changes
sign, drop it from the active set.

» also called Least Angle Regression and Shrinkage (LARS)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 1. Homotopy Methods: Least Angle Regression

Example
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Machine Learning 2 2. Proximal Gradient Methods

Outline

2. Proximal Gradient Methods

[m]

=
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Machine Learning 2 2. Proximal Gradient Methods

Regularized

We want to compute models

0* =argminL(0)+ R(0)
0~ ——

Loss Regularization
Even when R is not differentiable, e.g.

» R(0) = |01 (L' regularization, LASSO)

> R(0) = Ic() = {0 : Z Z (C:_ (hard constraint)
0 :

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

Regularized

We want to compute models

0* =argminL(0)+ R(0)
0~ ——

Loss Regularization

Even when R is not differentiable, e.g.

» R(0) = |01 (L' regularization, LASSO)

> R(0) = Ic() = {0 : Z Z (C:_ (hard constraint)
0 :

Observation: For simple loss functions, we can sometimes compute 6*
analytically

1
arg min 5[0 - ylI3 + Xl6ll2 = soft(y, A)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

Proximal Problem

» find x with minimal f in a vicinity of a given x

0,

0 - L 02

proxs(x°) :=arg min f(x) + §||x —x'||5
X

[m]

=
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Machine Learning 2 2. Proximal Gradient Methods

NN
Proximal Problem v

» find x with minimal f in a vicinity of a given x°:
1
proxs(x°) := arg min f(x) + EHX — x93
X

Can be solved analytically for some typical (possibly non-differentiable)
regularization functions: 1

> f = \|x]f3: prox,(x°) :mxo

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

Proximal Problem

» find x with minimal f in a vicinity of a given x°:
1
prox(x°) := arg min f(x) + §\|x — X3
X

Can be solved analytically for some typical (possibly non-differentiable)
regularization functions: 1

0y __ 0
> £ = I3 Proxe () =531 1

X

02 OAxTx + 3(x = x°) T (x — x9))

0x
= 2Ax 4 (x = x%) = (2A + 1)x — x°
1 0
I YW i

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

Proximal Problem

» find x with minimal f in a vicinity of a given x°:
1
proxs(x°) := arg min f(x) + EHX — x93
X

Can be solved analytically for some typical (possibly non-differentiable)
regularization functions: o 1
AP E prox¢ (") =537

> = Ax]|1:

XO

proxs(x%) =soft(x®, \) := (soft(x%, \))n=1...n

soft(z, ) := sign(z)(]z] — A)o

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

Proximal Problem

» find x with minimal f in a vicinity of a given x°:
1
proxs(x°) := arg min f(x) + EHX — x93
X

Can be solved analytically for some typical (possibly non-differentiable)
regularization functions: o 1
AP E prox¢ (") =537

> = Ax]|1:

XO

proxs(x°) =soft(x®, \) := (soft(x%, A\))n=1...n

soft(z, ) := sign(z)(]z] — A)o
> = A|x||o:

proxs(x%) =hard(x%, \) := (hard(x2, A))n=1...N,
hard(z,\) :==d(|z| > ) z

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

More Analytical Solutions for the Proximal Problem
» find x with minimal f in a vicinity of a given x°:
1
prox(x°) := arg min f(x) + §\|x — X3
X

0, ifxecC

f := Ic for a convex set C and Ic(x) := {
oo, else

proxf(xo) = argmin||x — XOH% =: projC(xo)
xeC

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

More Analytical Solutions for the Proximal Problem
0.

» find x with minimal f in a vicinity of a given x
1
prox(x°) := arg min f(x) + §\|x — X3
X
0, ifxecC

f := Ic for a convex set C and Ic(x) := {
oo, else

proxf(xo) = argmin||x — XOH% =: projC(xo)
xeC

» rectangles / box constraints C := [, u1] X [k, us] X -+ X [In, un]:

prox(x°) =clip(x®, C)  with clip(x°, C), := min{max{x?, I,}, u,}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

More Analytical Solutions for the Proximal Problem

» find x with minimal f in a vicinity of a given x°:

1
prox(x°) := arg min f(x) + §\|x — X3
X

0, ifxecC

f := Ic for a convex set C and Ic(x) := {
oo, else

proxf(xo) = argmin||x — XOH% =: projC(xo)
xeC

» rectangles / box constraints C := [, u1] X [k, us] X -+ X [In, un]:
prox(x°) =clip(x®, C)  with clip(x°, C), := min{max{x?, I,}, u,}
» euclidean balls C := {x | ||x||2 < 1}:

0

_ X |f XO > 1
proxf(xo): [1x01]2 [1x7]|2
X0, else

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

More Analytical Solutions for the Proximal Problem

» find x with minimal f in a vicinity of a given x*:

1
prox,c(xo) :=argmin f(x) + EHX — XOHE
X

f :=Ic for
» L1 balls C := {x | ||x]]1 <1}

soft(x?, \), if [|x0] > 1

prox;(x°) = { 0

xY, else
N |
for A with > (Ix3] = A)o = 1

n=1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

B
Deriving Generalized Gradient Descent (1/2) i

min f(x) := g(x) + h(x), g, h convex, g differentiable, h possibly not

using a Taylor expansion of g around previous solution x(1):
80 ~ 8(x(9) + Vg(xO)(x — x(9) + 3 (x — x1O)TH(x — x\9)

. . . . o~ 1
and diagonal approximation of the Hessian H =~ W’

~ 8(9) + V() (x — x1) 4 5 (x = x(O)T (x — x19)
2a(1)

= ﬁ(x — x4 200V g(x))T(x — x(V)) + const
&

(%

+ t
1 © o - cons
= al®) [Ix = (x'") — a'PVg(x'*))||* + const

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

Deriving Generalized Gradient Descent (2/2)

min f(x) := g(x) + h(x), g, h convex, g differentiable, h possibly

X

1
g() = g llx = (X9 — alIVg())] + const
yields a proximal problem

min f(x) = (x1 — Vg (x))|? + h(x)

1
LG
1

x 2l = (49 = Vg (|2 +ah(x)
= prox,m,(x(9 — avg(x(")))

1
with proxq(xo) = argmin q(x) + §Hx — X912
X

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

Generalized Gradient Descent

min g(x) + h(x), g, h convex, g differentiable

Generalized Gradient Descent:
x(tH1) = proxa(f)h(x(t) — oV g(x(*))

1
with proxq(xo) = argmin gq(x) + EHX — X912
X

» two-step approach:
1. minimize component g via gradient descent
2. minimize component h via prox operator

» requires control of step size a(t)

P> generalizes gradient descent to objective functions with
non-differentiable additive components

» convergence rate O(1/t).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

Application to Regularized Loss Minimization

min  £(0) :=£(0) + R(6)

» / loss, convex and differentiable
> e.g., RSS.

» R regularization, convex, but possibly not differentiable

0, becC
> e.g., ||9||1 or /C(H) = {oo else

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Machine Learning 2 2. Proximal Gradient Methods

Special Cases

00+ = prox g (0 — DVe(61))
= argminaMR(0) + %HQ — (0 - oOve(™))| 13
0

1. R =0 yields gradient descent:
o+ — (1) — (v (e(*))
2. R = I¢ yields projected gradient descent:

00+ = proj(01) — aDve(91))

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

23 / 42



Machine Learning 2 2. Proximal Gradient Methods

NN
Special Cases: Projected Gradient Descent “

Feasible Set

» Instead of taking a gradient step and then project,
we could compute the smallest stepsize that does not leave the feasible area ( “guarded gradient descent”).
»  Q: Which next iterate would “guarded gradient descent” find instead?
»  Now assume the current iterate 0; is on the upper right border of the feasible area.
»  Q: Which next iterate would “guarded gradient descent” find now?
» Q: How about projected gradient descent? o - [?r fig- 13:-11] —

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

Special Cases

01+ = prox g (01 — aDVe(01)))
= argmin ol R(0) + ,Hg (0 — aOve(e™))|3
0

3. R = \||0]|]1 yields iterative soft thresholding:

00+ = soft(0() — oDWe(6(1)), Aa(D)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

NN
Stepsizes alt) “

Taylor expansion of the Gradient:

VI(0) = VL(OD) + V201 (0 — 0y =~ V(o)) + %(9 —0()
[0
v aDve0)) — vty & () — gt1))y
Idea:

ot arg min 1160 — (=D — o(ve(6®)) — w6 2

(60 — gt=1) T (p(t) _ p(t-1))
(60 — 6= D)T(Ve(6(0) — Ve(o(- D))

called Barzilai-Borwein stepsize or spectral stepsize.
» does not guarantee decreasing objective values.
» can be used with any gradient descent method.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

NN
Iterative Shrinkage and Thresholding Algorithm(ISTA) “

» proximal gradient descent for L1 regularization
P iterative soft thresholding

» Barzilai-Borwein stepsize

» in outer loop, homotopy on A
» ie., gradually reducing A(Y) to X

Note This algorithm is called Sparse Reconstruction by Separable Approximation
(SpaRSA) . in the literature.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

ISTA Algorithm

learn-11reg-ista(X ¢ RV*M y ¢ RN X\ > 0,5 € (0,1), M) :
0:=0,r ::y,j\ =o0,a:=1
for t:=1,2,3,... while X # \:
X = max(\, s||X 7 r||o0)
while £(0) + \||6]|1 did not increase too much in the last M steps:
eold =0
0:=0—avi)
0 := soft(f, Aa)

o (0—6°9)T (6 —6°9)
T (0—0°9)T(VL(0)—VL(6°))

r:=y—X6
return 6

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

Nesterov's Accelerated Generalized Gradient Descent

min g(x) + h(x), g, h convex, g differentiable
X

Generalized Gradient Descent:

D) = prox o (x4 E L (0 — (1) _ o (yg(x(0)))

t+2

1
with prox;(x%) := argmin f(x) + §||x — X2
X

» added momentum term

» works also for vanilla gradient descent (h = 0)

» convergence rate O(1/t?)!

» beware, there are at least 3 versions of Nesterov’s method.
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Machine Learning 2 2. Proximal Gradient Methods

NE
Fast Iterative Shrinkage and Thresholding Alg. (FISTA)A

t—1

p(t+1) .— oo (01

(018 — (=) — o (p(0)))
for R = A||0||1 yields iterative soft thresholding:
p(t+1) — soft(g(t)+§;;(g(f) — 01y — aDvee)), AalD)

using Nesterov’s Accelerated Generalized Gradient Descent.

[m] = = =
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Proximal Gradient Methods

FISTA vs ISTA

10°

= ISTA

FISTA

2000 4000 6000

8000 10000
Figure 5. Comparison

of function value errors F(xy) — F/(x*) of ISTA, MTWIST, and FISTA

[m]

?, p. 19]:
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Outline

Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

3. Laplace Priors (Bayesian Lasso)

[m]

=
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

Bayesian Regression

B = arg min L(3) +A R(ﬁ)
—~—

Loss

Regulanzatlon
l” Bayesianize

p= argﬁmax p(B1X,y)

[m]

=
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

Bayesian Regression

B = argmin L(8) +X R(5)
B~ =

Loss Regularization

l” Bayesianize”

N

B = arggwax p(B1X,y)

P X y)ocply | X, 5)- plB)

posterior likelihood prior
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

Bayesian Regression

B = argmin L(8) +X R(5)
B~ =

Loss Regularization

l” Bayesianize”

N

B = arg;nax p(B1X,y)

p(ﬁIX,y)«p(yIX,ﬁ)g@

posterior likelihood prior

» p(y | X,8) = N(y | XB,02l) «~ Bayesian Linear Regression
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

Laplace Priors correspond to L1 regularization

L2 regularization:
F(B) = Ily — XBI[3 + AI5I13

Gaussian priors:

p()’n | Xn,ﬁ,o'z) = N(yn | sz—/Bao'z)
p(B) == N(B10,51)
= (2rA)~M/2 e 2 AIBI3

using negative logposterior as objective function:

f(B; X,y,0° or A) := —log p(y | X, B) p(B)
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

Laplace Priors correspond to L1 regularization

L2 regularization: L1 regularization:
F(8) = lly = XBI2 + AllBI F(8) = lly = XBI[Z + Al
Gaussian priors: Laplace priors:
p(yn | xa, 8,0%) := Ny | x, B,0°) p(Yn | Xn, 8,0%) = N(yn | %, B,07)
p(B) = N(B10,31) p(Bm) = Lap(Bm | 0, 3)
- (27r)\)*M/2 e 3813 = %)\eﬁxlﬁml

using negative logposterior as objective function:

f(B; X,y,0° or A) := —log p(y | X, B) p(B)
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

Laplace as Gaussian Scale Mixture

» problem: MAP cannot be found analytically.
P idea: rewrite the Laplace as a
Gaussian-Scale-Mixture with Exponential priors:

Lap(3; | 0,1) = /N(ﬁ,- | 0,72) Exp(7? | $A?)d7?

i.e. each parameter is distributed as 3; ~ N(0,72) with 72 ~ Exp(3A?)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

Laplace as Gaussian Scale Mixture

» problem: MAP cannot be found analytically.
P idea: rewrite the Laplace as a
Gaussian-Scale-Mixture with Exponential priors:

Lap(3; | 0,1) = /N(ﬁ,- | 0,72) Exp(7? | $A?)d7?

i.e. each parameter is distributed as 3; ~ N(0,72) with 72 ~ Exp(3A?)
~> posterior distribution:
p(ﬁ,oz|X,y,72)o<p(y|X,ﬁ,U2)- p(ﬂ|7—2) ’ p(7—2|)‘) ’ P(U2)
—_— —— —— ——
=N(y|XB,021)  =N(B|0,diag(?)) =Exp(r2|32)

with (7;)m=1..m latent variables,
A the regularization strength hyperparameter,
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

Laplace as Gaussian Scale Mixture

» problem: MAP cannot be found analytically.
P idea: rewrite the Laplace as a
Gaussian-Scale-Mixture with Exponential priors:

Lap(3; | 0,1) = /N(ﬁ,- | 0,72) Exp(7? | $A?)d7?

i.e. each parameter is distributed as 3; ~ N(0,72) with 72 ~ Exp(3A?)
~> posterior distribution:

P(ﬁ,02 |X,y,72)o<p(y|X,ﬂ,a2)- p(ﬂ|7—2) ' p(7—2 |)‘) : P(U2)
| S — ——— ———— ——
=N(y|XB,021) =N (B|0,diag(2?)) =Exp(T2\%)\2) =IG(02|a,b)

with (7;)m=1..m latent variables,
A the regularization strength hyperparameter,
IG(0? | a, b) an Inverse-Gamma prior on the variance.
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

Laplace as Gaussian Scale Mixture

» problem: MAP cannot be found analytically.
P idea: rewrite the Laplace as a
Gaussian-Scale-Mixture with Exponential priors:

Lap(3; | 0,1) = /N(ﬁ,- | 0,72) Exp(7? | $A?)d7?

i.e. each parameter is distributed as 3; ~ N(0,72) with 72 ~ Exp(3A?)
~> posterior distribution:

P(ﬁ,02 |X,y,72)o<p(y|X,ﬂ,a2)- p(ﬂ|7—2) ' p(7—2 |)‘) : P(U2)
| S — ——— ———— ——
=N(y|XB,021) =N (B|0,diag(2?)) =Exp(T2\%)\2) =IG(02|a,b)

with (7;)m=1..m latent variables,
A the regularization strength hyperparameter,
IG(0? | a, b) an Inverse-Gamma prior on the variance.
» pis now smooth in all parameters! We can apply EM-algorithm!
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

Inverse Gamma Distribution

» Gamma distribution:

M(x|a,b):= rl()a)xal —bx
E(x) = %
» Inverse Gamma distribution:
IG(x | a,b) = r‘(’:)xalei’
> X ~T(a,b) <= X1 ~IG(a,b)
- b

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

. : . P2
Laplace Prior as Gaussian Scale Mixture VI “

_ 1y _ T3 |2 O
P(vn | XnsB,0%) = Nyn | X, B,0%) = ZLse72? Yo = Bm|
1 2 w;j
— L 1Bml Qwi
1 _ 1y S
P(T,%) = EXP(T,% \ §>\2) = %Aze 22 i Oz——>.y,,
o
a _ b
,0(02) = |G(02 | a,b) = %J—ﬂl—&-a)e P .
N
Note: T = diag(r?.73...... %) s
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

Laplace Prior as Gaussian Scale Mixture

1, T 2
PUn | X0, B,0%) i= Ny | X[ 8.0%) = Ly zabnxlil
_i|5m|2
pOm | 72) = N(Bm |0,77) = e
1 1
P(qu) = EXP(T% ‘ 5)‘2) = %A2e72’\27"21 Q_
g
p(c?) := 1G(c? | a, b) = %g*(lﬂ)ej,%

negative logposterior:

0B,0% | X,y,7%) = FNlogo® + 55 |ly — XI5

M M
+ Z |Og7',%+%,3TT715+ %)\2 ZT,%—l—(l—i-a) Iogaz—i-a%

m=1 m=1

Note: T := diag(72,72,...,7%)

2, p. 446]
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

E-step for 72

We need to compute the expectation of

p(7% | X,y,B,0%) o< p(B | 7°)p(7?)

where p(Bm | 72,) = N (Bm | 0,75) and p(73,) = Exp(7, | 5

[m]

=
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

P2
E-step for 72 “
We need to compute the expectation of
p(7* | X,y,B,0%) o< p(B | 7°)p(7°)
where p(fm | 75,) = N(Bm | 0,77,) and p(77) = Exp(7s, | 3A%)
It turns out simpler to estimate =: One can show that (tutorial)

1
— | B ~ InvGauss( 52’)‘2)

Where the Inverse Gaussian distribution is given by

Y (x—p)2
InvGauss(x | p,v) = 53¢ 22 )
X

with mean E[x] = p1 and variance Var[x] = 13 /v = |E[%]

_ A
Bl
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

E-step for o2

We need to compute the expectation of

p(a® | X,y,B,7%) o< ply | X, 8,0%) p(0?)

= Ny | XB.0%1) 16(0? | 2,b)

[m]

=
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

E-step for o2

We need to compute the expectation of

p(a® | X,y,B,7%) o< ply | X, 8,0%) p(0?)
= N(y | XB,0%1) 1G(0? | a, b)

One can show that (tutorial)

p(c? | X,y,B,7%) =1G(c?,4, b))
with 2 :=a+iN, b :=b+1i|y-X3|3
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

. . N
Remark on Conjugate Prior “
Note that the posterior of o is again an Inverse Gamma distribution!

p(a® | X,y,B) x ply | X,B,0%) p(c?)

——
=1G(2/,b") ) =1G(a,b)

This is because the IG is a conjugate prior to the normal distribution.

Conjugate priors let you interpret how the data changes the believe about
the parameters. — Main reason for choosing this prior!

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

s
Remark on Conjugate Prior q

Note that the posterior of o is again an Inverse Gamma distribution!

p(a? | X,y,B) o< p(y | X, B,0%) p(c?)
——
—1G(2/,b/) NGov)  =IG(a,b)

This is because the IG is a conjugate prior to the normal distribution.
Conjugate priors let you interpret how the data changes the believe about
the parameters. — Main reason for choosing this prior!

Remark: inverse distributions
Note that the Inverse Gamma distribution is called Inverse Gamma because

X ~T(a,b) <= X1 ~IG(a,b) (1)

However, despite the name, the same is not true for the Inverse Gaussian!
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

NN
M-step for (3 “

We need to compute
B = argﬁmin 0B,0%, 7% = argﬁmin ﬁ“y — XB|5 + %BTT_lﬁ

where we dropped all terms independent of 3. Then

Vol =0 <= (5XTX+T1)3=2%4xTy

So|B=(XTX+(5T) ) XTy

which is a ridge regression objective!
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

EM summary

1. Expectation of 72

(Tg | B) = Inv-Gauss( %,)\2)
A
E[5] = ol
2. Expectation of 02:
p(0? | X.y.B) = 16(o? | &, )
di=a+ N, bi=b+ 3y - XBll3
El%] =%
3. Maximization w.r.t. f:
U(B) = 5pzlly = XBl3 + 3877718
B=XTX+(£T) ) Xy

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 3. Laplace Priors (Bayesian Lasso)

Why Laplace Prior?

» Bayesian Lasso
» provides posterior distribution, not just point estimates

» Can be generalized to other models / losses
» Motivates to experiment with other types of priors, too

P Less scalable than the other methods, though.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2

Further Readings

» L1 regularization: [?, chapter 13.3-5], [?, chapter 3.4, 3.8, 4.4.4], [?,
chapter 3.1.4].
> LAR, LARS: [?, chapter 3.4.4], [?, chapter 13.4.2],

» Non-convex regularizers: [?, chapter 13.6].

» Automatic Relevance Determination (ARD): [?, chapter 13.7], [?,
chapter 11.9.1], [?, chapter 7.2.2].

» Sparse Coding: [?, chapter 13.8].
» Multivariate Laplace Distribution: [?]
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