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Machine Learning 2

Syllabus
A. Advanced Supervised Learning

Fri. 24.4. (1) A.1 Generalized Linear Models
Fri. 1.5. — — Labour Day —
Fri. 8.5. (2) A.2 Gaussian Processes
Fri. 15.5. (3) A.3 Advanced Support Vector Machines

B. Ensembles
Fri. 22.5. (4) B.1 Stacking

& B.2 Boosting
Fri. 29.5. (5) B.3 Mixtures of Experts
Fri. 5.6. — — Pentecoste Break —

C. Sparse Models
Fri. 12.6. (6) C.1 Homotopy and Least Angle Regression
Fri. 19.6. (7) C.2 Proximal Gradients
Fri. 26.6. (8) C.3 Laplace Priors
Fri. 3.7. (9) C.4 Automatic Relevance Determination

D. Complex Predictors
Fri. 10.7. (10) D.1 Latent Dirichlet Allocation (LDA)
Fri. 17.7. (11) Q & A
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Outline
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Machine Learning 2 1. The LDA Model

Documents / Finite Discrete Sequences

I instances xn ∈ A∗ are discrete sequences
I A := {1, . . . ,A} called dictionary / alphabet (A ∈ N),

where a ∈ A denotes the a-th word / symbol / token.
I A∗ :=

⋃∞
`=1A` called documents / finite A-sequences.

I Mn := |xn| := ` called length (for xn ∈ A`).
I xn,m called m-th word of xn.

I if there are no sequential effects (order does not matter),
documents can be described by their word frequencies
(bag of words):

x̃n,a := |{m ∈ {1, . . . , |xn|} | xn,m = a}|, a ∈ A
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Machine Learning 2 1. The LDA Model

The LDA Model

p(xn,m | zn,m = k , φ) := Cat(xn,m | φk), n = 1, . . . ,N,m = 1, . . . ,Mn

p(zn,m | πn) := Cat(zn,m | πn), n = 1, . . . ,N,m = 1, . . . ,Mn

p(φk | β) := Dir(φk | β 1A), k = 1, . . . ,K

p(πn | γ) := Dir(πn | γ 1K ), n = 1, . . . ,N

I zn,m ∈ {1, . . . ,K}: topic the m-th word of document n belongs to.

I φk ∈ ∆A: word probabilities of topic k.

I πn ∈ ∆K : topic probabilities of document n.

I β, γ ∈ R+: priors of φ and π.
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Machine Learning 2 1. The LDA Model

Example p(xn,m | zn,m, φ)

word prob. word prob. word prob.
MUSIC .090 LITERATURE .031 PLAY .136

DANCE .034 POEM .028 BALL .129
SONG .033 POETRY .027 GAME .065
PLAY .030 POET .020 PLAYING .042
SING .026 PLAYS .019 HIT .032

SINGING .026 POEMS .019 PLAYED .031
BAND .026 PLAY .015 BASEBALL .027

PLAYED .023 LITERARY .013 GAMES .025
SANG .022 WRITERS .013 BAT .019

SONGS .021 DRAMA .012 RUN .019
DANCING .020 WROTE .012 THROW .016

PIANO .017 POETS .011 BALLS .015
PLAYING .016 WRITER .011 TENNIS .011
RHYTHM .015 SHAKESPEARE .010 HOME .010
ALBERT .013 WRITTEN .009 CATCH .010

MUSICAL .013 STAGE .009 FIELD .010

Topic 166Topic 82Topic 77
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Machine Learning 2 1. The LDA Model

Example xn,m, zn,m
Document #29795 
Bix beiderbecke, at age060 fifteen207, sat174 on the slope071 of a bluff055 overlooking027 the mississippi137 river137. He 
was listening077 to music077 coming009 from a passing043 riverboat. The music077 had already captured006 his heart157 
as well as his ear119. It was jazz077. Bix beiderbecke had already had music077 lessons077. He showed002 promise134 on 
the piano077, and his parents035 hoped268 he might consider118 becoming a concert077 pianist077. But bix was 
interested268 in another kind050 of music077. He wanted268 to play077 the cornet. And he wanted268 to play077 jazz077...  
 
 
Document #1883 
There is a simple050 reason106 why there are so few periods078 of really great theater082 in our whole western046 world. 
Too many things300 have to come right at the very same time. The dramatists must have the right actors082, the 
actors082 must have the right playhouses, the playhouses must have the right audiences082. We must remember288 that 
plays082 exist143 to be performed077, not merely050 to be read254. ( even when you read254 a play082 to yourself, try288 to 
perform062 it, to put174 it on a stage078, as you go along.) as soon028 as a play082 has to be performed082, then some 
kind126 of theatrical082... 
 
 
Document #21359 
Jim296 has a game166 book254. Jim296 reads254 the book254. Jim296 sees081 a game166 for one. Jim296 plays166 the game166. 
Jim296 likes081 the game166 for one. The game166 book254 helps081 jim296. Don180 comes040 into the house038. Don180 and 
jim296 read254 the game166 book254. The boys020 see a game166 for two. The two boys020 play166 the game166. The 
boys020 play166 the game166 for two. The boys020 like the game166. Meg282 comes040 into the house282. Meg282 and 
don180 and jim296 read254 the book254. They see a game166 for three. Meg282 and don180 and jim296 play166 the game166. 
They play166... 
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Machine Learning 2 1. The LDA Model

The LDA Model

p(xn,m | zn,m = k , φ) := Cat(xn,m | φk)

p(zn,m | πn) := Cat(zn,m | πn)

p(φk | β) := Dir(φk | β 1A)

p(πn | γ) := Dir(πn | γ 1K )

I zn,m ∈ {1, . . . ,K}: topic the m-th word of document n belongs to.
I φk ∈ ∆A: word probabilities of topic k .
I πn ∈ ∆K : topic probabilities of document n.
I β, γ ∈ R+: priors of φ and π.

x7 = “In Franfurt, many banks are located at the banks of Main.”
Q: How can LDA model that

I x7,4=”bank” denotes a credit institute and belongs to topic 1 “finance”,

I x7,9=”bank” denotes a river bank and belongs to topic 2 “environment”?
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Machine Learning 2 2. Learning LDA via Gibbs Sampling

Learning via Parameter Sampling
The posterior

p(θ | D) ∝ p(D | θ)

describes the distribution of the parameters given the data.
If we can sample parameters from this distribution

θ1, θ2, . . . , θS ∼ p(θ | D)

we can
I estimate expected parameter values and their variances from this

parameter sample:

θ̂ := E (θ | D) ≈ 1

S

S∑
s=1

θs , V (θ | D) ≈ 1

S − 1

S∑
s=1

(θs − E (θ | D))2

I predict targets for new instances x via model averaging:

p(y | x , θ1:S) =
1

S

S∑
s=1

p(y | x , θs)
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Machine Learning 2 2. Learning LDA via Gibbs Sampling

Sampling

I for most closed-form distributions p(x) there exist efficient sampling
methods
I categorical, normal, . . .

I but most posteriors are not closed-form distributions.
I but for example products thereof.
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Machine Learning 2 2. Learning LDA via Gibbs Sampling

Gibbs Sampling
I task: sample from p(x1, . . . , xN)
I problem:

I assume sampling from the joint distribution p(x1, . . . , xN) is difficult.
I assume sampling from marginals p(xn) or partial conditionals

p(xn | some xn′) is also difficult.
I assume sampling from all full conditionals p(xn | x–n) is easy.

Gibbs sampling: given last sample x s , sample x s+1 one variable at a time:

x s+1
1 ∼ p(x1 | x2:N = x s2:N)

x s+1
2 ∼ p(x2 | x1:1 = x s+1

1:1 , x3:N = x s3:N)

...

x s+1
n ∼ p(xn | x1:n−1 = x s+1

1:n−1, xn+1:N = x sn+1:N)

...

x s+1
N ∼ p(xN | x1:N−1 = x s+1

1:N−1)
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Machine Learning 2 2. Learning LDA via Gibbs Sampling

Gibbs Sampling

I the distribution created by the Gibbs sampler eventually will converge
to p(x1, . . . , xN)

I start Gibbs sampling with an arbitrary x0

I but ensure that p(x0) > 0 !
I also consider restarts.

I throw away the first examples (burn in).
I only after a while the chain has converged to the stationary distribution

p(x1, . . . , xN).
I typical are 100-10,000 examples

I sometimes some variables can be marginalized out,
improving the performance of the Gibbs sampler
(collapsed Gibbs sampling, Rao-Blackwellisation)
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Machine Learning 2 2. Learning LDA via Gibbs Sampling

Gibbs Sampling for LDA

p(xn,m | zn,m = k, φ) := Cat(xn,m | φk) = φk,xn,m

p(zn,m | πn) := Cat(zn,m | πn) = πn,zn,m

p(φk | β) := Dir(φk | β 1A) ∝
A∏

a=1

φβa−1
k,a

p(πn | γ) := Dir(πn | γ 1K ) ∝
K∏

k=1

πγk−1
n,k

Full conditionals: 1. z

p(zn,m = k | φ, πn) ∝ p(xn,m | zn,m = k , φ)p(zn,m = k | πn) = φk,xn,mπn,k
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Machine Learning 2 2. Learning LDA via Gibbs Sampling

Gibbs Sampling for LDA

p(xn,m | zn,m = k, φ) := Cat(xn,m | φk) = φk,xn,m

p(zn,m | πn) := Cat(zn,m | πn) = πn,zn,m

p(φk | β) := Dir(φk | β 1A) ∝
A∏

a=1

φβa−1
k,a

p(πn | γ) := Dir(πn | γ 1K ) ∝
K∏

k=1

πγk−1
n,k

Full conditionals: 2. π

p(πn | zn, φ) ∝ p(πn | γ)
Mn∏
m=1

p(zn,m = k | πn)

∝
K∏

k=1

πγk−1
n,k

Mn∏
m=1

K∏
k=1

π
δ(zn,m=k)
n,k

Q: Do you recognize this distribution?
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Machine Learning 2 2. Learning LDA via Gibbs Sampling
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Gibbs Sampling for LDA

p(xn,m | zn,m = k, φ) := Cat(xn,m | φk) = φk,xn,m

p(zn,m | πn) := Cat(zn,m | πn) = πn,zn,m

p(φk | β) := Dir(φk | β 1A) ∝
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a=1

φβa−1
k,a

p(πn | γ) := Dir(πn | γ 1K ) ∝
K∏

k=1

πγk−1
n,k

Full conditionals: 3. φ

p(φk | z , π) ∝ (
N∏

n=1

Mn∏
m=1

p(xn,m = a | zn,m = k , φk) p(φk | β))a=1:A

= Dir((βa +
N∑

n=1

M∑
m=1

δ(xn,m = a, zn,m = k))a=1:A)
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Machine Learning 2 2. Learning LDA via Gibbs Sampling

Gibbs Sampling for LDA

I initialize randomly

πn ∼ Dir(γ1K ), φk ∼ Dir(β1A)

I sample iteratively:

zn,m ∼ Cat((φk,xn,mπn,k)k=1:K ), ∀n∀m

πn ∼ Dir((γk +
M∑

m=1

δ(zn,m = k))k=1:K ), ∀n

φk ∼ Dir((βa +
N∑

n=1

M∑
m=1

δ(xn,m = a, zn,m = k))a=1:A), ∀k
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Machine Learning 2 3. Learning LDA via Collapsed Gibbs Sampling

Counts

cn,a,k :=
Mn∑
m=1

δ(xn,m = a, zn,m = k)

cn,k :=
A∑

a=1

cn,a,k

ca,k :=
N∑

n=1

cn,a,k

ck :=
A∑

a=1

N∑
n=1

cn,a,k

cn :=
A∑

a=1

K∑
k=1

cn,a,k = Mn
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Machine Learning 2 3. Learning LDA via Collapsed Gibbs Sampling

Marginals over π

p(zn | γ) =

∫
(
Mn∏
m=1

Cat(zn,m | πn))Dir(πn | γ1K )dπn

=

∫ K∏
k=1

π
cn,k
n,k

Γ(Kγ)

Γ(γ)K
πγn,kdπn

=
Γ(Kγ)

Γ(γ)K

∏K
k=1 Γ(γ + cn,k)

Γ(
∑K

k=1 γ + cn,k)

∫
Γ(
∑K

k=1 γ + cn,k)∏K
k=1 Γ(γ + cn,k)

K∏
k=1

π
γ+cn,k
n,k︸ ︷︷ ︸

=Dir(πn|(γ+cn,k )k=1:K )

dπn

=
Γ(Kγ)

Γ(γ)K

∏K
k=1 Γ(cn,k + γ)

Γ(Mn + Kγ)
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Machine Learning 2 3. Learning LDA via Collapsed Gibbs Sampling

Marginals over π and φ

p(z | γ) =
N∏

n=1

∫
(
Mn∏
m=1

Cat(zn,m | πn))Dir(πn | γ1K )dπn

=

(
Γ(Kγ)

Γ(γ)K

)N N∏
n=1

∏K
k=1 Γ(cn,k + γ)

Γ(Mn + Kγ)

p(x | z , β) =
K∏

k=1

∫
(

∏
(n,m):zn,m=k

Cat(xn,m | φk))Dir(φk | β1K )dφk

=

(
Γ(Aβ)

Γ(β)A

)K K∏
k=1

∏A
a=1 Γ(ca,k + β)

Γ(ck + Aβ)
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Machine Learning 2 3. Learning LDA via Collapsed Gibbs Sampling

Conditional Probability for Single zn,m

p(z | x , β, γ)
Bayes

=
p(x | z , β, γ) p(z | β, γ)

p(x | β, γ)
∝ p(x | z , β) p(z | γ)

p(z | x , β, γ) = p(zn,m | z−(n,m), x , β, γ) p(z−(n,m) | x , β, γ)

= p(zn,m | z−(n,m), x , β, γ) p(z−(n,m) | x−(n,m), β, γ)

 

p(zn,m | z−(n,m), x , β, γ) =
p(z | x , β, γ)

p(z−(n,m) | x−(n,m), β, γ)

∝ p(x | z , β) p(z | γ)

p(x−(n,m) | z−(n,m), β) p(z−(n,m) | γ)
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Machine Learning 2 3. Learning LDA via Collapsed Gibbs Sampling

Conditional Probability for Single zn,m

p(zn,m | z−(n,m), x , β, γ) ∝ p(x | z , β) p(z | γ)

p(x−(n,m) | z−(n,m), β) p(z−(n,m) | γ)

Now let c−n,a,k be the counts for the leave-one-out sample x−(n,m), z−(n,m)

(all but m-th word of document n).

c−n,a,k =

{
cn,a,k − 1, for xn,m = a, zn,m = k

cn,a,k , else

I all terms other than for xn,m = a, zn,m = k cancel out.
I terms for xn,m = a, zn,m = k can be simplified via Γ(x + 1)/Γ(x) = x

p(zn,m = k | z−(n,m), x , β, γ) ∝
c−xn,m,k + β

c−k + Aβ

c−n,k + γ

Mn + Kγ
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Machine Learning 2 3. Learning LDA via Collapsed Gibbs Sampling

Collapsed LDA Implementation

I assign all zn,m randomly

I compute cn,a,k
I for s := 1, . . . ,S :

I for n := 1, . . . ,N, m := 1, . . . ,Mn :

cxn,m,zn,m :=cxn,m,zn,m − 1

cn,zn,m :=cn,zn,m − 1

czn,m :=czn,m − 1

zn,m ∼Cat((
c−xn,m,k + β

c−k + Aβ

c−n,k + γ

Mn + Kγ
)k=1:K )

cxn,m,zn,m :=cxn,m,zn,m + 1

cn,zn,m :=cn,zn,m + 1

czn,m :=czn,m + 1
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Machine Learning 2 3. Learning LDA via Collapsed Gibbs Sampling

LDA vs Collapsed LDA

γ

b1 . . . bK

y1,1 . . .
y1,L1

q1,1 . . .
q1,L1

π1

. . .

. . .

. . . . . .

yN,1 . . .
yN,LN

qN,1 . . .
qN,LN

πN

α

γ

y1,1 . . .
y1,L1

q1,1 . . .
q1,L1

. . .

. . .

yN,1 . . .
yN,LN

qN,1 . . .
qN,LN

α
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[Mur12, fig. 27.7]
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Collapsed LDA / Example

River Stream Bank Money Loan
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

River Stream Bank Money Loan
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

 

River Stream Bank Money Loan
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

River Stream Bank Money Loan
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

 

N = 16 (rows),A = 5 (columns),K = 2 (colors)
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[Mur12, fig. 27.8]



Machine Learning 2 4. Learning LDA via Variational Inference

Outline

1. The LDA Model

2. Learning LDA via Gibbs Sampling

3. Learning LDA via Collapsed Gibbs Sampling

4. Learning LDA via Variational Inference

5. Supervised LDA
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Machine Learning 2 4. Learning LDA via Variational Inference

Variational Inference via Mean Field Approximation
To solve the inference problem

compute p(x1, . . . , xN)

for intractable p, approximate p with a fully factorized density q

p(x1, . . . , xN) ≈ q(x1, . . . , xN | θ) :=
N∏

n=1

qn(xn | θn)

A good approximation should minimize the KL divergence of p and q:

(θ1, . . . , θN) := arg min
θ1,...,θN

KL(q||p)

KL(q||p) := Ex( q(x) log
q(x)

p(x)
)

which can be solved via coordinate descent:

log qn(xn | θn) = Ex−n∼q−n(p̃(x1, . . . , xN)) + const

where p̃ can be an unnormalized version of p.
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Machine Learning 2 4. Learning LDA via Variational Inference

Learning LDA via Mean Field Approximation

Mean field approximation

q(πn | π̃n) := Dir(πn | π̃n)

q(zn,m | z̃n,m) := Cat(zn,m | z̃n,m)

in the E-step of EM leads to

E-step:

z̃n,m,k = φxn,m,ke
Ψ(π̃n,k )−Ψ(

∑
k′ π̃n,k′ )

π̃n,k = γ +
∑
m

z̃n,m,k

M-step:

φa,k = β +
∑
n

∑
m

z̃n,m,kδ(xn,m = a)
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Note: Eπn,k∼Dir(π̃n,k )(log πn,k ) = Ψ(π̃n,k )−Ψ(
∑

k′ π̃n,k′ ) with Ψ the digamma function.



Machine Learning 2 5. Supervised LDA

Outline

1. The LDA Model

2. Learning LDA via Gibbs Sampling

3. Learning LDA via Collapsed Gibbs Sampling

4. Learning LDA via Variational Inference

5. Supervised LDA
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Machine Learning 2 5. Supervised LDA

Adding Further Information

I Add observed class information

yn ∈ Y := {1, . . . ,T}, n ∈ {1, . . . ,N}

I goal now is either
I to analyze xn with an LDA model and

predict targets yn based on this analysis (supervised learning) or
I to find topics that explain both, documents xn and their classes yn

(unsupervised learning).

I Sometimes richer information is added,
e.g., images.
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Machine Learning 2 5. Supervised LDA

Joint LDA and Logistic Regression

p(yn | πn, θ) :=Cat(yn | logistic(θTπn))

p(θ | σ2) :=N (θ | 0, σ2)

p(xn,m | zn,m = k , φ) := Cat(xn,m | φk), n = 1, . . . ,N,m = 1, . . . ,Mn

p(zn,m | πn) := Cat(zn,m | πn), n = 1, . . . ,N,m = 1, . . . ,Mn

p(φk | β) := Dir(φk | β 1A), k = 1, . . . ,K

p(πn | γ) := Dir(πn | γ 1K ), n = 1, . . . ,N
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Machine Learning 2 5. Supervised LDA

Generative Supervised LDA

p(yn | π̄n, θ) := Cat(yn | logistic(θT π̄n)), π̄n,k :=
1

Mn

Mn∑
m=1

δ(zn,m = k)

p(xn,m | zn,m = k , φ) := Cat(xn,m | φk), n = 1, . . . ,N,m = 1, . . . ,Mn

p(zn,m | πn) := Cat(zn,m | πn), n = 1, . . . ,N,m = 1, . . . ,Mn

p(φk | β) := Dir(φk | β 1A), k = 1, . . . ,K

p(πn | γ) := Dir(πn | γ 1K ), n = 1, . . . ,N
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Machine Learning 2 5. Supervised LDA

Discriminative Supervised LDA

p(xn,m | zn,m = k , φ) := Cat(xn,m | φk), n = 1, . . . ,N,m = 1, . . . ,Mn

p(zn,m | πn, yn = t) := Cat(zn,m | Atπn), n = 1, . . . ,N,m = 1, . . . ,Mn

p(φk | β) := Dir(φk | β 1A), k = 1, . . . ,K

p(πn | γ) := Dir(πn | γ 1K ), n = 1, . . . ,N

I At ∈ RK×K stochastic (t = 1, . . . ,T )
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Machine Learning 2 5. Supervised LDA

Summary
I Latent Dirichlet Allocation (LDA) solves a clustering problem for

sequence data (really: histograms)
I clusters are called topics.
I topics are described by word/symbol probabilities.
I documents/sequences by topic probabilities.
I a latent variable “word topic” for each word/element of each

sequence.
I semantically: disambiguation of the word (w.r.t. its topic)

I LDA can be learned via Gibbs sampling:
I re-sample single variables from their full conditionals on all others

in a round-robin fashion.
I leads to sampling from categorical and Dirichlet distributions.

I LDA can be learned via collapsed Gibbs sampling:
I integrate out word and document probabilities, leaving just the latent

word topics.
I leads to a way faster sampling from a categorical distribution only.
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Machine Learning 2 5. Supervised LDA

Summary (2/2)

I LDA can be learned via variational inference using mean field
approximation.
I approximate a distribution by a fully factorized distribution.

I here: the distribution of the latent word topics and topic probabilities
in the E-step of an EM algorithm for LDA.

I leads to closed-form reestimation formulas.

I LDA can be extended different ways to take document labels/
classes into account.
I yielding a model for text classification.
I joint LDA and logistic regression, generative supervised LDA,

discriminative supervised LDA
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Machine Learning 2

Further Readings

I LDA:
I [Mur12, chapter 27.3],

I Supervised LDA and other extensions:
I [Mur12, chapter 27.4],
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