

Advanced Topics in Machine Learning 1. Learning SVMs / Bundle Methods

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL) University of Hildesheim, Germany

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ● ◆○

Outline

6. Cutting Plane Algorithm

7. Digression: Bundle Methods

8. Bundle Methods for SVMs

《日》《聞》《言》《言》 言言 めんぐ

Outline

6. Cutting Plane Algorithm

7. Digression: Bundle Methods

8. Bundle Methods for SVMs

Structural SVM

$$\min f(\hat{\beta}, \hat{\xi}) := \frac{1}{2} \hat{\beta}^T \hat{\beta} + \gamma n \hat{\xi} \qquad [STRUCT.SVM]$$

w.r.t. $\frac{1}{n} \sum_{i=1}^n c_i y_i \hat{\beta}^T x_i \ge \frac{||c||_1}{n} - \hat{\xi}, \quad c \in C$
 $\hat{\xi} \ge 0$

for given $\gamma > 0$ and $\mathcal{C} \subseteq \{0,1\}^n$.

うせん 単面 ふぼやふぼやふむや

Equivalence to LSVM

Lemma

The (original) linear SVM problem [LSVM] and the structured SVM problem [STRUCT.SVM] for $C := \{0, 1\}^n$ are equivalent.

Proof.

" \Rightarrow ": Let $(\hat{\beta}, \hat{\xi})$ be a feasible point of [LSVM]. Then $(\hat{\beta}, \tilde{\xi})$ with $\tilde{\xi} := \frac{1}{n} \sum_{i=1}^{n} \xi_i$ is feasible for [STRUCT.SVM]: for any $c \in C$:

$$\frac{1}{n}\sum_{i=1}^{n}c_{i}y_{i}\hat{\beta}^{T}x_{i} \geq \frac{1}{n}\sum_{i}c_{i}(1-\xi_{i}) \geq \frac{1}{n}\sum_{i}c_{i}-\frac{1}{n}\sum_{i}\xi_{i} = \frac{||c||_{1}}{n}-\tilde{\xi}$$

and $f_{\text{LSVM}}(\hat{\beta},\hat{\xi}) = \frac{1}{2}\hat{\beta}^{T}\hat{\beta} + \gamma\sum_{i=1}^{n}\hat{\xi}_{i} = \frac{1}{2}\hat{\beta}^{T}\hat{\beta} + \gamma n\tilde{\xi} = f_{\text{STRUCT.SVM}}(\hat{\beta},\tilde{\xi})$

Equivalence to LSVM (2/2) " \Leftarrow ": Let $(\hat{\beta}, \tilde{\xi})$ be a feasible point of [STRUCT.SVM]. Then $(\hat{\beta}, \hat{\xi})$ with

$$\tilde{\xi}_i := [1 - y_i \hat{\beta}^T x_i]_+$$

is feasible for [LSVM]. Now let

$$c := (\delta_{1-y_i\hat{\beta}^T x_i > 0})_{i=1,\dots,n}$$

Then

$$\sum_{i=1}^{n} \tilde{\xi}_{i} = \sum_{i=1}^{n} c_{i} (1 - y_{i} \hat{\beta}^{T} x_{i}) \leq n \tilde{\xi}$$

and thus $f_{\text{LSVM}}(\hat{\beta}, \hat{\xi}) = \frac{1}{2} \hat{\beta}^{T} \hat{\beta} + \gamma \sum_{i=1}^{n} \hat{\xi}_{i} \leq \frac{1}{2} \hat{\beta}^{T} \hat{\beta} + \gamma n \tilde{\xi} = f_{\text{STRUCT.SVM}}(\hat{\beta}, \tilde{\xi})$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Universiter Hildeshein

Dual Formulation

Lemma

The dual formulation of [STRUCT.SVM] is

$$\max \bar{f}(\hat{\alpha}) := -\sum_{c,d \in \mathcal{C}} \hat{\alpha}_c \hat{\alpha}_d q_c^T q_d + \sum_{c \in \mathcal{C}} \frac{||c||_1}{n} \hat{\alpha}_c$$

w.r.t.
$$\sum_{c \in \mathcal{C}} \hat{\alpha}_c \leq \gamma$$
$$\hat{\alpha}_c \geq 0, \quad c \in \mathcal{C}$$

with

$$q_c := \frac{1}{n} \sum_{i=1}^n c_i y_i x_i$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

・ロト < 団ト < ヨト < ヨト < ロト

Universite Fildeshelf

Basic Ideas

Basic Ideas:

- start with $C = \emptyset$.
- In each iteration, add the constraint for the set of examples with errors.
- ► Do not solve the primal structured problem, but the dual structured problem (only |C| variables).
- Store q_c .

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少々で

Initialization

If we start with $\mathcal{C} := \emptyset$ and optimize the primal [STRUCT.SVM], we get

 $\hat{eta} = 0$ $\hat{\xi} = 0$ c = e

シック 正則 (川田) (日) (日) (日)

Cutting Plane Algorithm (Joachims 2006)

(1) learn-linear-sym-cutting-plane(training predictors x, training targets y, complexity γ , accuracy ϵ) : (3) $C := \{e\}$ (4) $q_{\mathrm{e}} := \frac{1}{n} \sum_{i=1}^{n} y_i x_i$ (5) do $\hat{\alpha} := \operatorname{argmax} \left\{ \left. -\frac{1}{2} \sum_{c, d \in \mathcal{C}} \alpha_c \alpha_d q_c^T q_d + \sum_{c \in \mathcal{C}} \frac{||c||_1}{n} \alpha_c \right| \sum_{c \in \mathcal{C}} \alpha_c \le \gamma, \alpha_c \ge 0 \quad \forall c \in \mathcal{C} \right\}$ (6) $(7) \qquad \hat{\beta} := \sum_{c \in \mathcal{C}} \hat{\alpha}_c q_c$ (8) $\hat{\xi} := \max_{c \in \mathcal{C}} \frac{||c||_1}{n} - \hat{\beta}^T q_c$ (9) $c := (\delta_{y_i \hat{\beta}^T x_i < 1})_{i=1,...,n}$ $(10) \qquad q_c := \frac{1}{n} \sum_{i=1}^n c_i y_i x_i$ $(11) \qquad \mathcal{C} := \mathcal{C} \cup \{c\}$ (12) while $\frac{||c||_1}{1} - \hat{\beta}^T q_c > \hat{\xi} + \epsilon$ (13) return $\hat{\beta}^n$ 同下 イヨト イヨト 三日 のくで

Outline

6. Cutting Plane Algorithm

7. Digression: Bundle Methods

8. Bundle Methods for SVMs

・日本・西本・山田・山田・山田・今日・

Derivatives as Linear Approximation (Fréchet Derivative)

Definition (Fréchet derivative)

Let $f: U \to Y$ be a function on an open subset $U \subseteq X$ of a Banach space X into a Banach space Y. f is called Fréchet differentiable at $x \in U$ if there is a bounded linear operator $A_x : X \to Y$ with

$$\lim_{h \to 0} \frac{||f(x+h) - f(x) - A_x(h)||_Y}{||h||_X} = 0$$

Then $Df(x) := A_x$ is called its Fréchet derivative at x.

Banach space: complete normed vector space (i.e., contains the limit of every Cauchy sequence). \mathbb{R}^n with Euclidean norm is a Banach space.

Bounded linear operator A: exists $M \in \mathbb{R}^+_0$ with $||Ax||_Y \leq M||x||_X$ for every x. For finite dimensional spaces all linear operators are bounded. Example unbounded linear operator: X the vector space of all bounded sequences in \mathbb{R} with norm $||x|| := \sup\{x_i \mid i \in \mathbb{N}\}$. Then $A : X \to X$ with $A(x) := (i x_i)_{i \in \mathbb{N}}$ is linear, but not bounded.

Derivatives as Linear Approximation (Fréchet Derivative

The Fréchet derivative of $f : \mathbb{R}^n \to \mathbb{R}^m$ can be described by the Jacobian matrix:

$$Df(x) = A_x = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

If f is Fréchet differentiable at x, it is continuous at x.

- 《日》 《日》 《日》 《日》 《日》

Directional Derivatives & Gâteaux Derivative

Definition (Directional derivative)

Let $f : U \to Y$ be a function on an open subset $U \subseteq X$ of a Banach space X into a Banach space Y. f is called differentiable at $x \in U$ in direction $d \in X$ if

$$df(x; d) := \lim_{t \searrow 0} \frac{f(x + td) - f(x)}{t}$$

exists. Then df(x; d) is called its derivative at x in direction d.

Note: Directional and Gâteaux derivatives are defined for more general spaces, so called $\exists r = 0 \in \mathbb{C}^{n}$ locallynconvexntopological spector spaces in Learning Lab (ISMLL), University of Hildesheim, Germany

Directional Derivatives & Gâteaux Derivative

Definition (Gâteaux derivative)

If the derivative of f at x in direction d exists for every d and is linear in d, f is called Gâteaux differentiable at x.

If X is a Hilbert space and thus

$$df(x;d)=\langle a,d
angle, \hspace{0.3cm}$$
 for an $a\in X$

then $\nabla_x f := a$ is called Gâteaux derivative.

If f is Fréchet differentiable at x, then it also is Gâteaux differentiable at x and both derivatives coincide.

The reverse is not true.

Hilbert space: real or complex vector space with inner product, that is complete w.r.t. metric induced by inner product. Every Hilbert space is a Banach space.

Directional Derivatives & Gâteaux Derivative

Derivatives in all directions may exist, but fail to depend linearly on the direction.

Example:

$$f(x,y) := \begin{cases} \frac{x^3}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{else} \end{cases}$$

has derivative at (0,0) in every direction d

$$df(x;d) := \lim_{t \to 0} \frac{f(x+td) - f(x)}{t} = \lim_{t \to 0} \frac{\frac{t^3 d_1^3}{t^2 d_1^2 + t^2 d_2^2}}{t} = \frac{d_1^3}{d_1^2 + d_2^2}$$

but df is not linear in d, i.e., f not Gâteaux differentiable.

・ロト・西ト・西ト・西ト・日下 うくの

Gâteaux vs. Fréchet Derivative

Also non-continuous functions may be Gâteaux differentiable.

Example:

$$f(x,y) := \begin{cases} \frac{x^3y}{x^6 + y^2}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{else} \end{cases}$$

is non-continuous at (0,0), but its derivative at (0,0) in direction d is

$$df(x; d) := \lim_{t \to 0} \frac{f(x + td) - f(x)}{t} = \lim_{t \to 0} \frac{\frac{t^3 d_1^3 t d_2}{t^6 d_1^6 + t^2 d_2^2}}{t}$$
$$= \lim_{t \to 0} \frac{t d_1^3 d_2}{t^4 d_1^6 + d_2^2} = 0$$

thus linear in d and Gâteaux differentiable.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

14 / 29

◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少々で

Advanced Topics in Machine Learning 7. Digression: Bundle Methods

Gâteaux vs. Fréchet Derivative

Even a continuous function may be Gâteaux differentiable, but not Fréchet differentiable.

Example:

$$f(x,y) := \begin{cases} \frac{x^2y}{x^4 + y^2} \sqrt{x^2 + y^2}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{else} \end{cases}$$

is continuous at (0,0) and Gâteaux differentiable with derivative 0, but not Fréchet differentiable as

$$\lim_{h \to 0} \frac{||f(x+h) - f(x) - A_x(h)||_Y}{||h||_X} = \lim_{h \to 0} \frac{||f(h)||_Y}{||h||_X}$$

along $h = (t, t^2)$
$$= \lim_{t \to 0} \frac{t^2 t^2}{t^4 + t^4} \sqrt{t^2 + t^4} / \sqrt{t^2 + t^4} = \frac{1}{2} \neq 0$$

Subgradients

Definition (Subgradients)

Let $f: U \to \mathbb{R}$ be a function on an open subset $U \subseteq X$ of a Hilbert space X.

A vector $\phi \in X$ is called a subgradient of f at x if

$$\langle \phi, \tilde{x} - x \rangle \leq f(\tilde{x}) - f(x), \quad \forall \tilde{x} \in U$$

The set of all subgradients of f at x is called its subdifferential $\partial_x f$ at x.

Subgradients vs. Directional Derivatives

▶ If *f* is convex, then

$$\phi \in \partial_x f \iff \langle \phi, \cdot \rangle \leq df(x; \cdot)$$

► If *f* is convex, then

$$df(x; d) = \max_{\phi \in \partial_x f} \langle d, \phi \rangle$$

▶ If *f* is convex, then

f is Gâteaux differentiable at $x \iff |\partial_x f| = 1$

and then $\partial_x f = \{\nabla_x f\}.$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ● ◆○

Cutting Plane Method

The cutting plane method approximates a function by a sequence of its subgradients $\phi_t \in \partial_{x_t} f$ at different iterates x_t :

$$f(x) \ge f(x_t) + \langle \phi_t, x - x_t \rangle, \quad \forall x \in U$$

and thus

$$f(x) \geq f^{(t)}(x) := \max_{t'=1,\dots,t} f(x_{t'}) + \langle \phi_{t'}, x - x_{t'} \rangle, \quad \forall x \in U$$

Advanced Topics in Machine Learning 7. Digression: Bundle Methods

Generic Cutting Plane Algorithm

(1) minimize-cutting-plane(function f): (2) choose (randomly) $x_0 \in \text{dom} f$ (3) compute $\phi_0 \in \partial_{x_0} f$ (4) $a_0 := f(x_0) - \langle \phi_0, x_0 \rangle$ (5) t := 0(6) while $||\phi_t|| > 0$ do (7) $x_{t+1} := \operatorname{argmin}_x f^t := \operatorname{argmin}_x \max_{t'=1,\dots,t} a_{t'} + \langle \phi_{t'}, x \rangle$ (8) compute $\phi_{t+1} \in \partial_{x_{t+1}} f$ (9) $a_{t+1} := f(x_{t+1}) - \langle \phi_{t+1}, x_{t+1} \rangle$ (10) t := t + 1(11) od (12) return x_t

もうし 見聞 (明) (明) (明) (明) (日)

Generic Cutting Plane Algorithm

Variant with line search:

<ロシ イ ② シ イ ③ シ イ ③ シ イ ミン 美国 シ へ (で Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

20 / 29

Bundle Methods

Control step size by a proximity control function:

▶ proximal bundle methods (Kiwiel 1990):

$$\tilde{x}_{t+1} := \arg\min_{x} f^t(x) + \frac{\zeta_t}{2} ||x - x_t||^2$$

► trust region bundle methods (Schramm and Zowe 1992):

$$\widetilde{x}_{t+1} := \arg\min\{f^t(x) \mid x \text{ with } \frac{1}{2}||x-x_t||^2 \le \kappa_t\}$$

► level set bundle methods (Lemaréchal et al. 1995):

$$\widetilde{x}_{t+1} := \arg\min\{\frac{1}{2}||x-x_t||^2 \mid x \text{ with } f^t(x) \leq \tau_t\}$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少々で

Bundle Methods / Subproblems in the Dual The subproblems (with ζ_t a constant)

$$x_{t+1} := \underset{x}{\operatorname{arg\,min}} \left(\max_{t'=1,\dots,t} a_{t'} + \langle \phi_{t'}, x \rangle \right) + \frac{\zeta_t}{2} ||x - x_t||^2$$

can be solved in the dual:

$$\alpha := \arg \max_{\alpha} - \frac{1}{2\zeta_t} \alpha^T \Phi \Phi^T \alpha + b^T \alpha$$

w.r.t. $e^T \alpha = 1$
 $\alpha \ge 0$
 $\Phi := \begin{pmatrix} \phi_1^T \\ \phi_2^T \\ \vdots \\ \phi_t^T \end{pmatrix}, \quad b := a + \Phi x_t$

where

Then

$$x = x_t - \frac{1}{\zeta_t} \Phi^T \alpha$$

Bundle Methods / Subproblems in the Dual Proof.

$$\begin{aligned} \arg\min_{x} \tilde{f}(x) &:= \xi + \frac{\zeta_{t}}{2} ||x - x_{t}||^{2} \\ \text{w.r.t. } \xi \geq a_{t'} + \langle \phi_{t'}, x \rangle, \quad t' = 1, \dots, t \end{aligned}$$

$$\begin{aligned} \text{Lagrange function } F_{\tilde{f}}(x, \xi, \alpha) &= \xi + \frac{\zeta_{t}}{2} ||x - x_{t}||^{2} + \alpha^{T} (a + \Phi x - \xi_{\mathbb{P}}) \\ &= \xi (1 - \alpha^{T}_{\mathbb{P}}) + \frac{\zeta_{t}}{2} ||x - x_{t}||^{2} + \alpha^{T} \Phi x + \alpha^{T} a \end{aligned}$$

$$\frac{\partial F_{\tilde{f}}}{\partial x} = \zeta^{t}(x - x_{t}) + \alpha^{T} \Phi \stackrel{!}{=} 0 \qquad \qquad \rightsquigarrow x = x_{t} - \frac{1}{\zeta_{t}} \Phi^{T} \alpha (I)$$
$$\frac{\partial F_{\tilde{f}}}{\partial \xi} = (1 - \alpha^{T} e) \stackrel{!}{=} 0 \qquad \qquad \rightsquigarrow e^{T} \alpha = 1 (II)$$

Universiter - Hildeshein

Bundle Methods / Subproblems in the Dual

Proof (ctd.).

$$\bar{f}(\alpha) := \inf_{x,\xi} F_{\tilde{f}}(x,\xi,\alpha) = \frac{\zeta_t}{2\zeta_t^2} \alpha^T \Phi \Phi^T \alpha + \alpha^T \Phi(x_t - \frac{1}{\zeta_t} \Phi^T \alpha) + \alpha^T a$$
$$= -\frac{1}{2\zeta_t} \alpha^T \Phi \Phi^T \alpha + \alpha^T (\Phi x_t + a)$$

- 《日》 《聞》 《臣》 《臣》 (三) 『 今へで

Outline

6. Cutting Plane Algorithm

7. Digression: Bundle Methods

8. Bundle Methods for SVMs

・ロト・(中)・ (日)・(日)・(日)・

A Slightly Different Problem Formulation The classical SVM literature formulation (with C instead of γ):

minimize
$$f(\beta, \beta_0, \xi) := \frac{1}{2} ||\beta||^2 + \gamma \langle e, \xi \rangle$$

w.r.t. $y \odot (\beta_0 e + X\beta) \ge e - \xi$
 $\xi \ge 0$

The risk & regularization formulation:

minimize
$$f(\beta, \beta_0, \xi) := \frac{1}{n} \langle e, \xi \rangle + \frac{1}{2} \lambda ||\beta||^2$$

w.r.t. $y \odot (\beta_0 e + X\beta) \ge e - \xi$
 $\xi \ge 0$

obviously are equivalent for

$$\lambda = \frac{1}{n\gamma}$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Advanced Topics in Machine Learning 8. Bundle Methods for SVMs

Subgradient for Risk on Hinge Loss

Bundle methods can be applied to non-differential risks, such as risk on Hinge loss:

$$R(\hat{\beta}, \hat{\beta}_{0}; x, y) := \frac{1}{n} \sum_{i=1}^{n} [1 - y_{i} (\hat{\beta}^{T} x_{i} + \hat{\beta}_{0})]_{+}$$

with subgradient

$$g(\hat{\beta}, \hat{\beta}_{0}; x, y) := \begin{pmatrix} -\frac{1}{n} \sum_{\substack{i=1:\\y_{i}(\hat{\beta}^{T}x_{i}+\hat{\beta}_{0}) < 1} \\ -\frac{1}{n} \sum_{\substack{i=1\\y_{i}(\hat{\beta}^{T}x_{i}+\hat{\beta}_{0}) < 1}}^{n} y_{i} \end{pmatrix}$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

→ 同 ▶ → 王 ▶ → 王 ⊨ りへぐ

Bundle Methods and L2 Regularization

Teo et al. 2009 see structural similarities between the proximity control of proximal bundle methods and the L2 regularization term. Differences:

- Always penalize relative to $x_t = 0$
- Use $\zeta_t := \lambda$ as weight.
- x is called β , t' is called i, $\phi_{t'}$ is called $-q_i$.

$$ilde{eta}_{t+1} := rgmin_x f^t(eta) + rac{\lambda}{2} ||eta||^2$$

or in the dual

$$\begin{split} \alpha := &\arg\max_{\alpha} - \frac{1}{2\lambda} \alpha^{T} Q Q^{T} \alpha + a^{T} \alpha \\ \text{w.r.t. } e^{T} \alpha = &\mathbf{1} \\ \alpha \geq &\mathbf{0} \end{split}$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少々で

Cutting Plane Algorithm and L2 Regularization

Alternatively, one could extend the Cutting Plane Algorithm slightly to handle functions of type

$$f(x) := f_1(x) + f_2(x)$$

where f_1 is non-differentiable, but f_2 is. Then approximate f by

$$f^{(t)}(x) := \max_{t'=1,\dots,t} f_1(x_t) + g_t^{\mathsf{T}}(x-x_t) + f_2(x)$$

with $g_t \in \partial_{x_t} f_1$.

もうてい 正則 ふかく ふやく (型を) とう

Loss functions and their derivatives

	Loss $\overline{l}(f, y)$	Derivative $\overline{l}'(f, y)$
Hinge (Bennett and Mangasarian, 1992)	$\max(0, 1 - yf)$	0 if $yf \ge 1$ and $-y$ otherwise
Squared Hinge (Keerthi and DeCoste, 2005)	$\frac{1}{2} \max(0, 1 - yf)^2$	0 if $yf \ge 1$ and $f - y$ otherwise
Exponential (Cowell et al., 1999)	exp(-yf)	$-y \exp(-yf)$
Logistic (Collins et al., 2000)	log(1 + exp(-yf))	$-y/(1 + \exp(-yf))$
Novelty (Schölkopf et al., 2001)	$\max(0, \rho - f)$	0 if $f \ge \rho$ and -1 otherwise
Least mean squares (Williams, 1998)	$\frac{1}{2}(f - y)^2$	f - y
Least absolute deviation	f - y	sgn(f - y)
Quantile regression (Koenker, 2005)	$\max(\tau(f - y), (1 - \tau)(y - f))$	τ if $f > y$ and $\tau - 1$ otherwise
ϵ -insensitive (Vapnik et al., 1997)	$\max(0, f - y - \epsilon)$	0 if $ f - y \le \epsilon$, else sgn $(f - y)$
Huber's robust loss (Müller et al., 1997)	$\frac{1}{2}(f-y)^2$ if $ f-y \le 1$, else $ f-y - \frac{1}{2}$	$ f - y$ if $ f - y \le 1$, else $\operatorname{sgn}(f - y)$
Poisson regression (Cressie, 1993)	$\exp(f) - yf$	$\exp(f) - y$

Table 5: Scalar loss functions and their derivatives, depending on $f := \langle w, x \rangle$, and y.

Table 6: Vectorial loss functions and their derivatives, depending on the vector f := Wx and on y.

	Loss	Derivative
Soft-Margin Multiclass (Taskar et al., 2004)	$\max_{y'}(f_{y'} - f_y + \Delta(y, y'))$	$e_{y^*} - e_y$
(Crammer and Singer, 2003)		where y^* is the argmax of the loss
Scaled Soft-Margin Multiclass	$\max_{y'} \Gamma(y, y')(f_{y'} - f_y + \Delta(y, y'))$	$\Gamma(y, y')(e_{y^*} - e_y)$
(Tsochantaridis et al., 2005)		where y^* is the argmax of the loss
Softmax Multiclass (Cowell et al., 1999)	$\log \sum_{y'} \exp(f_{y'}) - f_y$	$\left[\sum_{y'} e_{y'} \exp(f'_y)\right] / \sum_{y'} \exp(f'_y) - e_y$
Multivariate Regression	$\frac{1}{2}(f - y)^{\top}M(f - y)$ where $M \succeq 0$	M(f - y)

[Teo et al. 2009]

シック 비로 《王》《王》《曰》

References

- Joachims, Thorsten (2006): *Training linear SVMs in linear time*. In: *Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining*. KDD '06. ACM ID: 1150429. Philadelphia, PA, USA: ACM, 217–226.
- Teo, C. H et al. (2009): Bundle methods for regularized risk minimization. In: Journal of Machine Learning Research 1, 1–55.

- 《日》 《圖》 《王》 《王》 관달 '오오오