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Structural SVM

A A~ 1 Ara
min (5, &) := §6Tﬂ+7n5 [STRUCT.SVM]
1~ » el £
— ; > —
wrtniz;c,y,ﬁ X p £,

for given v > 0 and C C {0,1}".
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Advanced Topics in Machine Learning 6. Cutting Plane Algorithm

NN
Equivalence to LSVM “

Lemma

The (original) linear SVM problem [LSVM] and the structured SVM
problem [STRUCT.SVM] for C := {0,1}" are equivalent.

Proof.

=" Let (3,€) be a feasible point of [LSVM]. Then (5, £) with
£:= 13" | & is feasible for [STRUCT.SVM]: for any c € C:

*ZCIYI/BTX/Z chl_& fel ch_iz&_ N

and fisym(B,€) = *BTﬁ + éi = *BTB +né = fstrucT.svm(B; €)
2 — 2
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Advanced Topics in Machine Learning 6. Cutting Plane Algorithm
: 22
Equivalence to LSVM (2/2) i
<" Let (B,f) be a feasible point of [STRUCT.SVM]. Then (B,é) with
=[1- YIﬂATXi]+

is feasible for [LSVM].
Now let

¢= (61_yi//3>TX,.>0)i:1,...,n

Then

ZéI_ZCI 1_)/15 XI)<n€

i=1

n

. n o I T . o

and thus fisym(5,§) = EﬂTﬂ + 7 E §i < EﬁTﬂ +vn§ = fsTrucT.svMm (B, €
i=1
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Dual Formulation

Lemma

The dual formulation of [STRUCT.SVM] is

max F(@) ==~ 3 dcdgalas + 3 1
c,deC ceC
w.r.t. Z Qe <y
ceC

ac >0, ceC
with

1 n
== Z GiYyiXi
n<
i=1
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Basic ldeas

Basic Ideas:
» start with C = 0.

» In each iteration,
add the constraint for the set of examples with errors.

» Do not solve the primal structured problem,
but the dual structured problem
(only |C| variables).

» Store g.
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Initialization

If we start with C := () and optimize the primal [STRUCT.SVM], we get

O My
Il

0
0
®
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Advanced Topics in Machine Learning 6. Cutting Plane Algorithm

NN
Cutting Plane Algorithm (Joachims 2006) “

(1) learn-linear-svm-cutting-plane(training predictors x, training targets y,

2) complexity -y, accuracy €) :
i) C:= {@}
@ o = Zyzrz
(s5) do
. 1 llelh
(6) o= argmax{ —5 Z acadchqd + Z Tac Zac <v,a.>0 VeeC
c,deC ceC ceC

@ B=) dee

ceC
() é 1= max —HcHl — BTqC

ceC n

9) C = (§y1dT11<1) =1,...,n

(10) Z CiYi;

an C:=C U {c}

Il e, s ¢
(13) return [3

(12) while ——
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Derivatives as Linear Approximation (Fréchet Derivativé% '

Definition (Fréchet derivative)

Let f: U — Y be a function on an open subset U C X of a Banach space
X into a Banach space Y. f is called Fréchet differentiable at x € U if
there is a bounded linear operator A, : X — Y with

i LGt ) = F00) = Adh)lly _
h—0 [l x

Then Df(x) := Ay is called its Fréchet derivative at x.

Banach space: complete normed vector space (i.e., contains the limit of every Cauchy sequence).
R" with Euclidean norm is a Banach space.

Bounded linear operator A: exists M € ]ROJr with [|Ax||y < M||x]||x for every x.
For finite dimensional spaces all linear operators are bounded.

Example unbounded linear operator: X the vector space of all bounded sequences in R with norm ||x|| := sup{x; | i € N}.
Then A : X — X with A(x) := (i xj)jen is linear, but not bounded.
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Derivatives as Linear Approximation (Fréchet Derivativé% '

The Fréchet derivative of f : R” — R™ can be described by the Jacobian
matrix:

o Of of
ox ox: Tt Oxp
on o of
LA

Df(x)=A.=| 7% 7% o
Oy Ofn Ofm

0x1 Oxo Tt Oxp

If f is Fréchet differentiable at x, it is continuous at x.
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Directional Derivatives & GAateaux Derivative

Definition (Directional derivative)
Let f: U — Y be a function on an open subset U C X of a Banach space
X into a Banach space Y. f is called differentiable at x € U in direction

de X if ; N
df(x; d) := lim (et td) = F()
t\0 t

exists. Then df (x; d) is called its derivative at x in direction d.

Note: Directional and Gateaux derivatives are defined for more general spaces, so called
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) ) ) ) R . . P2
Directional Derivatives & GAateaux Derivative v

Definition (Gateaux derivative)

If the derivative of f at x in direction d exists for every d and is linear in
d, f is called Gateaux differentiable at x.
If X is a Hilbert space and thus

df(x;d) = (a,d), foranae X
then Vf := a is called Gateaux derivative.
If f is Fréchet differentiable at x, then it also is Gateaux differentiable at x

and both derivatives coincide.
The reverse is not true.

Hilbert space: real or complex vector space with inner product, that is complete w.r.t.
metric induced by inner product.

Every Hilbert space is a Banach space.
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) ) ) ) R . . P2
Directional Derivatives & GAateaux Derivative v

Derivatives in all directions may exist, but fail to depend linearly on the
direction.

Example:

fx.y) = {+ if (x,y) # (0.0)

0, else

has derivative at (0,0) in every direction d

t3d3
_ sy 3
dF(x: d) = lim TXHID =0 wHEEEE i
t—0 t t—0 t d12 + d22

but df is not linear in d, i.e., f not Gateaux differentiable.
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Gateaux vs. Fréchet Derivative .
Also non-continuous functions may be Gateaux differentiable.
Example:
fy) o [0 i (69) #(0,0)
0, else

is non-continuous at (0, 0),
but its derivative at (0,0) in direction d is

t3d3td
- 164041242
df (x; d) := lim flct td) = )y, e
t—0 t t—0 t
tdf’dz

= 1mm ——- =
t—0 t4d16 + d22
thus linear in d and GAateaux differentiable.
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) ) P2
GAateaux vs. Fréchet Derivative v

Even a continuous function may be Gateaux differentiable, but not Fréchet
differentiable.

Example:

fFlxy) = {X“Xiyyz V2 4y i (x,y) #(0,0)

0, else

is continuous at (0,0) and Gateaux differentiable with derivative 0, but
not Fréchet differentiable as

lFGEB) — £ = Ay IFB)ly
h—0 [|hllx h—0 ||h||x

along h = (t, t?)

\/t2+t4/\/t2+t4—7750

= lim
t—0 t4+ 4
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Subgradients

Definition (Subgradients)
Let f : U — R be a function on an open subset U C X of a Hilbert space

X.
A vector ¢ € X is called a subgradient of f at x if

(p,x — x) < f(X) — f(x), VxeU

The set of all subgradients of f at x is called its subdifferential 0,f at x.

X
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Subgradients vs. Directional Derivatives

» If f is convex, then

peof <= (¢,) < df(x;-)

» If f is convex, then

df (x;d) = max(d, ¢)

» |If f is convex, then
f is Gateaux differentiable at x <= |0«f| =1

and then Of = {Vf}.
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Cutting Plane Method ..A

The cutting plane method approximates a function by a sequence of its
subgradients ¢; € Oy, f at different iterates x;:

f(x) > f(xe) + (9,

X —x), VxeU
and thus

f(x) = f(t)(x) = max tf(Xt') + (P, x —xp), Yx€U

{Teo et al=2009]. ~
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NN
Generic Cutting Plane Algorithm “

(1) minimize-cutting-plane(function f) :
(2) choose (randomly) zy € domf

(3 compute ¢y € Oy, f

@ ag = f(zo) — (o, zo)

5 t:=0

) while ||¢:|| > 0 do

(7) Ty i= argmin, f* := argmin f/IEllaXf(lt’ + (¢v, @)
) compute g1 € Oy, f

9) arpr = f(Ter1) — (P, Ter1)
(10) t:=t+1

(1) od

(12) return z;

[m] = = =
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Generic Cutting Plane Algorithm

Variant with line

(1
2
(3
4
(5)
(
(7)

(8)

9)
(10)
(11)
(12)
(13)
(14)

search:

minimize-cutting-plane-line-search(function f) :
choose (randomly) zy € dom f

compute ¢y € Oy, f

ag := f(0) — (¢, zo)

t:=0

while ||¢:|| > 0 do

Tppq 1= argming f' := argmin, Jnax ay + (¢p, )

n = argmin, f(z; +n(Tei1 — 24))
Typ1 = Xy + (T — 1)
compute ¢y1 € Oy, f
a1 = f(@e1) = (Dryr, Tria)
t:=t+1

od

return xz;

[m] = = =
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Bundle Methods

Control step size by a proximity control function:

» proximal bundle methods (Kiwiel 1990):

Ll =

Kep1 = argmin £1(x) +
X
» trust region bundle methods (Schramm and Zowe 1992):
. ot o1 >
Xet1 1= argmin{f*(x) | x with §HX — x¢||7 < Kt}

> level set bundle methods (Lemaréchal et al. 1995):

1
Xey1 = arg min{EHX — x¢|? | x with ff(x) < 7}
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Bundle Methods / Subproblems in the Dual
The subproblems (with (; a constant)

)

Xer1 ;= argmin ( max ay + (¢p, x)) + QHX — x¢||?
x t'=1,...,t 2
can be solved in the dual:
1
a:=argmax——a ' ddTa + b«
«@ 2Ct
wrt. el a =1
a >0
-
where ¢1T
¢
$ .= _2 , b:=a+ dx;
¢
Then

1
X:Xt—?q)—ra
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NN
Bundle Methods / Subproblems in the Dual i
Proof.

Lagrange function Fz(x,&, o) §+—\|x—xt\|2+a (a+ &x — &e)

=f(1—-a’e)+ EHx—xtHZ +a’ox+a'a

OF;

B :Ct(x—xt)—i—aTCD;O X = Xy — Cld)Ta )
t

=3

885'( =(1-a’ (B) 0 wela=1 (I
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B
Bundle Methods / Subproblems in the Dual i

Proof (ctd.).

= iOqu)(DToz + aT¢>(X — ldDT T

= ¢ a)+a'a
e Gt

1
=——a’odTa+a (dx; + a)
2Gt

)_‘(a) = ing Fz(x,&, @)
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A Slightly Different Problem Formulation
The classical SVM literature formulation (with C instead of v):

minimize (3, Po,

§) =
w.rt. y @ (Boe+ XB) > e
§>0

*IIBIF +7(e,§)

The risk & regularization formulation:

minimize (3, Bo, &) = (<B £+ /\|’ﬁ‘|2
)

w.rt. y © (foe + Xj3) > e
£>0
obviously are equivalent for
1
A=
ny
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Subgradient for Risk on Hinge Loss

Bundle methods can be applied to non-differential risks, such as risk on
Hinge loss:

R(,Boix,y) = = S 11— yi(BTx + folls
i=1

with subgradient

1 n
T Z YiXi
n .
ATI:LA .
3, i i+
g(B, Boi x, y) == (BT xiBo) <

—% Z Yi

i=

1
vi(BTxi+B0)<1
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B
Bundle Methods and L2 Regularization “

Teo et al. 2009 see structural similarities between the proximity control of
proximal bundle methods and the L2 regularization term. Differences:

» Always penalize relative to x; = 0

» Use (; := X as weight.

» x is called 3, t’ is called i, ¢4 is called —g;.

~ . A
Besa 1= argminf(8) + 51611

or in the dual

1 7 AAT T
T RR'a+a'«a

Q i=arg max —
«

T

w.rt. e'a=1

a >0
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B
Cutting Plane Algorithm and L2 Regularization “

Alternatively, one could extend the Cutting Plane Algorithm slightly to
handle functions of type

F(x) = () + h(x)
where fi is non-differentiable, but % is. Then approximate f by

FO(x) = max fi(x) + g (x = x) + fa(x)

with 8t € axtf]_.
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Loss functions and thei

Methods for SVMs

r derivatives

Table 5: Scalar loss functions and their derivatives, depending on f := (w,z), and y.

Loss I(f,y)

Derivative I'(f,y)

Hinge (Bennett and Mangasarian, 1992)

max(0,1 —yf)

0if yf > 1 and —y otherwise

Squared Hinge (Keerthi and DeCoste, 2005)

T max(0,1 = yf)’

0ifyf > 1and f — y otherwise

Exponential (Cowell et al., 1999)

exp(—yf)

—yexp(—yf)

Logistic (Collins et al., 2000)

log(1 + exp(—yf))

—y/(1 +exp(~yf))

Novelty (Scholkopf et al., 2001)

max(0,p — f)

0 if f > p and —1 otherwise

Least mean squares (Williams, 1998)

3 —y)?

f-y

Least absolute deviation

1f =yl

sgn(f —y)

Quantile regression (Koenker, 2005)

max(r(f —y), (L=7)(y - f))

7 if f >y and 7 — 1 otherwise

ve (Vapnik et al., 1997)

max(0,|f —y| —€)

0if [f —y| < e, else sgn(f —y)

s robust loss (Miiller et al., 1997)

T =it [f—y[ <1 else [f—y[— ]

f—yif|[f—yl <L else sgn(f —y)

Poisson regression (Cressie, 1993)

exp(f) —yf

exp(f) —y

Table 6: Vectorial loss functions

and their derivatives, depending on the vector f := Waz and on y.

Loss

Derivative

Soft-Margin Multiclass (Taskar et al., 2004)
(Crammer and Singer, 2003)

maxy (fy — fy + Ay, y)

ey — ey
where y* is the argmax of the loss

Scaled Soft-Margin Multic!
(Tsochantaridis et al., 200!

maxy Ly, o) (fy — fy + Aly.y))

Ly, ) ey —€y)
where y* is the argmax of the loss

Softmax Multiclass (Cowell et al., 1999)

log 3, exp(fy) = fy

oy v explly)] /Sy exolly) = ey

Multivariate Regression

%(f —y) M(f—y) where M = 0

M(f-y)

[Teo et al. 2009]
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