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Machine Learning 2 1. The LDA Model

Documents / Finite Discrete Sequences

» instances x, € A* are discrete sequences
> A:={1,...,A} called dictionary / alphabet (A € N),
where a € A denotes the a-th word / symbol / token.
> A= J;2, A’ called documents / finite A-sequences.
» M, := |x,| := £ called length (for x, € A").
» Xx,.m called m-th word of x,.

» if there are no sequential effects (order does not matter),
documents can be described by their word frequencies
(bag of words):

fna=|{me{l,...,|xp|} | Xopm =a}], ac A

[m] = = =
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 1. The LDA Model

The LDA Model .

p(Xn,m | Znm = k, $) := Cat(xpm | ¢k), n=1,...,Nom=1,..., M,
P(an\rrn) = Cat(zpm | ™), n=1,....,Nom=1,..., M,

p(¢k | B) :== Dir(¢x | Bla), k=1,....K

p(mn | v) := Dir(mp | v1k), n=1,...,N

» z,m < {l,...,K}: topic the m-th word of document n belongs to.
» ¢, € A word probabilities of topic k.

» 71, € AX: topic probabilities of document n.

» 3,v € RT: priors of ¢ and .

Note: AX .= {zcRK|z> O,ZkK:I zp =1},

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 1. The LDA Model

The LDA Model

P(Xnm | Za,m =k, ¢) :
p(zn,m | ™n

p(¢k | ﬁ

p(mn |~

~— — ~— ~—
I
Ql
[5)
[

= Dir(¢x | B14),
D (7r” | 71K)7

» z,m < {l,...,K}: topic the m-th word of document n belongs to.
» ¢, € A word probabilities of topic k.

» 71, € AX: topic probabilities of document n.

» 3,~v € R*: priors of ¢ and .

Note: AK :— {z € RK |z> OvZszl z =1} [Mur12, fig. 27.2
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Machine Learning 2

Example p(xp.m

1. The LDA Model

| Zp.m, D)

Topic 77 Topic 82 Topic 166
word  prob. word  prob. word  prob.
MUSIC  .090 LITERATURE .031 PLAY .136
DANCE .034 POEM .028 BALL .129
SONG .033 POETRY .027 GAME .065
PLAY .030 POET .020 PLAYING .042
SING .026 PLAYS .019 HIT .032
SINGING .026 POEMS .019 PLAYED .031
BAND .026 PLAY .015 BASEBALL .027
PLAYED .023 LITERARY .013 GAMES .025
SANG .022 WRITERS .013 BAT .019
SONGS .021 DRAMA .012 RUN .019
DANCING .020 WROTE .012 THROW  .016
PIANO .017 POETS .011 BALLS .015
PLAYING .016 WRITER .011 TENNIS 011
RHYTHM  .015 SHAKESPEARE .010 HOME .010
ALBERT .013 WRITTEN .009 CATCH .010
MUSICAL .013 STAGE .009 FIELD .010
[Mur12, fig

. 27.4]
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Machine Learning 2 1. The LDA Model

Example X m, Zo.m

v

Document #29795
age™ fifteen®®’ sat'™ slope” bluff®®® overlooking®’ 1= mississippi** river*
listening®” 1o music®” coming®® passing™*® music®”’ captured® 1is heart™’
ear'®® jazz"" music”” lessons®”’ 1= showed®? promise®®
piano®”’ parents”® hoped®® consider'*® concert”” pianist””’
interested®®® kind®° o music®”’. 1= wanted®®® i play™ ] wanted?® (0 play”"] jazz""...
Document #1883
simple® reason’®® periods®™® theater®? western®
things®® actors™®
actors™ audiences®® remember?®
plays®? exist'* performed®” 10t merely®° read® read”* 0% try?®®
perform®? put'’ stage””® soon®% play® performed”®
kind'?® o1 theatrical®®...
Document #21359
Jim?® game™® book®* Jim*® reads®™* " book®* Jim*® sees® - game'®® Jim?® plays™®® - game*®®
Jim?* likes®™ 11 game?®® game’®® book?* helps® jim?*®. Don**° comes®® house®® Don'®
jim®® read®™* 1= game® book?* boys™® game'®® boys™® [play™ 1= game®®
boys" game™®® boys® game'® Meg®®? comes™® house®? Meg*®
don'® Jim? read? (- book?* game!®® Meg?® don® jim®s game!®
[Mur12, fig. 27.5]
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 1. The LDA Model

The LDA Model

P(Xnm‘znm—k ¢) = Ca t(Xnm’(Zsk)
p(znm | mn) := Cat(zp,m | 7n)
p(¢x | B) := Dir(¢x | B1a)

p(mn | ) == Dir(ms | 71k)

> z,me{l,...,
» ¢, € A?: word probabilities of topic k.

» 1, € AX: topic probabilities of document n.
» 3,7 € Rt: priors of ¢ and 7.

B
K}: topic the m-th word of document n belon% to.

v

x7 = "In Franfurt, many banks are located at the banks of Main.”

Q: How can LDA model that

P x7.4="bank" denotes a credit institute and belongs to topic 1 “finance”,

P x7.9="bank" denotes a river bank and belongs to topic 2 “environment”?

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 2. Learning LDA via Gibbs Sampling

. . ) N
Learning via Parameter Sampling “
The posterior

p(6| D) o p(D | 0)
describes the distribution of the parameters given the data

If we can sample parameters from this distribution

017927"'795 ~ p(9 ’ D)
we can

P> estimate expected parameter values and their variances from this
parameter sample:

S S
~ 1 1
0:=E@|D)~ ¢y b V(OID)~ 1> (0 -
s=1

5—1521

P> predict targets for new instances x via model averaging:

E(9 | D))?

ply | x,615) = 5Zpy|><9

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL) University of Hildesheim, Germany



Machine Learning 2 2. Learning LDA via Gibbs Sampling

Sampling

» for most closed-form distributions p(x) there exist efficient sampling
methods

P categorical, normal, ...

» but most posteriors are not closed-form distributions.
» but for example products thereof.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Machine Learning 2 2. Learning LDA via Gibbs Sampling

Gibbs Sampling

» task: sample from p(xi,...,xn)
» problem:
» assume sampling from the joint distribution p(x,...,xy) is difficult.
» assume sampling from marginals p(x,) or partial conditionals
p(xn | some x,/) is also difficult.
» assume sampling from all full conditionals p(x, | x_,) is easy.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Machine Learning 2 2. Learning LDA via Gibbs Sampling

Gibbs Sampling

» task: sample from p(xi,...,xn)
» problem:
» assume sampling from the joint distribution p(x,...,xy) is difficult.

» assume sampling from marginals p(x,) or partial conditionals
p(xn | some x,/) is also difficult.
» assume sampling from all full conditionals p(x, | x_,) is easy.

Gibbs sampling: given last sample x°, sample x° one variable at a time:

s+
X1

s+
X5

teopOa e = X3)

Lo p(xe | x1.1 = Xlsjl7X3:N = X3.v)

s+1 _Us+1 S
Xn ~ p(Xn | Xlin—1 = X1.p_15 Xn+L1:N = Xn+1:N)

s+1 __s+1
Xy~ PO [ Xiv—1 = XEyg

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Machine Learning 2 2. Learning LDA via Gibbs Sampling

Gibbs Sampling

P the distribution created by the Gibbs sampler eventually will converge
to p(X17 s 7XN)

» start Gibbs sampling with an arbitrary x°

> but ensure that p(x°) >0 !
» also consider restarts.

» throw away the first examples (burn in).
P only after a while the chain has converged to the stationary distribution

p(x1, ..., xn)-
» typical are 100-10,000 examples

P> sometimes some variables can be marginalized out,
improving the performance of the Gibbs sampler
(collapsed Gibbs sampling, Rao-Blackwellisation)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Machine Learning 2 2. Learning LDA via Gibbs Sampling

NN
Gibbs Sampling for LDA “

p(Xn,m | Znm = k,¢) = Cat(Xn,m | d)k) = ¢k,x,,7m

p(znm | mn) == Cat(znm | 7n) = Tn,zpm

p(¢x | B) := Dir(¢x | B1a) ~ H¢Ba—1

p(mn | ) := Dir(m, | v 1k) x H Tk !
Full conditionals: 1. z

P(Zn,m =k | ¢77Tn) X p(Xn,m ’ Zn,m = k, ¢)P(Zn,m =k ’ 7Tn) = d)k,x,,,mﬂ'n,k

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Machine Learning 2 2. Learning LDA via Gibbs Sampling

NN
Gibbs Sampling for LDA “

p(Xn,m ‘ Znm = k, ¢) = Cat(Xn,m ’ d)k) = ¢k,x,,,m

p(znm | Ta) = Cat(znm | 1) — T

p(¢k|ﬁ) = D|r(¢k’ﬂlA) O<H¢Ba 1

p(mn | ) := Dir(m, | v1k) x H 7r7" !
Full conditionals: 2. 7 M,
p(n | zn, ¢) < p(7n | ) H p(znm =k | 7n)
m=1
K k)
< T T
k=1 m=1 k=1

Q: Do you recognize this distribution?

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Machine Learning 2 2. Learning LDA via Gibbs Sampling

Gibbs Sampling for LDA
P(Xn.m | Zn,m = k, @) := Cat(xnm | dk) = Dk xom

p(znm | mn) := Cat(zp,m | 7n) = Tn,20m

p(ox | B) = Dir(¢k | 1a) x Hqﬁﬁa_l

K
p(mn | ) := Dir(my | v 1k) x H Ll
Full conditionals: 2. 7 M,
p(mn | 20, ®) o p(mn | 7) ] P(z0m = K | 7n)
m=1
< T T[T
m=1 k=1
M
= Dir((v + > 6(zn,m = k))k=1:K)

m=1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Machine Learning 2 2. Learning LDA via Gibbs Sampling

NN
Gibbs Sampling for LDA “

p(Xn,m | Znm = k, ¢) = Cat(Xn,m | d)k) = ¢k7x,,7m

p(znm | mn) == Cat(zp,m | 7n) = Tn,zp,m

p(¢x | B) == Dir(¢x | B1a) ~ H(pﬁa 1

p(mn | ) := Dir(m, | v1k) x H 7r7" !

Full conditionals: 3. ¢

N M,
p(¢k | Z,7T) X (H H p(Xn,m =a ’ Zn,m = k7¢k)p(¢k | B))a:l:A
n=1m=1 N
= Dil’((,@a + Z Z 5(Xn,m =4a,Znm = k))a:l:A)

n=1m=1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Machine Learning 2 2. Learning LDA via Gibbs Sampling

Gibbs Sampling for LDA

P initialize randomly
T ~ Dir(vlk), &k ~ Dir(B1la)
> sample iteratively:

Zn,m ~ Cat((gbk,xn’mﬂ'n,k)k:l:K)y VYnVm

M
T~ Dir(v + > 6(znm = k))k=1:x), ¥

m=1

N M
b ~ Dir((Ba+ Y ) 6(xnm = a,Zam = k))a=1:4), Vk

n=1m=1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 3. Learning LDA via Collapsed Gibbs Sampling
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Counts

Machine Learning 2 3. Learning LDA via Collapsed Gibbs Sampling

Cnak =

Mp
E (Xn,m = @, Znm = k)
m=1
A
Cnk = 5 Cn,a,k
a=1

N
Cak = 5 Cn,a,k
n=1

A N
Ck = 5 5 Cn,a,k
a=1 n=1
A K
Cp =

a=1 k=1

[m]

=
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Machine Learning 2 3. Learning LDA via Collapsed Gibbs Sampling

Marginals over 7

p(zn | ) / H Cat(zp,m | mp))Dir(m, | Y1k )dmn

/H ;nkkr 7Tn,kdﬂ-"

_ TN TTeea T+ anid) [ T2 + o)

TR TSR v+ ) S TR T( + cnn)

_ MK T T(enk +7)
F(y)K  T(My+ K7)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 3. Learning LDA via Collapsed Gibbs Sampling

Marginals over 7 and ¢

N M,
ple 1) = 11 / (I Cattzom | m)DT(rn [ 13,

:< KV)) an;win;j)’ﬁ

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 3. Learning LDA via Collapsed Gibbs Sampling

Marginals over 7 and ¢

N M,
ple 1) = 11 / (I Cattzom | m)DT(rn [ 13,

< KV)) an;win;j)’ﬁ

p(x | z,) = H / Cat(xnm | 64))Dir(ex | BLi)d

(n,m):zp, m=k

A
) HHa 1M (Cak +5)
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 3. Learning LDA via Collapsed Gibbs Sampling

Conditional Probability for Single z, ,

pla | x,7) P2 B2 PV AELED) o i 2, ) plz 1)
(Z‘XBV)—p(an‘Z (n,m)> x, 3, 7) (Z,(nym)’X,ﬂ,"}/)
—p(an|Z (n,m) 75) ) ( (n,m) |X—(n,m)7ﬁa7)
p(z | x,8,7)
(Z—(n,m) ‘ X_(n,m)> B?’Y)
p(x|z,8)p(z|7)
p(Xf(n,m) ‘ Z_(n,m)» 5) p(zf(n,m) ‘ '7)

p(znm‘z(nm x, 3, ’Y)

X

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Machine Learning 2 3. Learning LDA via Collapsed Gibbs Sampling

Conditional Probability for Single z, ,

p(x | z,8)p(z]7)
p(X—(n,m) ’ Z—(n,m)uB) p(z—(n,m) | 7)

p(zn,m | Z_(n,m)s X B, '7) X

[m] = = =
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 3. Learning LDA via Collapsed Gibbs Sampling

Conditional Probability for Single z, ,

p(x 1z 8)p(z7)
P(X—(n,m) | Z—(n,m)> B) P(Z—(n,m) | 7)

p(zn,m | Z_(n,m)s X B, ’7) X

Now let ¢ mak be the counts for the leave-one-out sample x_(, m), Z_(n,m)
(all but m-th word of document n).

nak

- JCnak— 1, for Xn,m = 8,Znm = k
Cn,a,k> else

» all terms other than for x, » = a,z, m = k cancel out.
» terms for xp m = a,z, m = k can be simplified via ['(x +1)/T(x) =

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Machine Learning 2 3. Learning LDA via Collapsed Gibbs Sampling

Conditional Probability for Single z, ,

p(x 1z 8)p(z7)
P(X—(n,m) | Z—(n,m)> B) P(Z—(n,m) | 7)

p(zn,m | Z_(n,m)s X B, ’7) X

Now let ¢ mak be the counts for the leave-one-out sample x_(, m), Z_(n,m)
(all but m-th word of document n).

nak

- JCnak— 1, for Xn,m = 8,Znm = k
Cn,a,k> else

» all terms other than for x, » = a,z, m = k cancel out.
» terms for xp m = a,z, m = k can be simplified via ['(x +1)/T(x) =

Cx kT8 ¢+
Zpm=k|z_ x, B,y L :

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Machine Learning 2 3. Learning LDA via Collapsed Gibbs Sampling

Collapsed LDA Implementation

» assign all z, , randomly
» compute ¢, 5«
» fors:=1,...,5:
> forn:=1....N, m:=1....M,:

CXn,maZn,m ':an,myzn,m 1
Cn,zym “—Cn,zy m 1
Cz,, =Cs,, —1
oo ~Cat(( ok T Gk )
n,m _ =1:
Ck + Aﬁ Mn + K'}/
CXn,myzn,m ::an,m7zn,m + 1

Cizom “=Ciizgm + 1

Czym =Capm T 1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Machine Learning 2 3. Learning LDA via Collapsed Gibbs Sampling

LDA vs Collapsed LDA

[Mur12, fig.
[m] = = =
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 3. Learning LDA via Collapsed Gibbs Sampling

Collapsed LDA / Example

1 River T Stream owf ank m“ﬁgey ..;:Oa o River Stream Bank Money Loan
2 I 00800 e000000 eoce 1 [aed eeed 00000
3 1 0008000 08080 000 2 el eseceee osce
4 i 0000000 088000 000 3 ossscee osese eooe
5 | eecece0 © 0800000 4 ooessse esecee ooe
6 | Ceecesee® O8O coee 5 [ ecoed [ s00000e
7] o | oeee 080080 00080 6 000000000 000 000
8l e | ce coeeee 0ee0 00 7| o 000 esesee ooose
9| e | coe oococe <o ce 8 o © #0000 oso0 ooe
10| e | 080 #00000 e00e 9| o 000 000000 [ i [ 3
11| ce I 0008800 .00 Y 10| o 000 000000 . [ ad
12| oco | cocceo eceece ) 11| 000 0008000 Ll .
13| ccoeee | ce0 eccose < 12| oo 000000 osceee .
14| oo | 88000888 060800 13| oooooo 000 ©00000 )
15| ceee | @000080 #0808 14| o 00000000 00000
16| _eceec | ®800008 o000 15| cooo 0000000 00000

16{_ocooo 0000000 0000

N =16 (rows), A =5 (columns), K = 2 (colors)

[Mur12, fig. 27.8]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

21



Outline

Machine Learning 2 4. Learning LDA via Variational Inference

4. Learning LDA via Variational Inference
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Machine Learning 2 4. Learning LDA via Variational Inference

Variational Inference via Mean Field Approximation
To solve the inference problem

compute p(x1,...,xy)

for intractable p, approximate p with a fully factorized density g

N
p(xt, . xn) & q(xa, . xn | 0) =[] qn(xn | 60)
n=1

A good approximation should minimize the KL divergence of p and g:
(61,...,0n) := arg min KL(q]|p)

01,....00
= x)lo M
KL(allp) = E a()log 5 )

which can be solved via coordinate descent:

log gn(xn | 0n) = Ex_,~q_,(P(x1,...,Xxn)) + const

where p can be an unnormalized version of p.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Machine Learning 2 4. Learning LDA via Variational Inference

Learning LDA via Mean Field Approximation

Mean field approximation
q(mn | 7n) := Dir(my | Tp)
q(zn,m ’ Zn,m) = Cat(Zn,m ‘ Zn,m)

in the E-step of EM leads to

E-step:

fn,m,k = (bxn,m,kew(ﬁ"’k)_w(z’(, i)
7’:I'n,k =7+ Z Zn,m,k
m
M-step:

¢a,k = ﬁ + Z Zzn,m,k(s(xn,m = a)

Note: Ew,,,kNDir(irn,k)UOg Tnk) = W(Tn k) — V(Do 7n k) with W the digamma function.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 5. Supervised LDA

Outline

5. Supervised LDA
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Machine Learning 2 5. Supervised LDA

Adding Further Information

» Add observed class information

yh€YVi={1,....T}, ne{l,...,N}

» goal now is either
» to analyze x, with an LDA model and
predict targets y, based on this analysis (supervised learning) or
P to find topics that explain both, documents x, and their classes y,
(unsupervised learning).
» Sometimes richer information is added,
e.g., images.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 5. Supervised LDA

Joint LDA and Logistic Regression

p(yn | 7n,0) :=Cat(y, | logistic(8 " 7,))
p(0 | o%) :=N(0]0,0%)

p(Xn,m ‘ Zn,m

,$)
p(zn m \ 7rn)
):
):

p(o | B
p(mn | ¥

Cat(x,,m]gbk), n=1,...,
Cat(zpm | mn), n=1,...
D(¢k‘61A), k=1,...
Dir(mn | v1k), n=1,...

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 5. Supervised LDA

Generative Supervised LDA

— L . T-= — L o
p(yn | 7n,0) := Cat(y, | logistic(07 7)), ok i= W Z 8(2nm = k)

P(Xnm | Znm =k, ¢) = Cat(Xom | k), n=1,....Nom=1,... .M,
p(znm | mn) == Cat(zpm | m0), n=1,...,Nom=1,..., M,
(¢k|6):D|r(¢k|ﬁlA), k:].,...,K
p(mn | v) := Dir(mn | v1k), n=1,...,N

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 5. Supervised LDA

Discriminative Supervised LDA

Cat(xpm | ¢k), n=1,...,Nom=1,..., M,
Cat(zpm | Atmn), n=1,....Nom=1,...,M,
Dir(¢x | B1a), k=1,....K

Dir(mn | v1k), n=1,...,N

P(Xn,m | Znm = k7¢
P(Zom | Ty yn =t
p(¢x | ﬁ

p(mn | v

~— ~— N ~—

> A, € RFXK stochastic (t=1,...,T)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2 5. Supervised LDA

Summary

» Latent Dirichlet Allocation (LDA) solves a clustering problem for
sequence data (really: histograms)
» clusters are called topics.
» topics are described by word/symbol probabilities.
» documents/sequences by topic probabilities.
> a latent variable “word topic” for each word/element of each

sequence.
» semantically: disambiguation of the word (w.r.t. its topic)

» LDA can be learned via Gibbs sampling:
P re-sample single variables from their full conditionals on all others
in a round-robin fashion.
P leads to sampling from categorical and Dirichlet distributions.

» LDA can be learned via collapsed Gibbs sampling:
P integrate out word and document probabilities, leaving just the latent
word topics.
P leads to a way faster sampling from a categorical distribution only.
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Machine Learning 2 5. Supervised LDA

Summary (2/2)

» LDA can be learned via variational inference using mean field
approximation.
P approximate a distribution by a fully factorized distribution.

» here: the distribution of the latent word topics and topic probabilities
in the E-step of an EM algorithm for LDA.
» leads to closed-form reestimation formulas.

» LDA can be extended different ways to take document labels/
classes into account.
P vyielding a model for text classification.
P joint LDA and logistic regression, generative supervised LDA,
discriminative supervised LDA
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Further Readings

> LDA:
» [Murl2, chapter 27.3],

» Supervised LDA and other extensions:
» [Murl2, chapter 27.4],
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