

Advanced Topics in Machine Learning 1. Learning SVMs / Primal Methods

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL) University of Hildesheim, Germany

うどの 비싼 소문》 소문》 소문》 소리

Outline

9. Subgradient Descent in the Primal

10. Linearization of Nonlinear Kernels

▲□▶ ▲圖▶ ▲콜▶ ▲콜▶ 콜首 めへの

Outline

9. Subgradient Descent in the Primal

10. Linearization of Nonlinear Kernels

シック 正則 《川下《川下《四下《四下

Jniversiter Hildeshein

Subgradient Descent

$$\begin{array}{l} \text{minimize } f(\beta,\beta_0;D) := & \frac{1}{|D|} \sum_{(x,y)\in D} [1 - y(\beta^T x + \beta_0)]_+ + \frac{1}{2}\lambda ||\beta||^2 \\ \\ \text{subgradient } g(\beta,\beta_0;D) := & \begin{pmatrix} -\frac{1}{|D|} \sum_{\substack{(x,y)\in D \\ y(\beta^T x + \beta_0) < 1}} yx + \lambda\beta \\ -\frac{1}{|D|} \sum_{\substack{(x,y)\in D \\ y(\beta^T x + \beta_0) < 1}} y \\ \end{pmatrix} \end{array}$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

<ロト < @ ト < E ト < E ト 三国 のへで</p>

Subgradient Descent

(1) learn-linear-sym-subgradient-descent-primal (training predictors x, training targets y, regularization λ , accuracy ϵ ,

step lengths η_t) :

(2)
(3)
(4)
$$n := |x|$$

(5) $\hat{\beta} := 0$

- (6) $\hat{\beta}_0 := 0$ (7) t := 0

$$(9) \qquad \Delta \hat{\beta} := -\frac{1}{n} \sum_{\substack{y_i(\beta^T x_i + \beta_0) < 1 \\ y_i(\beta^T x_i + \beta_0) < 1 \\ y_i(\beta^T x_i + \beta_0) < 1 \\ y_i(\beta^T x_i + \beta_0) < 1 \\ (11) \qquad \hat{\beta} := (1 - \eta_t \lambda) \hat{\beta} - \eta_t \Delta \hat{\beta}$$

$$(12) \qquad \hat{\beta}_0 := \hat{\beta}_0 - \eta_t \Delta \hat{\beta}_0$$

$$(13) \qquad t := t + 1$$

$$(14) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (15) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (16) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (17) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T x_i + \beta_0) < 1 \\ (18) \qquad y_i(\beta^T$$

(14) while $\eta_t ||\Delta\beta|| \geq \epsilon$ (15) return $(\hat{\beta}, \hat{\beta}_0)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ● ◆○

Advanced Topics in Machine Learning 9. Subgradient Descent in the Primal

Universite Hildeshein

Subgradient Descent (subsample approximation)

Idea:

Do not use all training examples to estimate the error and the gradient, but just a subsample

$$D^{(t)} \subseteq D$$

The subsample may vary over steps t.

Then approximate $f(\cdot; D)$ by $f(\cdot; D^{(t)})$ in step t.

Extremes:

- all samples.
 (subgradient descent)
- just a single (random) sample.
 (stochastic subgradient descent)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

▲帰▶ ▲ミ▶ ▲ミト ミヨ のへで

Stochastic Subgradient Descent

(1) learn-linear-svm-stochastic-subgradient-descent-primal (training predictors x, training targets y, regularization λ , accuracy ϵ , (2) step lengths η_t , stop count t_0) : (3) (4) n := |x|(5) $\hat{\beta} := 0$ (6) $\hat{\beta}_0 := 0$ (7) t := 0(8) $l^{t'} := 0, \quad t' = 0, \dots, t_0 - 1$ (9) do draw *i* randomly from $\{1, \ldots, n\}$ (10) $\Delta \hat{\beta} := -\delta_{y_i(\beta^T x_i + \beta_0) < 1} y_i x_i$ (11)(12) $\Delta \hat{\beta}_0 := -\delta_{y_i(\beta^T x_i + \beta_0) < 1} y_i$ (13) $\hat{\beta} := (1 - \eta_t \lambda)\hat{\beta} - \eta_t \Delta \hat{\beta}$ (14) $\hat{\beta}_0 := \hat{\beta}_0 - \eta_t \Delta \hat{\beta}_0$ (15) $l^{t \mod t_0} := \eta_t ||\Delta \hat{\beta}||$ (16) t := t + 1(17) while $\sum_{t'=0}^{t_0-1} l^{t'} \ge \epsilon$ (18) return (β, β_0)

・ 「 「 「 「 」 ・ (山) ・ ((山)) ・ ((J))) ・ ((J)) ・ ((J))) ・ ((J))) ・ ((J))) ((J))) ((J)) ((J))) ((J))) ((J)) ((J))) ((J))) ((J))) ((J)) ((J))) ((J))) ((J))) ((J)) ((J))) ((J))) ((J)) ((J))) ((J)) ((J))) ((J)) ((J)) ((J))) ((J)) ((J)) ((J)) ((J))) ((J)) ((J)) ((J)) ((J)) ((J)) ((J))) ((J)) ((J)) ((J))) ((J)) ((J)) ((J)) ((J))) ((J)) ((J)) ((J))) ((J)) ((J)) ((J))) ((J)) ((J)) ((J))) ((J)) ((J)) ((J)) ((J)) ((J))) ((J)) ((J)) ((J))) ((J)) ((J)) ((J))) ((J)) ((J))) ((J)) ((J))) ((J)) ((J))) ((J)) (

Subgradient Descent with Subsample Approximation

(1) learn-linear-sym-approx-subgradient-descent-primal (training predictors x, training targets y, regularization λ , accuracy ϵ ,

(2) step lengths η_t , stop count t_0 , (3)subsample size k) : (4)(5) n := |x|(6) $\hat{\beta} := 0$ (7) $\hat{\beta}_0 := 0$ (8) t := 0(9) $l^{t'} := 0, \quad t' = 0, \dots t_0 - 1$ (10) do draw subset I randomly from $\{1, \ldots, n\}$ with |I| = k(11) $\Delta \hat{\beta} := -\frac{1}{k} \qquad \sum^{n} \qquad y_{i} x_{i}$ (12) $\Delta \hat{\beta}_0 := -\frac{1}{k} \sum_{i \in I}^{n} \sum_{i \in I}^{n}$ y_i (13) (14) $\hat{\beta} := (1 - \eta_t \lambda) \hat{\beta} - \eta_t \Delta \hat{\beta}$ (15) $\hat{\beta}_0 := \hat{\beta}_0 - \eta_t \Delta \hat{\beta}_0$ (16) $l^{t \mod t_0} := \eta_t ||\Delta \hat{\beta}||$ t := t + 1(17)(18) while $\sum_{t'=0}^{t_0-1} l^{t'} \ge \epsilon$ ◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少々で

Advanced Topics in Machine Learning 9. Subgradient Descent in the Primal

Subgradient Descent (subsample approximation)

Shalev-Shwartz, Singer, and Srebro 2007 experimented with approximations by samples of fixed size k, i.e.,

$$|D^{(t)}|=k, \quad \forall t$$

[Shalev-Shwartz, Singer, and Srebro 2007]

() 비로 (로) (로) (로) (립) (ロ)

Advanced Topics in Machine Learning 9. Subgradient Descent in the Primal

Subgradient Descent (subsample approximation) Shalev-Shwartz, Singer, and Srebro 2007 experimented with approximations by samples of fixed size k, i.e.,

$$|D^{(t)}|=k, \quad \forall t$$

シック・目前 (ボッ・(ボッ・(型)) (ロ)

Maintaining Small Parameters

Lemma (Shalev-Shwartz, Singer, and Srebro 2007) The optimal β^* satisfies

$$||\beta^*|| \le \frac{1}{\sqrt{\lambda}}$$

Proof.

Due to strong duality for the optimal β^*, β_0^* :

$$f(\beta^*) = \frac{1}{|D|} \sum_{(x,y)\in D} [1 - y(\beta^{*T}x + \beta_0^*)]_+ + \frac{1}{2}\lambda ||\beta^*||^2$$
$$\stackrel{!}{=} \overline{f}(\alpha^*) = -\frac{1}{2\lambda} \alpha^{*T} (XX^T \odot yy^T) \alpha^* + \frac{1}{|D|} ||\alpha^*||_1$$
and with $\beta^* = \frac{1}{\lambda} X^T (y \odot \alpha^*)$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ● ◆○

Maintaining Small Parameters

Proof (ctd.).

$$\begin{split} &\frac{1}{2}\lambda||\beta^*||^2 + \frac{1}{|D|}\sum_{(x,y)\in D} [1 - y(\beta^{*T}x + \beta_0^*)]_+ = -\frac{1}{2}\lambda||\beta^*||^2 + \frac{1}{|D|}||\alpha^*||_1 \\ &\lambda||\beta^*||^2 = \frac{1}{|D|}||\alpha^*||_1 - \frac{1}{|D|}\sum_{(x,y)\in D} [1 - y(\beta^{*T}x + \beta_0^*)]_+ \\ &\leq \frac{1}{|D|}||\alpha^*||_1 \quad \text{and with } 0 \leq \alpha^* \leq 1: \\ &\leq 1 \\ &\rightsquigarrow ||\beta^*|| \leq \frac{1}{\sqrt{\lambda}} \end{split}$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

・ロト < 団ト < ヨト < ヨト < ロト

Basic ideas:

- use subsample approximation with fixed k(but k = 1, stochastic gradient descent, turns out to be optimal)
- retain $\beta \leq 1/\sqrt{\lambda}$ by rescaling in each step:

$$eta := rac{eta}{\mathsf{max}(1,\sqrt{\lambda}||eta||)}$$

Decrease step size over time:

$$\eta_t := \frac{1}{\lambda t}$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Decrease Step Size Over Time

[Shalev-Shwartz, Singer, and Srebro 2007]

() 비로 《로》 《로》 《唱》 《日》

(1) learn-linear-sym-pegasos(training predictors x, training targets y, regularization λ , accuracy ϵ , (2)stop count t_0 , subsample size k) : (3) (4) n := |x|(5) $\hat{\beta} := 0$ (6) $\hat{\beta}_0 := 0$ (7) t := 0(8) $l^{t'} := 0, \quad t' = 0, \dots t_0 - 1$ (9) do draw subset I randomly from $\{1, \ldots, n\}$ with |I| = k(10)
$$\begin{split} \Delta \hat{\beta} &:= -\frac{1}{k} \sum_{\substack{y_i(\beta^T x_i + \beta_0) < 1 \\ y_i(\beta^T x_i + \beta_0) < 1 \\ y_i(\beta^T x_i + \beta_0) < 1 \\ \eta_l &:= 1/(\lambda l)} y_i \end{split}$$
(11) (12) (13) $(14) \qquad \hat{\beta} := (1 - \eta_t \lambda)\hat{\beta} - \eta_t \Delta \hat{\beta}$ (15) $\hat{\beta}_0 := \hat{\beta}_0 - \eta_t \Delta \hat{\beta}_0$ (16) $\hat{\beta} := \hat{\beta} / \max(1, \sqrt{\lambda} ||\beta||)$ $l^{t \mod t_0} := \eta_t ||\Delta \hat{\beta}||$ (17)(18) t := t + 1(19) while $\sum_{t'=0}^{t_0-1} l^{t'} \ge \epsilon$ (20) return $(\hat{\beta}, \hat{\beta}_0)$ ◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少々で

Comparison Dual Coordinate Descent vs. Pegasos

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Comparison Dual Coordinate Descent vs. Pegasos

Outline

9. Subgradient Descent in the Primal

10. Linearization of Nonlinear Kernels

《日》《聞》《臣》《臣》 王正 今今今

Basic Idea

Instead of using a nonlinear kernel, e.g., the polynomial kernel of degree d

$$K(x,z) := (\gamma x^T z + r)^d$$

with hyperparameters d, γ and r for data $x, z \in \mathbb{R}^n$, use the explicit embedding, e.g., for d = 1 and r = 1:

$$\phi(\mathbf{x}) := (1, \sqrt{2\gamma}x_1, \dots, \sqrt{2\gamma}x_n, \gamma x_1^2, \dots, \gamma x_n^2, \sqrt{2\gamma}x_1x_2, \dots, \sqrt{2\gamma}x_{n-1}x_n)$$

or more simple

$$\phi(x) := (1, x_1, \dots, x_n, x_1^2, \dots, x_n^2, x_1 x_2, \dots, x_{n-1} x_n)$$

of dimension $\frac{(n+d)!}{n!d!}$.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

うせん 正則 スポッスポッスピッスロッ

Comparison Linearized Nonlinear vs. Nonlinear Kernel

	Linear (LIBLINEAR)				RBF (LIBSVM)				
Data set	С	Time (s)	Accuracy	C	γ	Time (s)	Accuracy		
a9a	32	5.4	84.98	8	0.03125	98.9	85.03		
real-sim	1	0.3	97.51	8	0.5	973.7	97.90		
ijcnn1	32	1.6	92.21	32	2	26.9	98.69		
MNIST38	0.03125	0.1	96.82	2	0.03125	37.6	99.70		
covtype	0.0625	1.4	76.35	32	32	54,968.1	96.08		
webspam	32	25.5	93.15	8	32	15,571.1	99.20		

Table 4: Comparison of linear SVM and nonlinear SVM with RBF kernel. Time is in seconds.

		Accuracy diff.					
Data set	С		Training t	ime (s)	Againagu	Linear	RBF
		Ŷ	LIBLINEAR	LIBSVM	Accuracy		
a9a	8	0.03125	1.6	89.8	85.06	0.07	0.02
real-sim	0.03125	8	59.8	1,220.5	98.00	0.49	0.10
ijcnn1	0.125	32	10.7	64.2	97.84	5.63	-0.85
MNIST38	2	0.3125	8.6	18.4	99.29	2.47	-0.40
covtype	2	8	5,211.9	NA	80.09	3.74	-15.98
webspam	8	8	3,228.1	NA	98.44	5.29	-0.76

Table 5: Training time (in seconds) and testing accuracy of using the degree-2 polynomial mapping.

A = A =

References

- Chang, Yin-Wen et al. (Aug. 2010): Training and Testing Low-degree Polynomial Data Mappings via Linear SVM. In: J. Mach. Learn. Res. 11, 1471–1490.
- Hsieh, C. J et al. (2008): A dual coordinate descent method for large-scale linear SVM. In: Proceedings of the 25th international conference on Machine learning, 408–415.
- Shalev-Shwartz, S., Y. Singer, and N. Srebro (2007): Pegasos: Primal estimated sub-gradient solver for svm. In: Proceedings of the 24th international conference on Machine learning, 807–814.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ● ◆○