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Advanced Topics in Machine Learning 6. Cutting Plane Algorithm

Structural SVM

min f (β̂, ξ̂) :=
1

2
β̂T β̂ + γnξ̂ [STRUCT.SVM]

w.r.t.
1

n

n∑

i=1

ciyi β̂
T xi ≥

||c||1
n
− ξ̂, c ∈ C

ξ̂ ≥ 0

for given γ > 0 and C ⊆ {0, 1}n.
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Advanced Topics in Machine Learning 6. Cutting Plane Algorithm

Equivalence to LSVM

Lemma
The (original) linear SVM problem [LSVM] and the structured SVM
problem [STRUCT.SVM] for C := {0, 1}n are equivalent.

Proof.
“⇒”: Let (β̂, ξ̂) be a feasible point of [LSVM]. Then (β̂, ξ̃) with
ξ̃ := 1

n

∑n
i=1 ξi is feasible for [STRUCT.SVM]: for any c ∈ C:

1

n

n∑

i=1

ciyi β̂
T xi ≥

1

n

∑

i

ci (1− ξi ) ≥
1

n

∑

i

ci −
1

n

∑

i

ξi =
||c ||1
n
− ξ̃

and fLSVM(β̂, ξ̂) =
1

2
β̂T β̂ + γ

n∑

i=1

ξ̂i =
1

2
β̂T β̂ + γnξ̃ = fSTRUCT.SVM(β̂, ξ̃)
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Advanced Topics in Machine Learning 6. Cutting Plane Algorithm

Equivalence to LSVM (2/2)
“⇐”: Let (β̂, ξ̃) be a feasible point of [STRUCT.SVM]. Then (β̂, ξ̂) with

ξ̃i := [1− yi β̂
T xi ]+

is feasible for [LSVM].
Now let

c := (δ1−yi β̂T xi>0)i=1,...,n

Then

n∑

i=1

ξ̃i =
n∑

i=1

ci (1− yi β̂
T xi ) ≤ nξ̃

and thus fLSVM(β̂, ξ̂) =
1

2
β̂T β̂ + γ

n∑

i=1

ξ̂i ≤
1

2
β̂T β̂ + γnξ̃ = fSTRUCT.SVM(β̂, ξ̃)
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Advanced Topics in Machine Learning 6. Cutting Plane Algorithm

Dual Formulation

Lemma
The dual formulation of [STRUCT.SVM] is

max f̄ (α̂) :=−
∑

c,d∈C
α̂c α̂dq

T
c qd +

∑

c∈C

||c ||1
n

α̂c

w.r.t.
∑

c∈C
α̂c ≤γ

α̂c ≥0, c ∈ C

with

qc :=
1

n

n∑

i=1

ciyixi
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Advanced Topics in Machine Learning 6. Cutting Plane Algorithm

Basic Ideas

Basic Ideas:

I start with C = ∅.

I In each iteration,
add the constraint for the set of examples with errors.

I Do not solve the primal structured problem,
but the dual structured problem
(only |C| variables).

I Store qc .
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Advanced Topics in Machine Learning 6. Cutting Plane Algorithm

Initialization

If we start with C := ∅ and optimize the primal [STRUCT.SVM], we get

β̂ = 0

ξ̂ = 0

c = e
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Advanced Topics in Machine Learning 6. Cutting Plane Algorithm

Cutting Plane Algorithm (Joachims 2006)
(1) learn-linear-svm-cutting-plane(training predictors x, training targets y,
(2) complexity γ, accuracy ε) :
(3) C := {e}

(4) qe :=
1

n

n∑
i=1

yixi

(5) do

(6) α̂ := argmax

{
−1

2

∑
c,d∈C

αcαdq
T
c qd +

∑
c∈C

||c||1
n

αc

∣∣∣∣∣ ∑
c∈C

αc ≤ γ, αc ≥ 0 ∀c ∈ C

}
(7) β̂ :=

∑
c∈C

α̂cqc

(8) ξ̂ := max
c∈C

||c||1
n
− β̂T qc

(9) c := (δyiβ̂T xi<1)i=1,...,n

(10) qc :=
1

n

n∑
i=1

ciyixi

(11) C := C ∪ {c}

(12) while
||c||1
n
− β̂T qc > ξ̂ + ε

(13) return β̂

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

8 / 29



Advanced Topics in Machine Learning 7. Digression: Bundle Methods

Outline

6. Cutting Plane Algorithm

7. Digression: Bundle Methods

8. Bundle Methods for SVMs

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

9 / 29



Advanced Topics in Machine Learning 7. Digression: Bundle Methods

Derivatives as Linear Approximation (Fréchet Derivative)

Definition (Fréchet derivative)

Let f : U → Y be a function on an open subset U ⊆ X of a Banach space
X into a Banach space Y . f is called Fréchet differentiable at x ∈ U if
there is a bounded linear operator Ax : X → Y with

lim
h→0

||f (x + h)− f (x)− Ax(h)||Y
||h||X

= 0

Then Df (x) := Ax is called its Fréchet derivative at x .

Banach space: complete normed vector space (i.e., contains the limit of every Cauchy sequence).
Rn with Euclidean norm is a Banach space.

Bounded linear operator A: exists M ∈ R+
0 with ||Ax||Y ≤ M||x||X for every x .

For finite dimensional spaces all linear operators are bounded.
Example unbounded linear operator: X the vector space of all bounded sequences in R with norm ||x|| := sup{xi | i ∈ N}.
Then A : X → X with A(x) := (i xi )i∈N is linear, but not bounded.
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Advanced Topics in Machine Learning 7. Digression: Bundle Methods

Derivatives as Linear Approximation (Fréchet Derivative)

The Fréchet derivative of f : Rn → Rm can be described by the Jacobian
matrix:

Df (x) = Ax =




∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

. . . ∂fm
∂xn




If f is Fréchet differentiable at x , it is continuous at x .
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Advanced Topics in Machine Learning 7. Digression: Bundle Methods

Directional Derivatives & Gâteaux Derivative

Definition (Directional derivative)

Let f : U → Y be a function on an open subset U ⊆ X of a Banach space
X into a Banach space Y . f is called differentiable at x ∈ U in direction
d ∈ X if

df (x ; d) := lim
t↘0

f (x + td)− f (x)

t

exists. Then df (x ; d) is called its derivative at x in direction d .
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Advanced Topics in Machine Learning 7. Digression: Bundle Methods

Directional Derivatives & Gâteaux Derivative

Definition (Gâteaux derivative)

If the derivative of f at x in direction d exists for every d and is linear in
d, f is called Gâteaux differentiable at x .
If X is a Hilbert space and thus

df (x ; d) = 〈a, d〉, for an a ∈ X

then ∇x f := a is called Gâteaux derivative.

If f is Fréchet differentiable at x , then it also is Gâteaux differentiable at x
and both derivatives coincide.
The reverse is not true.

Hilbert space: real or complex vector space with inner product, that is complete w.r.t.
metric induced by inner product.
Every Hilbert space is a Banach space.
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Advanced Topics in Machine Learning 7. Digression: Bundle Methods

Directional Derivatives & Gâteaux Derivative

Derivatives in all directions may exist, but fail to depend linearly on the
direction.

Example:

f (x , y) :=

{
x3

x2+y2 , if (x , y) 6= (0, 0)

0, else

has derivative at (0, 0) in every direction d

df (x ; d) := lim
t→0

f (x + td)− f (x)

t
= lim

t→0

t3d3
1

t2d2
1 +t2d2

2

t
=

d3
1

d2
1 + d2

2

but df is not linear in d , i.e., f not Gâteaux differentiable.
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Advanced Topics in Machine Learning 7. Digression: Bundle Methods

Gâteaux vs. Fréchet Derivative

Also non-continuous functions may be Gâteaux differentiable.

Example:

f (x , y) :=

{
x3y

x6+y2 , if (x , y) 6= (0, 0)

0, else

is non-continuous at (0, 0),
but its derivative at (0, 0) in direction d is

df (x ; d) := lim
t→0

f (x + td)− f (x)

t
= lim

t→0

t3d3
1 td2

t6d6
1 +t2d2

2

t

= lim
t→0

td3
1d2

t4d6
1 + d2

2

= 0

thus linear in d and Gâteaux differentiable.
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Advanced Topics in Machine Learning 7. Digression: Bundle Methods

Gâteaux vs. Fréchet Derivative
Even a continuous function may be Gâteaux differentiable, but not Fréchet
differentiable.

Example:

f (x , y) :=

{
x2y

x4+y2

√
x2 + y2, if (x , y) 6= (0, 0)

0, else

is continuous at (0, 0) and Gâteaux differentiable with derivative 0, but
not Fréchet differentiable as

lim
h→0

||f (x + h)− f (x)− Ax(h)||Y
||h||X

= lim
h→0

||f (h)||Y
||h||X

along h = (t, t2)

= lim
t→0

t2t2

t4 + t4

√
t2 + t4/

√
t2 + t4 =

1

2
6= 0
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Advanced Topics in Machine Learning 7. Digression: Bundle Methods

Subgradients

Definition (Subgradients)

Let f : U → R be a function on an open subset U ⊆ X of a Hilbert space
X .
A vector φ ∈ X is called a subgradient of f at x if

〈φ, x̃ − x〉 ≤ f (x̃)− f (x), ∀x̃ ∈ U

The set of all subgradients of f at x is called its subdifferential ∂x f at x .

x

f(x)

f

xLars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Advanced Topics in Machine Learning 7. Digression: Bundle Methods

Subgradients vs. Directional Derivatives

I If f is convex, then

φ ∈ ∂x f ⇐⇒ 〈φ, ·〉 ≤ df (x ; ·)

I If f is convex, then

df (x ; d) = max
φ∈∂x f

〈d , φ〉

I If f is convex, then

f is Gâteaux differentiable at x ⇐⇒ |∂x f | = 1

and then ∂x f = {∇x f }.
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Advanced Topics in Machine Learning 7. Digression: Bundle Methods

Cutting Plane Method
The cutting plane method approximates a function by a sequence of its
subgradients φt ∈ ∂xt f at different iterates xt :

f (x) ≥ f (xt) + 〈φt , x − xt〉, ∀x ∈ U

and thus

f (x) ≥ f (t)(x) := max
t′=1,...,t

f (xt′) + 〈φt′ , x − xt′〉, ∀x ∈ UBundle Methods for Regularized Risk Minimization

Figure 2: A convex function (blue solid curve) is bounded from below by its linearizations
(dashed lines). The gray area indicates the piecewise linear lower bound ob-
tained by using the linearizations. We depict a few iterations of the cutting plane
method. At each iteration the piecewise linear lower bound is minimized and
a new linearization is added at the minimizer (red rectangle). As can be seen,
adding more linearizations improves the lower bound.

Figure 3: A convex function (blue solid curve) with three linearizations (dashed lines) eval-
uated at three different locations (red squares). The approximation gap ε3 at the
end of third iteration is indicated by the height of the magenta horizontal band
i.e., difference between lowest value of J(w) evaluated so far (lowest black circle)
and the minimum of JCP

3 (w) (red diamond).

5

[Teo et al. 2009]
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Advanced Topics in Machine Learning 7. Digression: Bundle Methods

Generic Cutting Plane Algorithm

(1) minimize-cutting-plane(function f) :
(2) choose (randomly) x0 ∈ domf
(3) compute φ0 ∈ ∂x0f
(4) a0 := f(x0)− 〈φ0, x0〉
(5) t := 0
(6) while ||φt|| > 0 do
(7) xt+1 := argminx f

t := argminx max
t′=1,...,t

at′ + 〈φt′ , x〉

(8) compute φt+1 ∈ ∂xt+1f
(9) at+1 := f(xt+1)− 〈φt+1, xt+1〉

(10) t := t+ 1
(11) od
(12) return xt
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Advanced Topics in Machine Learning 7. Digression: Bundle Methods

Generic Cutting Plane Algorithm

Variant with line search:

(1) minimize-cutting-plane-line-search(function f) :
(2) choose (randomly) x0 ∈ domf
(3) compute φ0 ∈ ∂x0f
(4) a0 := f(x0)− 〈φ0, x0〉
(5) t := 0
(6) while ||φt|| > 0 do
(7) x̃t+1 := argminx f

t := argminx max
t′=1,...,t

at′ + 〈φt′ , x〉

(8) η := argminη f(xt + η(x̃t+1 − xt))
(9) xt+1 := xt + η(x̃t+1 − xt)

(10) compute φt+1 ∈ ∂xt+1f
(11) at+1 := f(xt+1)− 〈φt+1, xt+1〉
(12) t := t+ 1
(13) od
(14) return xt
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Advanced Topics in Machine Learning 7. Digression: Bundle Methods

Bundle Methods

Control step size by a proximity control function:

I proximal bundle methods (Kiwiel 1990):

x̃t+1 := arg min
x

f t(x) +
ζt
2
||x − xt ||2

I trust region bundle methods (Schramm and Zowe 1992):

x̃t+1 := arg min{f t(x) | x with
1

2
||x − xt ||2 ≤ κt}

I level set bundle methods (Lemaréchal et al. 1995):

x̃t+1 := arg min{1

2
||x − xt ||2 | x with f t(x) ≤ τt}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

21 / 29



Advanced Topics in Machine Learning 7. Digression: Bundle Methods

Bundle Methods / Subproblems in the Dual
The subproblems (with ζt a constant)

xt+1 := arg min
x

( max
t′=1,...,t

at′ + 〈φt′ , x〉) +
ζt
2
||x − xt ||2

can be solved in the dual:

α := arg max
α

− 1

2ζt
αTΦΦTα + bTα

w.r.t. eTα =1

α ≥0

where

Φ :=




φT1
φT2
...
φTt


 , b := a + Φxt

Then

x = xt −
1

ζt
ΦTα
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Advanced Topics in Machine Learning 7. Digression: Bundle Methods

Bundle Methods / Subproblems in the Dual

Proof.

arg min
x

f̃ (x) :=ξ +
ζt
2
||x − xt ||2

w.r.t. ξ ≥at′ + 〈φt′ , x〉, t ′ = 1, . . . , t

Lagrange function Ff̃ (x , ξ, α) =ξ +
ζt
2
||x − xt ||2 + αT (a + Φx − ξe)

=ξ(1− αT
e) +

ζt
2
||x − xt ||2 + αTΦx + αTa

∂Ff̃
∂x

=ζt(x − xt) + αTΦ
!

= 0  x = xt −
1

ζt
ΦTα (I )

∂Ff̃
∂ξ

=(1− αT
e)

!
= 0  e

Tα = 1 (II )
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Advanced Topics in Machine Learning 7. Digression: Bundle Methods

Bundle Methods / Subproblems in the Dual

Proof (ctd.).

f̄ (α) := inf
x ,ξ

Ff̃ (x , ξ, α) =
ζt

2ζ2
t

αTΦΦTα + αTΦ(xt −
1

ζt
ΦTα) + αTa

= − 1

2ζt
αTΦΦTα + αT (Φxt + a)
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Advanced Topics in Machine Learning 8. Bundle Methods for SVMs

A Slightly Different Problem Formulation
The classical SVM literature formulation (with C instead of γ):

minimize f (β, β0, ξ) :=
1

2
||β||2 + γ〈e, ξ〉

w.r.t. y � (β0e + Xβ) ≥ e− ξ
ξ ≥ 0

The risk & regularization formulation:

minimize f (β, β0, ξ) :=
1

n
〈e, ξ〉+

1

2
λ||β||2

w.r.t. y � (β0e + Xβ) ≥ e− ξ
ξ ≥ 0

obviously are equivalent for

λ =
1

nγ
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Advanced Topics in Machine Learning 8. Bundle Methods for SVMs

Subgradient for Risk on Hinge Loss

Bundle methods can be applied to non-differential risks, such as risk on
Hinge loss:

R(β̂, β̂0; x , y) :=
1

n

n∑

i=1

[1− yi (β̂
T xi + β̂0)]+

with subgradient

g(β̂, β̂0; x , y) :=




−1

n

n∑

i=1:
yi (β̂

T xi+β̂0)<1

yixi

−1

n

n∑

i=1
yi (β̂

T xi+β̂0)<1

yi
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Advanced Topics in Machine Learning 8. Bundle Methods for SVMs

Bundle Methods and L2 Regularization

Teo et al. 2009 see structural similarities between the proximity control of
proximal bundle methods and the L2 regularization term. Differences:

I Always penalize relative to xt = 0

I Use ζt := λ as weight.

I x is called β, t ′ is called i , φt′ is called −qi .
β̃t+1 := arg min

x
f t(β) +

λ

2
||β||2

or in the dual

α := arg max
α

− 1

2λ
αTQQTα + aTα

w.r.t. eTα =1

α ≥0
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Advanced Topics in Machine Learning 8. Bundle Methods for SVMs

Cutting Plane Algorithm and L2 Regularization

Alternatively, one could extend the Cutting Plane Algorithm slightly to
handle functions of type

f (x) := f1(x) + f2(x)

where f1 is non-differentiable, but f2 is. Then approximate f by

f (t)(x) := max
t′=1,...,t

f1(xt) + gT
t (x − xt) + f2(x)

with gt ∈ ∂xt f1.
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Advanced Topics in Machine Learning 8. Bundle Methods for SVMs

Loss functions and their derivatives

T
e
o
,
V
is
h
w
a
n
a
t
h
a
n
,
S
m
o
l
a
,
a
n
d

L
e

Table 5: Scalar loss functions and their derivatives, depending on f := 〈w, x〉, and y.

Loss l̄(f, y) Derivative l̄′(f, y)

Hinge (Bennett and Mangasarian, 1992) max(0, 1− yf) 0 if yf ≥ 1 and −y otherwise

Squared Hinge (Keerthi and DeCoste, 2005) 1
2 max(0, 1− yf)2 0 if yf ≥ 1 and f − y otherwise

Exponential (Cowell et al., 1999) exp(−yf) −y exp(−yf)
Logistic (Collins et al., 2000) log(1 + exp(−yf)) −y/(1 + exp(−yf))
Novelty (Schölkopf et al., 2001) max(0, ρ− f) 0 if f ≥ ρ and −1 otherwise

Least mean squares (Williams, 1998) 1
2(f − y)2 f − y

Least absolute deviation |f − y| sgn(f − y)

Quantile regression (Koenker, 2005) max(τ(f − y), (1− τ)(y − f)) τ if f > y and τ − 1 otherwise

ε-insensitive (Vapnik et al., 1997) max(0, |f − y| − ε) 0 if |f − y| ≤ ε, else sgn(f − y)

Huber’s robust loss (Müller et al., 1997) 1
2(f − y)2 if |f − y| ≤ 1, else |f − y| − 1

2 f − y if |f − y| ≤ 1, else sgn(f − y)

Poisson regression (Cressie, 1993) exp(f)− yf exp(f)− y

Table 6: Vectorial loss functions and their derivatives, depending on the vector f := Wx and on y.

Loss Derivative

Soft-Margin Multiclass (Taskar et al., 2004) maxy′(fy′ − fy +∆(y, y′)) ey∗ − ey
(Crammer and Singer, 2003) where y∗ is the argmax of the loss

Scaled Soft-Margin Multiclass maxy′ Γ(y, y
′)(fy′ − fy +∆(y, y′)) Γ(y, y′)(ey∗ − ey)

(Tsochantaridis et al., 2005) where y∗ is the argmax of the loss

Softmax Multiclass (Cowell et al., 1999) log
∑

y′ exp(fy′)− fy

[∑
y′ ey′ exp(f

′
y)
]
/
∑

y′ exp(f
′
y)− ey

Multivariate Regression 1
2(f − y)>M(f − y) where M � 0 M(f − y)

38

[Teo et al. 2009]
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