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Advanced Topics in Machine Learning

Plan for the Lecture

Roughly three chapters planned:

1. Learning SVMs (and other classifiers)

2. Factorization Methods

3. Structured Prediction
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Advanced Topics in Machine Learning 1. Major Learning Problems Seen so far

Ridge Regression

minimize RSSλ(β̂) :=RSS(β̂) + λ

p∑
j=1

β̂2
j

=
n∑

i=1

(yi − ŷi )
2 + λ

p∑
j=1

β̂2
j , ŷi := β0 + 〈β̂, xi 〉

=L2 loss + λ L2 reg., linear model

with λ ≥ 0 (complexity/regularization parameter).
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Advanced Topics in Machine Learning 1. Major Learning Problems Seen so far

Logistic Regression
maximize

Lcond
D (β̂) =

n∏
i=1

p(Y = yi |X = xi ; β̂)

=
n∏

i=1

p(Y = 1 |X = xi ; β̂)yi (1− p(Y = 1 |X = xi ; β̂))1−yi

with

p(Y = 1 |X ) = logistic(〈X , β〉) + ε =
e
∑n

i=1 βi Xi

1 + e
∑n

i=1 βi Xi
+ ε

resulting to: maximize

log Lcond
D (β̂) =

n∑
i=1

yi 〈xi , β̂〉 − log(1 + e〈xi ,β̂〉)
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Advanced Topics in Machine Learning 1. Major Learning Problems Seen so far

Linear Support Vector Classification

minimize f (β, ξ) :=
1

2
||β||2 + γ

n∑
i=1

ξi [LSVM]

w.r.t. yi (β0 + 〈β, xi 〉) ≥1− ξi , i = 1, . . . , n

ξ ≥0

for given γ ≥ 0 (complexity/regularization parameter).
or equivalently

minimize
1

2
||β||2 + γ

n∑
i=1

[1− yi ŷi ]+, ŷi := β0 + 〈β, xi 〉

= L2 regular. + γ hinge loss, linear model

Problem: hinge loss is not differentiable.
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Advanced Topics in Machine Learning 1. Major Learning Problems Seen so far

Support Vector Classification, Dual and Non-linear
Dual formulation (linear kernel):

maximize
n∑

i=1

αi −
1

2

n∑
i ,j=1

αiαjyiyj〈xi , xj〉

w.r.t.
n∑

i=1

αiyi =0

αi ≥0, αi ≤ γ
Dual formulation (non-linear kernel k):

maximize
n∑

i=1

αi −
1

2

n∑
i ,j=1

αiαjyiyjk(xi , xj )

w.r.t.
n∑

i=1

αiyi =0

αi ≥0, αi ≤ γ
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Advanced Topics in Machine Learning 1. Major Learning Problems Seen so far

Linear Support Vector Regression

minimize
n∑

i=1

[|yi − ŷi | − ε]+ +
λ

2
||β̂||2, ŷi := β̂0 + 〈β̂, xi 〉

= ε-insensitive loss + λ L2 reg., linear model

Problem: ε-insensitive loss is not differentiable.
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Advanced Topics in Machine Learning 1. Major Learning Problems Seen so far

Support Vector Regression, Dual and Non-Linear

min ε
n∑

i=1

(α∗i − αi )−
n∑

i=1

yi (α
∗
i − αi ) +

1

2

n∑
i=1

n∑
j=1

(α∗i − αi )(α∗j − αj )〈xi , xj〉

s.t.
n∑

i=1

(α∗i − αi ) = 0

α∗i αi = 0

αi ≥ 0, α∗i ≤
1

λ

〈xi , xj〉 can be replaced by a non-linear kernel k(xi , xj ).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

8 / 48



Advanced Topics in Machine Learning 1. Major Learning Problems Seen so far

L1 regularization

For all learning problems, instead of L2 regularization

regL2(β) :=
1

2
||β||2 =

1

2

n∑
i=1

β2
i

one also can use L1 regularization

regL1(β) := ||β||1 =
n∑

i=1

|βi |

(or any other function penalizing large parameters).

Problem: the objective function will be non-differentiable.
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Advanced Topics in Machine Learning 1. Major Learning Problems Seen so far

Problems to address in first chapter

I How to learn non-linear SVMs efficiently ?

I How to learn linear SVMs in the primal efficiently?
I.e., how to deal with non-differentiable objective functions in convex
optimization?

I How to carry over learning algorithms for linear SVMs to non-linear
SVMs?

I How to take advantage from sparse data ?

I How to choose the right regularization (L1, L2, . . . ) ?

I How to find good hyperparameters (λ, γ, . . . ) ?
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Advanced Topics in Machine Learning 2. Dual Optimization Problem for SVMs

Derivation of Dual Problem

Primal formulation:

minimize f (β, β0, ξ) :=
1

2
||β||2 + γ〈e, ξ〉

w.r.t.
g(β, β0, ξ) := e− ξ − y � (β0e + Xβ) ≤ 0
g̃(ξ) := −ξ ≤ 0

Lagrange function:

Lf (β, β0, ξ, α, α̃) :=f (β, β0, ξ) + 〈α, g(β, β0, ξ)〉+ 〈α̃, g̃(ξ)〉

=
1

2
||β||2 + γ〈e, ξ〉+ 〈α, e− ξ − y � (β0e + Xβ)〉+ 〈α̃,−ξ〉

=
1

2
||β||2 + 〈α, e〉 − β0〈α, y〉 − 〈α, y � Xβ〉+ 〈γe− α− α̃, ξ〉
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Note: e := (1, 1, . . . , 1)T and a� b := (ai · bi )i = diag(a)b elementwise multiplication.



Advanced Topics in Machine Learning 2. Dual Optimization Problem for SVMs

Derivation of Dual Problem

Lagrange function: Lf (β, β0, ξ, α, α̃)

=
1

2
||β||2 + 〈α, e〉 − β0〈α, y〉 − 〈α, y � Xβ〉+ 〈γe− α− α̃, ξ〉

∂Lf

∂β
=βT − αT (y � X )

!
= 0 ⇔ β = XT (y � α) (I )

∂Lf

∂β0
=− 〈α, y〉 !

= 0 ⇔ 〈y , α〉 = 0 (II )

∂Lf

∂ξ
=γe− α− α̃ !

= 0 ⇔ γe− α− α̃ = 0 (III )

f̄ (α, α̃) := inf
β,β0,ξ

Lf (β, β0, ξ, α, α̃)

=
1

2
||XT (y � α)||2 + 〈α, e〉 − 〈α, y � XXT (y � α)〉

=− 1

2
αT (XXT � yyT )α + 〈α, e〉
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Advanced Topics in Machine Learning 2. Dual Optimization Problem for SVMs

Derivation of Dual Problem

f̄ (α) :=− 1

2
αT (XXT � yyT )α + 〈α, e〉

w.r.t. α ≥ 0

α ≤ γ (due to III )

〈y , α〉 = 0 (II )
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Advanced Topics in Machine Learning 2. Dual Optimization Problem for SVMs

Optimality Criterion I

Lemma (KKT for SVM)

A feasible point α, i.e., α ∈ [0, γ] with 〈y , α〉 = 0, is optimal, if and only if

yi ŷ(xi )


≥ 1 , for αi = 0
= 1 , for 0 < αi < γ
≤ 1 , for αi = γ

Proof. Choose the other parameters as follows:

α̃ := γe− α
β := XT (y � α)

β0 := yi − 〈β, xi 〉, for any i : 0 < αi < γ

ξ := [e− y � (β0e + Xβ)]+

and show that the conditions above are equivalent to KKT:
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Advanced Topics in Machine Learning 2. Dual Optimization Problem for SVMs

Optimality Criterion II

KKT:
g(x) ≤ 0 (i) ⇔ 1− ξi − yi ŷ(xi ) ≤ 0, ξi ≥ 0

h(x) = 0 (ii) n/a (no equality constraints)

λ ≥ 0 (iii) ⇔ αi ≥ 0, α̃i ≥ 0

λigi (x) = 0 (iv) ⇔ αi (1− ξi − yi ŷ(xi )) = 0, α̃iξi = 0

∂f (x)

∂x
+ λT ∂g(x)

∂x
+ νT ∂h(x)

∂x
= 0 (v) ⇔ 〈y , α〉 = 0, choice of β, α̃ (I − III )

”⇒”: For αi < γ:  α̃ > 0
KKT (iv)
 ξi = 0

KKT (i)
 yi ŷ(xi ) ≥ 1− ξi = 1

For αi > 0:
KKT (iv)
 yi ŷ(xi ) = 1− ξi ≤ 1

For 0 < αi < γ equality must hold.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

15 / 48



Advanced Topics in Machine Learning 2. Dual Optimization Problem for SVMs

Optimality Criterion III

”⇐”: For αi = 0 KKT (iv a) holds trivially.
For αi > 0:  yi ŷ(xi ) ≤ 1  1 − ξi − yi ŷ(xi ) = 0 (KKT (iv a)) with
ξi ≥ 0.

For αi = γ:  α̃i = 0  KKT (iv b)
For αi < γ:  yi ŷ(xi ) ≥ 1  ξi = 0  KKT (iv b)

KKT (i) holds due to choice of ξ.
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Advanced Topics in Machine Learning 2. Dual Optimization Problem for SVMs

From Dual to Primal Parameters

Lemma
For linear SVMs primal parameters β can be computed from dual
parameters α:

β =XT (y � α)

β0 =yi − 〈β, xi 〉, for any i : 0 < αi < γ

Proof.
The formula for β is (I ) above.
For αi < γ:

yi ŷ(xi ) = yi (〈β, xi 〉+ β0) = 1

β0 = yi − 〈β, xi 〉
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Note: For nonlinear SVMs β :=
∑n

i=1 αi yi Φ(xi ) with features Φ.



Advanced Topics in Machine Learning 2. Dual Optimization Problem for SVMs

Optimality Criterion (Variant)

Lemma (KKT for SVM (Keerthi et al. 2001))

A feasible point α, i.e., α ∈ [0, γ] with 〈y , α〉 = 0, is optimal, if and only if

max
i∈I0

yi −
∑

j

αjyjk(xj , xi ) ≤ β0 ≤ min
i∈I1

yi −
∑

j

αjyjk(xj , xi )

with I0 :={i |αi > 0, yi = −1} ∪ {i |αi < γ, yi = +1},
I1 :={i |αi > 0, yi = +1} ∪ {i |αi < γ, yi = −1}

Proof. For αi > 0:

yi ŷ(xi ) =yi (
∑

j

αjyjk(xj , xi ) + β0) ≤ 1

 β0 ≤y1 −
∑

j

αjyjk(xj , xi ), for yi = +1

 β0 ≥y1 −
∑

j

αjyjk(xj , xi ), for yi = −1
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Advanced Topics in Machine Learning 3. Decomposition Methods in the Dual (SMO)

Optimization Problem

maximize f̄ (α) :=
n∑

i=1

αi −
1

2

n∑
i ,j=1

αiαjyiyjk(xi , xj )

w.r.t.
n∑

i=1

αiyi =0

αi ≥0, αi ≤ γ

for given γ ≥ 0 and kernel k .

Requires
I n × n kernel matrix Q := (yiyjk(xi , xj ))i ,j=1,...,n.
I 2n + 1 constraints.

Usually we hope for sparse solutions, i.e., only a fraction of data points
turn out to be support vectors, and thus αi = 0 for many i .
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Advanced Topics in Machine Learning 3. Decomposition Methods in the Dual (SMO)

Chunking

Idea:

I initially select a random set of candidate support vectors
I iteratively

I train a model on the candidate support vectors only and
I select a new set of candidate support vectors

I retaining the support vectors of the current model
I plus those data points with largest prediction error for the current

model.

Typically the candidate set is growing from iteration to iteration.

Problems:

I still requires to store the kernel matrix of all support vectors,
so if the solution is not sparse, the kernel matrix may be too large.
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Advanced Topics in Machine Learning 3. Decomposition Methods in the Dual (SMO)

Decomposition Methods

Idea:

I initially select a random set of active support vectors

I initialize αi := 0 for non-active support vectors
I iteratively

I train a model for the residuum of the non-active support vectors
on the active support vectors only and

I select a new set of active support vectors,
e.g., those data points with largest prediction error for the current
model.

To train a model on the residuum of the non-active support vectors is the
same as to train a model for the full model, keeping the αi ’s for non-active
support vectors fixed.
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Advanced Topics in Machine Learning 3. Decomposition Methods in the Dual (SMO)

Decomposition Methods: Sequential Minimal Optimization

Idea (Platt 1999):

I Use only 2 active support vectors.

Advantages:
I minimization step can be done analytically

I fast
I easy to implement / does not require a QP solver

I no need to store a kernel matrix
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Advanced Topics in Machine Learning 3. Decomposition Methods in the Dual (SMO)

SMO: Analytic Minimization Step

Lemma (SMO)

The maximum of the objective function is assumed for

α̃2 := αold
2 + y2

(ŷ1 − y1)− (ŷ2 − y2)

k(x1, x1) + k(x2, x2)− 2k(x1, x2)

α2 := [α̃2]VU

α1 := αold
1 + y1y2(αold

2 − α2)

where

U :=

{
[αold

2 − αold
1 ]+, if y1 6= y2

[αold
1 + αold

2 − γ]+, else

V :=

{
γ − [αold

1 − αold
2 ]+, if y1 6= y2

min(γ, αold
1 + αold

2 ), else

and [x ]ba := min(max(a, x), b).
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Advanced Topics in Machine Learning 3. Decomposition Methods in the Dual (SMO)

SMO: Analytic Minimization Step
Proof.
0 ≤ αi ≤ γ and due to

∑n
i=1 αiyi = 0:

α1y1 + α2y2 = αold
1 y1 + αold

2 y2

α1 = αold
1 y1y1 + (αold

2 − α2)y1y2

so for y1y2 = −1:

αold
1 − (αold

2 − α2) ≥ 0  α2 ≥ αold
2 − αold

1

αold
1 − (αold

2 − α2) ≤ γ  α2 ≤ γ − (αold
1 − αold

2 )

and for y1y2 = 1:

αold
1 + (αold

2 − α2) ≥ 0  α2 ≤ αold
1 + αold

2

αold
1 + (αold

2 − α2) ≤ γ  α2 ≥ αold
1 + αold

2 − γ
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Advanced Topics in Machine Learning 3. Decomposition Methods in the Dual (SMO)

SMO: Analytic Minimization Step
The objective function for variables α1 and α2 only is

α1 + α2 −
1

2
k1,1α

2
1 −

1

2
k2,2α

2
2 − k1,2y1y2α1α2 − y1v1α1 − y2v2α2 + const.

with ki ,j :=k(xi , xj )

vi :=
n∑

j=3

yjαjki ,j = ŷ(xi )− y1α1ki ,1 − y2α2ki ,2 − β0

along the constraint α1 + sα2 = c (with s := y1y2 and some constant c):

c − sα2 + α2 −
1

2
k1,1(c − sα2)2 − 1

2
k2,2α

2
2 − k1,2s(c − sα2)α2

− y1v1(c − sα2)− y2v2α2 + const.
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Advanced Topics in Machine Learning 3. Decomposition Methods in the Dual (SMO)

SMO: Analytic Minimization Step

c − sα2 + α2 −
1

2
k1,1(c − sα2)2 − 1

2
k2,2α

2
2 − k1,2s(c − sα2)α2

− y1v1(c − sα2)− y2v2α2 + const.

The maximum satisfies

∂(. . .)

∂α2
= −s + 1 + k1,1(c − sα2)s − k2,2α2 − k1,2sc + 2k1,2ssα2

+ y1v1s − y2v2 = 0

α2(k1,1 + k2,2 − 2k1,2) = 1− s − cs(k1,1 − k1,2) + y2(v1 − v2)

= y2(y2 − y1 − cy1(k1,1 − k1,2) + v1 − v2)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

26 / 48



Advanced Topics in Machine Learning 3. Decomposition Methods in the Dual (SMO)

SMO: Analytic Minimization Step

α̃2(k1,1 + k2,2 − 2k1,2) = y2(y2 − y1 − cy1(k1,1 − k1,2) + v1 − v2)

α̃2(k1,1 + k2,2 − 2k1,2)y2

=y2 − y1 − cy1(k1,1 − k1,2)

+ ŷ1 − y1α1k1,1 − y2α2k1,2 − β0

− ŷ2 + y2α1k2,1 + y2α2k2,2 + β0

=(ŷ1 − y1)− (ŷ2 − y2) + (α1 + sα2)y1(k1,1 − k1,2)

− y1α1k1,1 − y2α2k1,2 + y1α1k2,1 + y2α2k2,2

=(ŷ1 − y1)− (ŷ2 − y2) + α1y1(k1,1 − k1,2) + α2y2(k1,1 − k1,2)

− y1α1k1,1 − y2α2k1,2 + y1α1k2,1 + y2α2k2,2

=(ŷ1 − y1)− (ŷ2 − y2) + α2y2(k1,1 + k2,2 − 2k1,2)

α̃2 = α2 + y2
(ŷ1 − y1)− (ŷ2 − y2)

k1,1 + k2,2 − 2k1,2
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Advanced Topics in Machine Learning 3. Decomposition Methods in the Dual (SMO)

SMO: Choice of Active Support Vectors

Original SMO (Platt 1999): choose (i , j) with

I i with 0 < αi < γ (if possible, otherwise any),

I j with 0 < αj < γ and maximal |(ŷj − yj )− (ŷi − yi )|
(as approximation of the unclipped step length)
(if possible, otherwise any with 0 < αj < γ, otherwise any)

Worst violating pair (Keerthi et al. 2001): choose (i , j) with

i := arg max
k∈I0

yk −
∑

l

αlylk(xl , xk ) = arg max
k∈I0

yk
∂ f̄

∂αk

j := arg min
k∈I1

yk −
∑

l

αlylk(xl , xk ) = arg min
k∈I1

yk
∂ f̄

∂αk
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Advanced Topics in Machine Learning 3. Decomposition Methods in the Dual (SMO)

SMO: Choice of Active Support Vectors

Using Second Order Information (R.-E. Fan, P.-H. Chen, and C.-J. Lin
2005): choose (i , j) with

i := arg max
k∈I0

yk
∂ f̄

∂αk

j := arg min
k∈I1

(−yi
∂ f̄
∂αi

+ yk
∂ f̄
∂αk

)2

k(xi , xi ) + k(xk , xk )− 2k(xi , xk )
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Advanced Topics in Machine Learning 3. Decomposition Methods in the Dual (SMO)

SMO: Maintain β0

βnew
0 :=βold

0 + yk − ŷold(xk )

− (αi − αold
i )yik(xi , xk )− (αj − αold

j )yjk(xj , xk ), if 0 < αk < γ

for k ∈ {i , j}.
This choice of β0 enforces

0
!

=yk − ŷnew(xi ) = yk − (
∑

l

αnew
l ylk(yl , yk ) + βnew

0 )

=yk − (
∑

l

αold
l ylk(yl , yk ) + βold

0 − βold
0

+ (αi − αold
i )yik(xi , xk ) + (αj − αold

j )yjk(xj , xk ) + βnew
0 )

βnew
0 =βold

0 + yk − ŷold(xi )

− (αi − αold
i )yik(xi , xk )− (αj − αold

j )yjk(xj , xk )

If neither i nor j is at bounds, one can choose any βnew
0 in between, e.g.,

the mean.
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Advanced Topics in Machine Learning 3. Decomposition Methods in the Dual (SMO)

SMO: Maintain yk − ŷ(xk)

yk − ŷnew(xk ) =yk −
∑

l

αnew
l ylk(yl , yk ) + βnew

0

=yk − (
∑

l

αold
l ylk(yl , yk ) + βold

0

+ (αi − αold
i )yik(xi , xk ) + (αj − αold

j )yjk(xj , xk ) + βnew
0 − βold

0 )

=yk − ŷold(xk )

− (αi − αold
i )yik(xi , xk )− (αj − αold

j )yjk(xj , xk )− βnew
0 + βold

0

yk − ŷnew(xk ) is maintained for all k not at bounds.
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SMO: Maintain β

For a linear SVM, β can be maintained:

βnew =
∑

k

αnew
k ykxk

=
∑

k

αold
k ykxk + (αi − αold

i )yixi + (αj − αold
j )yjxj

= βold + (αi − αold
i )yixi + (αj − αold

j )yjxj

β can be used to compute ŷ(xk ) in the primal
(esp. for k not at bounds for which ŷ(xk ) is not maintained).
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SMO: Caching Kernel Values

Kernel values k(xk , xk ) can be pre-computed once as they are used in the
denominator of the formula for αnew

i , αnew
j .

More general, kernel rows k(xi , ·) could be cached (e.g.,
least-recently-used strategy; Joachims 1999).
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Outline

1. Major Learning Problems Seen so far

2. Dual Optimization Problem for SVMs

3. Decomposition Methods in the Dual (SMO)

4. Gradient Descent in the Dual

5. Coordinate Descent in the Dual
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Complete Gradient

maximize f̄ (α) :=
n∑

i=1

αi −
1

2

n∑
i ,j=1

αiαjyiyjk(xi , xj )

w.r.t.
n∑

i=1

αiyi =0

αi ≥0, αi ≤ γ

for given γ ≥ 0 and kernel k .

If solved via gradient descent,

∂ f̄

∂αi
= 1−

n∑
j=1

αjyiyjk(xi , xj )

computing a single gradient requires the full kernel matrix.
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Partial Gradient

To avoid the use of the full kernel matrix, one could employ partial
gradient descent.

I move along the partial gradient for coordinates I ⊆ {1, . . . , n}:

(
∂ f̄

∂α
� δI )i :=

{
∂ f̄
∂αi

= 1−
∑n

j=1 αjyiyjk(xi , xj ), i ∈ I

0, else

I to preserve the sum constraint
∑

i yiαi = 0, the smallest possible I
has size 2, I := {i , j}, and the update is

αi :=αi + yi ∆α, αj := αj − yj ∆α, ∆α > 0

with yi ∆α ∈

{
[−min(αi , αj ), γ −max(αi , αj )] , if yiyj = −1

[−min(αi , γ − αj ),min(γ − αi , αj )] , if yiyj = +1
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Note: (δI )i :=

{
1, if i ∈ I

0, else
.
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Steepest Descent Direction

I The coordinates i , j with steepest descent direction are

arg max {yi
∂ f̄

∂αi
− yj

∂ f̄

∂αj
| i ∈ I+, j ∈ I−}

= (arg max
i∈I +

yi
∂ f̄

∂αi
, arg min

j∈I−
yj
∂ f̄

∂αj
)

with I+ :={i | ∃∆α > 0 : αi + yi ∆α ∈ [0, γ]}
I− :={i | ∃∆α > 0 : αi − yi ∆α ∈ [0, γ]}
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Note:
I + = {i | yi = +1 ∧ αi < γ ∨ yi = −1 ∧ αi > 0},
I− = {i | yi = −1 ∧ αi < γ ∨ yi = +1 ∧ αi > 0}
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Optimal Step Length

I The optimal step length can be determined analytically:

∆α =
(yi − ŷ(xi ))− (yj − ŷ(xj ))

k(xi , xi ) + k(xj , xj )− 2k(xi , xj )

=
Fi − Fj

k(xi , xi ) + k(xj , xj )− 2k(xi , xj )

with Fk :=yk
∂ f̄

∂αk
= yk −

n∑
l=1

αlylK (xk , xl )

(SMO lemma; still needs to be clipped).
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Note: Fk = yk − ŷ(xk ) + β̂0.
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Maintained Quantities & Initialization

I For efficiency, maintain

Fk :=yk
∂ f̄

∂αk
= yk −

n∑
l=1

αlylK (xk , xl )

=Fk −∆αiyiK (xk , xi )−∆αjyjK (xk , xj )

=Fk −∆α(K (xk , xi )− K (xk , xj ))

I Initially,

αi =0

Fi =yi

i =any with yi = +1

j =any with yj = −1
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SMO Algorithm

(1) learn-svm-smo(training predictors x, training targets y,
(2) complexity γ, kernel K, accuracy ε) :
(3) α̂i := 0 ∀i
(4) Fi := yi ∀i
(5) choose i, j with yi = +1, yj = −1
(6) do
(7) ∆α :=

Fi−Fj

K(xi,xi)+K(xj ,xj)−2K(xi,xj)

(8) ∆α :=

{
yi[yi∆α]

γ−max(α̂i,α̂j)

−min(α̂i,α̂j)
, if yiyj = −1

yi[yi∆α]
min(γ−α̂i,α̂j)

−min(α̂i,γ−α̂j)
, if yiyj = +1

(9) α̂i := α̂i + yi∆α
(10) α̂j := α̂j − yj∆α
(11) Fk := Fk −∆α(K(xk, xi)−K(xk, xj)) ∀k
(12) i := argmax { Fk | yk = +1 ∧ α̂k < γ ∨ yk = −1 ∧ α̂k > 0 }
(13) j := argmin { Fk | yk = −1 ∧ α̂k < γ ∨ yk = +1 ∧ α̂k > 0 }
(14) while Fi − Fj > ε
(15) return α̂
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Note: improved version from Keerthi et al. 2001, not the original from Platt 1999.
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Partial Newton Algorithm
In gradient descent, descent direction and step length are chosen
sequentially, evtl. leading to non-optimal steps.

Both coordinates cannot be chosen simultaneously without accessing the
whole kernel matrix.

But the second coordinate could be chosen s.t. the resulting increase in
the objective function is maximal:

i = arg max
i∈I +

yi
∂ f̄

∂αi

j(i) = arg max
j∈I−

∆α(i , j)(yi
∂ f̄

∂αi
− yj

∂ f̄

∂αj
)

= arg max
j∈I−

∆α(i , j)(Fi − Fj )

= arg max
j∈I−

(Fi − Fj )
2

K (xi , xi ) + K (xj , xj )− 2K (xi , xj )
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Partial Newton Algorithm (2/2)

Alternatively, the same update can be derived as an approximation to a
partial Newton algorithm (i.e., a Newton algorithm on subproblems of just
2 coordinates; P. Chen, R. Fan, and C. Lin 2006).
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Nested Decomposition
The decomposition principle could be used in a nested way:

I chose a subset I ⊆ {1, . . . , n} of active coordinates

I chose a subsubset I (2) ⊆ I of active coordinates (e.g., SMO).

Advantage: the inner optimization does not have to maintain the
quantities for all coordinates (e.g., SMO has only to maintain Fi for i ∈ I ).

Disadvantage: after completing the inner optimization, optimality has to
be checked (what usually means that non-maintained quantities now have
to be recomputed).

Shrinking (Joachims 1999):

I if αi = γ and yi ŷ(xi ) < 1 for some iterations,
drop coordinate i .

I if αi = 0 and yi ŷ(xi ) > 1 for some iterations,
drop coordinate i .
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Outline

1. Major Learning Problems Seen so far

2. Dual Optimization Problem for SVMs

3. Decomposition Methods in the Dual (SMO)

4. Gradient Descent in the Dual

5. Coordinate Descent in the Dual
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Dual Problem without Intercept

minimize f (β, ξ) :=
1

2
||β||2 + γ

n∑
i=1

ξi

w.r.t. yi 〈β, xi 〉 ≥1− ξi , i = 1, . . . , n

ξ ≥0

for given γ ≥ 0.

Dual formulation (non-linear kernel K ):

maximize f̄ (α) :=
n∑

i=1

αi −
1

2

n∑
i ,j=1

αiαjyiyjK (xi , xj )

w.r.t. αi ≥0, αi ≤ γ
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Dual Coordinate Descent (Hsieh et al. 2008)

I Do not use an intercept β0.
(but add a constant primal pseudo-attribute).

I Optimize one αi at a time
(optimal value can be computed analytically)

I Do not prioritize αi ’s,
but select all sequentially (in random order)

I Do not maintain gradients,
but maintain β̂ (for linear kernels).
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Optimal Step Length

Lemma
f̄ (αi ; (αj )j 6=i ) assumes its maximum at

αi := αold
i +

1− yi ŷ(xi )

K (xi , xi )

Proof.

∂ f̄

∂αi
(αold

i + ∆α) = 1− yi

∑
j

αjyjK (xj , xi )−∆αyiyiK (xi , xi )

= 1− yi ŷ(xi )−∆αK (xi , xi )
!

= 0
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Costs for Computing One Partial Gradient

from scratch from scratch from maintained
step (dual) (primal) gradient

compute one
partial gradient

O(nmnz) O(mnz) O(1)

maintain β — O(mnz) —
maintain gradient — — O(nmnz)

total O(nmnz) O(mnz) O(nmnz)

n =number of samples,

m =number of (primal) attributes,

mnz =average number of nonzero attributes
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Costs for Computing One Partial Gradient

I Maintaining Gradients is useful when prioritizing coordinates to
update (from scratch: O(n2mnz)).

I Computing gradients from scratch (primal) is only possible for linear
SVMs.

I  for nonlinear SVMs with prioritized coordinate selection:
maintaining gradients saves considerable costs.

I  for linear SVMs:
maintaining gradients does not pay off.
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Dual Coordinate Descent Algorithm

(1) learn-linear-svm-coord-descent(training predictors x, training targets y,
(2) complexity γ, accuracy ε) :
(3) α̂i := 0 ∀i
(4) β̂i := 0 ∀i
(5) do
(6) for i := 1 . . . n in random order do
(7) ∆αi := [1−yiβ̂

T xi
xTi xi

]γ−αi
−αi

(8) α̂i := α̂i + ∆αi
(9) β̂ := β̂ + ∆αiyixi

(10) od
(11) while ∃i : |∆αi| > ε

(12) return (α̂, β̂)
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Elementwise Multiplication (Hadamard Product)

Elementwise multiplication is defined as follows:

a� b := (diag(a) diag(b))i ,i = (aibi )i=1,...,n, a, b ∈ Rn

A� B := = (Ai ,jBi ,j )i=1,...,n,j=1,...,m, A,B ∈ Rn,m

a� B := diag(a)B = (aiBi ,j )i=1,...,n,j=1,...,m, a ∈ Rn,B ∈ Rn,m

A� bT := A diag(b) = (Ai ,jbj )i=1,...,n,j=1,...,m, A ∈ Rn,m, b ∈ Rm

Commutativity:
a� b =b � a

A� B =B � A

a� B =(BT � aT )T

But be careful:

a� B 6=B � a, esp. as the latter is not defined
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Note: (diag(a))i,j := δi=j ai denotes the diagonal matrix with diagonal a.
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Elementwise Multiplication (Hadamard Product)

Associativity:

(a� b)� c =a� (b � c)

(A� B)� C =A� (B � C )

(a� B)� C =a� (B � C )
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Elementwise Multiplication (Hadamard Product)

Associativity with multiplication (vector/matrix/vector):

a� (Bc) =(a� B)c

(aTB)� cT =aT (B � cT )

b � A� cT =A� (bcT )

But not in general (matrix/vector/vector; matrix/matrix/matrix):

A(b � c) 6= (Ab)� c

A(B � C ) 6= (AB)� C

Matrix/vector/vector is more complicated:

A(b � c) =(A� bT )c
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