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Machine Learning 2 1. Automatic Relevance Determination (ARD)

Linear Regression plus ARD Regularization
Linear Regression plus L2 regularization (Ridge Regression):
p(Yn | Xna670}2/) = N(yn | BTXnaO-}zz)
p(B) == N(B0,Z5 := o3l)

Linear Regression plus ARD Regularization:

p(}/n ’ Xmﬁ:a}z/) = N(Yn ’ 5Txna0)2/)
p(B) =N(B]0,X5 = diag((rél, o ’”?W))
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Machine Learning 2 1. Automatic Relevance Determination (ARD)

Linear Regression plus ARD Regularization
Linear Regression plus L2 regularization (Ridge Regression):
p(Yn | Xna670}2/) = N(yn | BTXnaO-}zz)
p(B) == N(B0,Z5 := o3l)

Linear Regression plus ARD Regularization:

P(yn | Xn,ﬁﬁﬁ) = N(yn | 5TXH’U)2/)
p(B) =N(B]0,X5 = diag((rél, . ’”?W))

Idea:
» use a different regularization weight for each predictor x;,.
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Machine Learning 2 1. Automatic Relevance Determination (ARD)

Linear Regression plus ARD Regularization
Linear Regression plus L2 regularization (Ridge Regression):
p(Yn | Xna670}2/) = N(yn | BTXnaO-}zz)
p(B) == N(B0,Z5 := o3l)

Linear Regression plus ARD Regularization:

p(}/n ’ Xn,ﬁ,d}z,) = N(Yn ’ 5TXnaU)2/)
p(B) =N(B]0,X5 = diag((rél, o ’U?W))

Idea:
» use a different regularization weight for each predictor x;,.
» but M hyperparameters are too many to learn by grid search.
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Machine Learning 2 1. Automatic Relevance Determination (ARD)

Linear Regression plus ARD Regularization
Linear Regression plus L2 regularization (Ridge Regression):
p(Yn | Xna670}2/) = N(yn | BTXnaO-}zz)
p(B) == N(B0,Z5 := o3l)

Linear Regression plus ARD Regularization:

P(n | xn, B,07) = N(yn | BT 50, 07)

p(B) =N (80,55 :=diag(c,....,03,))
p(a}z,) = InvGamma(af, | c,d)
p(c3 )= InvGamma(aém |a,b), m=1,....M

Idea:

» use a different regularization weight for each predictor x;,.

» but M hyperparameters are too many to learn by grid search.
P hence put a hyperprior on top.
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Machine Learning 2 1. Automatic Relevance Determination (ARD)
Empirical Bayes

Maximum Likelihood (ML):

0 :=argmax p(D | 6)
0
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Machine Learning 2 1. Automatic Relevance Determination (ARD)
Empirical Bayes

Maximum Likelihood (ML): :=argmaxp(D | 0)
0

>

Maximum Aposteriori (MAP):

>

;:arggnaxp(D | 0) p(8 | 1)

Full Bayes: (OA, M) ~p(f,n | D) < p(D | 8) p(6 | n) p(n)
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Machine Learning 2 1. Automatic Relevance Determination (ARD)

.. N
Empirical Bayes “
Maximum Likelihood (ML): 0 :=argmax p(D | 6)
0
Maximum Aposteriori (MAP): 0 :=argmaxp(D | 0) p(6 | 1)
0
ML-II (Empirical Bayes): fj :=argmaxp(D | n)
U
=arg maX/p(D 1 0)p(6 | n)do
n
6 ~p(6| D, A) o p(D | 6) p(6 | )
MAP-11: A

=argmax p(D | n) p(n)
n

= arg max / p(D | 6) p(0 | n) p(n)do

0 ~p(0 | D, ) < p(D | 0) p(6) | H)
Full Bayes: (QA, M) ~p(f,n | D) < p(D | 8) p(6 | n) p(n)
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Machine Learning 2 1. Automatic Relevance Determination (ARD)
Marginal Likelihood
Without hyperpriors:

ply | X,02,55) = / N(y | XB,02 [)N(B | 0, £5)df

=N(y| 0,051+ XEsXT)
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Machine Learning 2 1. Automatic Relevance Determination (ARD)

Marginal Likelihood
Without hyperpriors:

Py | Xo2.Es) = [ WUy | X8,03 A3 0.55)d5

=N(y| 0,051+ XEsXT)
\—v—’
E(aﬁ,zﬁ): —logp(y | X,o y,Zﬁ) x log|C, |—|—yTC y
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Machine Learning 2 1. Automatic Relevance Determination (ARD)

Marginal Likelihood
Without hyperpriors:

Py | X,0%E5) = [ Ny | XB. o V(3] 0.E5)d5
= N(y 0,021+ XTpX7)
\—v—’

6(05,25): —logp(y | X,o y,Zﬁ)oc log |C, |—|—yTC y
With hyperpriors:
E(U}z/azﬁ) = Ing(y | X, y,ZB)p(O')% | <, d) p(25 ’ a, b)
M
x log|C,| —l—yTCy_ly + Z(—alogaém - b/aém)
m=1

- clogo—f, - d/o*f,
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Machine Learning 2 1. Automatic Relevance Determination (ARD)

Bayes Rule for Linear Gaussian Systems

For an LGS p(x) = N(x | px, Lx)

py | x) :=N(y | Ax+b,X,)

Bayes' Rule reads:

p(x | y) =N(x | bxy, Zxiy)
with %, = (I 1+ ATE A

N Ty -1 -1
Px|y = ZX|y (A Zy (y - b) + Zx :ux>
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Machine Learning 2 1. Automatic Relevance Determination (ARD)

: N e
Inferring Parameters [3 v

1
p(B 1 X,y,07,%5) = SNB10.Z5) Ny | XB,001)
1 1
=N up:=5CXTy, Cg:= (X" X+
Ty Ty
using Bayes Rule
for X3 = ool: unregularized estimates
= N(BI(XTX) X Ty, op(XTX) )

for 0}2, = 00: overregularized estimates

:N(/B|Ovzﬁ)
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Machine Learning 2 1. Automatic Relevance Determination (ARD)

NN
Equivalent MAP Estimation Problem “

1
0B) :—2Hy—XﬁH§+ , min Iog|a | + Xdiag(o TH—Z O
Ty 7By ’03M> m=1 ﬁm
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Machine Learning 2 1. Automatic Relevance Determination (ARD)

Two Rules for Expectations

i) E(tr(g(X)) = tr(E(g(X))
i) E(XTAX) = pu" Au+tr(AY), p:=E(X),X :=V(X)

[m] = = =
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Two Rules for Expectations

i) E(tr(g(X)) = tr(E(g(X))
i) E(XTAX) = pu" Au+tr(AY), p:=E(X),X :=V(X)

proof:
E(XTAX)=E((u+ Y) A+ Y)), Y :=X—uEY)=0,V(Y)=
=puT A+ 2uT AE(Y) +E(YTAY)
E(YTAY) =E(tr(YTAY)) s vTarisascalar
E(tr (AYY )) as as YT AT is a scalar trace allows permutations of matrices
= tr(E(AYY )
= tr(AE(YYT))
= tr(AY)
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Machine Learning 2 1. Automatic Relevance Determination (ARD)

B
Learning ARD I: via EM “

Uo7, 6,18, Co) = Egnus,c)(logply | X, B8,05,%p))
= Egn(us.c)(log N (y | XB,07) +log N(B ] 0,%p))
M
+ Z IoglnvGamma(af;m | a, b) + log InvGamma(af, | c,d)
m=1

N 1 1 1
X EﬂNN(ug,Cg)(_E |0g<7}2/ - @Hy - XﬂHZ ) Z |0g0§m - EtfzglﬁﬁT
y m

M
+ Z(—alogaém — b/af;m) - cloga}z, — d/a}z,
m=1

N
- —Eloga ——(Hy Xpug|? + tr(X T XCp)) —72|og05m
1 M
- §tr251(,u5,ug + Cg) + Z(—alog aém - b/aém) — clog 0)2, - d/af,
m=1
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Machine Learning 2 1. Automatic Relevance Determination (ARD)

B
Learning ARD I: via EM “

o..)

N 1 1
= ——logoy — > (lly = Xugl® + tr(XTXCy)) = 5 Y _log o,
2 2072 2 &

M
1
— Etriﬁl(,ug,ug + Cg) + Z(—alogaém - b/aém) — clogaf, - d/af,

m=1

1
o —(2c+ N)logo? — (2d + ||y — Xpug|[* + tr(XTXCB));
y

- 2(23 +1)log O'%m + 2b/a[23m - trZEl(Waug + Cp)
m
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Machine Learning 2 1. Automatic Relevance Determination (ARD)

B
Learning ARD I: via EM “

1
((...)= —(2c+ N)log o2 — (2d + |ly — Xug||* + tr(XTXCg))J—}%
- 2(23 +1)log aém + 2b/cr§m - trZEl(,uﬁ,ug + Cp)

|
0% o = ~(2a+ 1)7 + @b+ (1) + (Co)mam) (03,
o2 = 2b + (,U,B)m (C8)m,m
Bm 2a+1
o4
0 — ?‘_}2,
2 2d+ |ly = Xpgl 2 + tr(XTXC)
Y 2c+ N
which can be accelerated using
o - o C m,m
CgXTX:U)z, |d(/_C5261), o2 |dzl B
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Machine Learning 2 1. Automatic Relevance Determination (ARD)

Learning ARD I: via EM

given: data X Y, hyperprlor parameters a, b, ¢, d.
initialize: O’IB =1, O’ =1

iteratively fit:

1 “1y—
Cp = (SXTX+x )™,
Ty
1 T
pp = ?CBX y
y

52 _ 2b+ (pg)p + (Cg)m,m

Pm - 2a+1
2 20+ 1ly = Xpgl? + 0(XTXG)
y 2c+ N
finally yielding:

B~ N(us, Cg)

Y= diag(aél, .

.,O'%M)
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Machine Learning 2 1. Automatic Relevance Determination (ARD)

Learning ARD Il: Fixed Point Algorithm

iteratively fit:

o2 = 2b + (ps)m

Bm 23+’7m

2. 2d+|ly — Xug|P

Yo 2c+N=3, m
1

Csi=(SXTX+x;H)?

B (0}2/ + ﬁ)

1
pg = ;CﬁXTy

y
G
’ym:zl—i( 'Bgm’m, m=1....M

9 8m
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Machine Learning 2 1. Automatic Relevance Determination (ARD)

Learning ARD IlI: Iteratively Reweighted L1
The ARD regularization term

R(03) := log|C,(03)| = log|op I + XTgXT|, Tz := diag(c3)
is concave in aé and thus can be written as
R(03) = minATo5 — R*(A
(aﬁ) m)ln o3 (N)

R*(A) = minAT53 —log |C,(53)|
s

The relaxed function
R(05,A) = ATof — R*(A\) = AToj — min AT53 — log |, (53)|
g
B
for fixed aé is minimized by

2
A= ¥,z log |Cy(03)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 1. Automatic Relevance Determination (ARD)

Learning ARD IlI: Iteratively Reweighted L1
Instead of aé Wipf/Nagarajan 2008 use

7 .3
03 > A2 Bml
finally yielding the iterative procedure:

M
B = argmin () + Z )\%)\Bm\
g

m=1
and to find A(:
)\ES) =1
1

: 1 . _
Ao = (Xl + Xdiag (o) g1 9370) 7

1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 1. Automatic Relevance Determination (ARD)

ARD for Classification VA

P> so far, everything was developed for linear regression.

» for logistic regression, for EM the E-step cannot be done analytically.

» possibly use variational approximation
» use Gaussian approximation (Laplace approximation)

P the iteratively reweighted learning algorithm still works.
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Machine Learning 2 1. Automatic Relevance Determination (ARD)

Remarks

» ARD is a good example for a (arguably simple) hierarchical Bayesian
model.

» ARD has to be diligently evaluated against simple baselines
such as normalizing the data with a vanilla L1/L2 regularized model.
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2. A note on Model Complexity
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Machine Learning 2 2. A note on Model Complexity

Model Complexity, Bias & Variance

Example (Linear models)
> y(x)=PB1-x

> J(x) =1+ P+ ...+ Pk)-x

Both models have the same bias and variance! ~~ redundant parameters!
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Machine Learning 2 2. A note on Model Complexity

B
Model Complexity, Bias & Variance v

Example (Linear models)
> J(x) = b1 x
> J(x)=(Br+Ba+...+Bk) x

Both models have the same bias and variance! ~~ redundant parameters!

Example (1-parameter model)
> y(x) =sin(fx)

Can achieve 100% accuracy on any finite 1D binary classification dataset.

— A single real number can store an infinite amount of information!
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B
Model Complexity, Bias & Variance v

Example (Linear models)
> J(x) = b1 x
> J(x)=(Br+Ba+...+Bk) x

Both models have the same bias and variance! ~~ redundant parameters!

Example (1-parameter model)
> y(x) =sin(fx)

Can achieve 100% accuracy on any finite 1D binary classification dataset.

— A single real number can store an infinite amount of information!

Example (Neural Network)
» Network 1: vanilla MLP

» Network 2: sparse Network with skip connections

Network 2 is more complex when both have same amount of parameters!
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Machine Learning 2 2. A note on Model Complexity

Measures of Model Complexity
» Parameter Counting

» only really works when comparing models with the same architecture
P even then not guaranteed to be useful

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. A note on Model Complexity

Measures of Model Complexity

» Parameter Counting

» only really works when comparing models with the same architecture
P even then not guaranteed to be useful

» Information Criteria (e.g. BIC, AIC)

» Both very crude tools (lots of approximations used in derivation)
» Both ignorant about the model architecture
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Machine Learning 2 2. A note on Model Complexity

Measures of Model Complexity

» Parameter Counting

» only really works when comparing models with the same architecture
P even then not guaranteed to be useful

» Information Criteria (e.g. BIC, AIC)

» Both very crude tools (lots of approximations used in derivation)
» Both ignorant about the model architecture

» VC-dimension

» "What is size the the smallest binary classification problem that the
model cannot solve.”
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Measures of Model Complexity

» Parameter Counting

» only really works when comparing models with the same architecture
P even then not guaranteed to be useful

» Information Criteria (e.g. BIC, AIC)

» Both very crude tools (lots of approximations used in derivation)
» Both ignorant about the model architecture

» VC-dimension

» "What is size the the smallest binary classification problem that the
model cannot solve.”

» Rademacher Complexity
> "How good can the model simulate noise.”
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Machine Learning 2 2. A note on Model Complexity

Measures of Model Complexity

» Parameter Counting

» only really works when comparing models with the same architecture
P even then not guaranteed to be useful

» Information Criteria (e.g. BIC, AIC)

» Both very crude tools (lots of approximations used in derivation)
» Both ignorant about the model architecture

» VC-dimension

» "What is size the the smallest binary classification problem that the
model cannot solve.”

» Rademacher Complexity
> "How good can the model simulate noise.”
» Kolmogorov Complexity & Minimum Description Length

» "What is the minimal size of a program that implements the model.”
» uncomputable!
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Machine Learning 2 2. A note on Model Complexity

Kolmogorov Complexity - Mandelbrot Fractal

Generated by a simple formula:
Does the iteration

zk+1:z,f+c zp=0

diverge? (with z, ¢ € C)
» Yes: c belongs to class 1 (white)
» No: ¢ belongs to class 0 (black)

images: wikipedia.org
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Kolmogorov Complexity - Mandelbrot Fractal

Generated by a simple formula:
Does the iteration

zk+1:z,f+c zp=0

diverge? (with z, ¢ € C)
» Yes: c belongs to class 1 (white)
» No: ¢ belongs to class 0 (black)

Very simple rules lead to incredible
complexity.

images: wikipedia.org
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Machine Learning 2 2. A note on Model Complexity

Kolmogorov Complexity - Mandelbrot Fractal

Generated by a simple formula:
Does the iteration

zk+1:z,f+c zp=0

diverge? (with z, ¢ € C)
» Yes: c belongs to class 1 (white)
» No: ¢ belongs to class 0 (black)

Very simple rules lead to incredible
complexity.

It would be very hard to reconstruct
the rules, if we only know the image.
In fact, in general it is impossible!
«~ uncomputability

images: wikipedia.org
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Further Readings

» L1 regularization: [?, chapter 13.3-5], [?, chapter 3.4, 3.8, 4.4.4], [?,
chapter 3.1.4].
> LAR, LARS: [?, chapter 3.4.4], [?, chapter 13.4.2],

» Non-convex regularizers: [?, chapter 13.6].

» Automatic Relevance Determination (ARD): [?, chapter 13.7], [?,
chapter 11.9.1], [?, chapter 7.2.2].

> see also [?].

» Sparse Coding: [?, chapter 13.8].

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
20



Machine Learning 2

B
References v

B Christopher M. Bishop.
Pattern recognition and machine learning, volume 1.
springer New York, 2006.

Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin.

The elements of statistical learning: data mining, inference and prediction, volume 27.
Springer, 2005.

ﬁ Kevin P. Murphy.
Machine learning: a probabilistic perspective.
The MIT Press, 2012.

ﬁ David P. Wipf and Srikantan S. Nagarajan.

A New View of Automatic Relevance Determination.
In J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis, editors, Advances in Neural Information Processing Systems 20,
pages 1625-1632. Curran Associates, Inc., 2008.

=] & = =] El= DA
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
21/ 19



	1. Automatic Relevance Determination (ARD)
	2. A note on Model Complexity
	Appendix

