
Advanced Topics in Machine Learning

Advanced Topics in Machine Learning
1. Learning SVMs / Primal Methods

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
University of Hildesheim, Germany

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 16

Advanced Topics in Machine Learning

Outline

9. Subgradient Descent in the Primal

10. Linearization of Nonlinear Kernels

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 16

Advanced Topics in Machine Learning 9. Subgradient Descent in the Primal

Outline

9. Subgradient Descent in the Primal

10. Linearization of Nonlinear Kernels

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 16

Advanced Topics in Machine Learning 9. Subgradient Descent in the Primal

Subgradient Descent

minimize f (β, β0; D) :=
1

|D|
∑

(x ,y)∈D

[1− y(βT x + β0)]+ +
1

2
λ||β||2

subgradient g(β, β0; D) :=

− 1

|D|
∑

(x ,y)∈D
y(βT x+β0)<1

yx + λβ

− 1

|D|
∑

(x ,y)∈D
y(βT x+β0)<1

y

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 16

Advanced Topics in Machine Learning 9. Subgradient Descent in the Primal

Subgradient Descent

(1) learn-linear-svm-subgradient-descent-primal(training predictors x, training targets y,
(2) regularization λ, accuracy ε,
(3) step lengths ηt) :
(4) n := |x|
(5) β̂ := 0

(6) β̂0 := 0
(7) t := 0
(8) do

(9) ∆β̂ := − 1

n

n∑
i=1

yi(β
T xi+β0)<1

yixi

(10) ∆β̂0 := − 1

n

n∑
i=1

yi(β
T xi+β0)<1

yi

(11) β̂ := (1− ηtλ)β̂ − ηt∆β̂
(12) β̂0 := β̂0 − ηt∆β̂0
(13) t := t+ 1

(14) while ηt||∆β̂|| ≥ ε

(15) return (β̂, β̂0)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

3 / 16

Advanced Topics in Machine Learning 9. Subgradient Descent in the Primal

Subgradient Descent (subsample approximation)

Idea:
Do not use all training examples to estimate the error and the gradient,
but just a subsample

D(t) ⊆ D

The subsample may vary over steps t.

Then approximate f (·; D) by f (·; D(t)) in step t.

Extremes:

I all samples.
(subgradient descent)

I just a single (random) sample.
(stochastic subgradient descent)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

4 / 16

Advanced Topics in Machine Learning 9. Subgradient Descent in the Primal

Stochastic Subgradient Descent

(1) learn-linear-svm-stochastic-subgradient-descent-primal(training predictors x, training targets y,
(2) regularization λ, accuracy ε,
(3) step lengths ηt, stop count t0) :
(4) n := |x|
(5) β̂ := 0

(6) β̂0 := 0
(7) t := 0
(8) lt

′
:= 0, t′ = 0, . . . t0 − 1

(9) do
(10) draw i randomly from {1, . . . , n}
(11) ∆β̂ := −δyi(βT xi+β0)<1yixi
(12) ∆β̂0 := −δyi(βT xi+β0)<1yi
(13) β̂ := (1− ηtλ)β̂ − ηt∆β̂
(14) β̂0 := β̂0 − ηt∆β̂0
(15) lt mod t0 := ηt||∆β̂||
(16) t := t+ 1

(17) while
∑t0−1

t′=0 l
t′ ≥ ε

(18) return (β̂, β̂0)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

5 / 16

Advanced Topics in Machine Learning 9. Subgradient Descent in the Primal

Subgradient Descent with Subsample Approximation
(1) learn-linear-svm-approx-subgradient-descent-primal(training predictors x, training targets y,
(2) regularization λ, accuracy ε,
(3) step lengths ηt, stop count t0,
(4) subsample size k) :
(5) n := |x|
(6) β̂ := 0

(7) β̂0 := 0
(8) t := 0
(9) lt

′
:= 0, t′ = 0, . . . t0 − 1

(10) do
(11) draw subset I randomly from {1, . . . , n} with |I| = k

(12) ∆β̂ := −1

k

n∑
i∈I

yi(β
T xi+β0)<1

yixi

(13) ∆β̂0 := −1

k

n∑
i∈I

yi(β
T xi+β0)<1

yi

(14) β̂ := (1− ηtλ)β̂ − ηt∆β̂
(15) β̂0 := β̂0 − ηt∆β̂0
(16) lt mod t0 := ηt||∆β̂||
(17) t := t+ 1

(18) while
∑t0−1

t′=0 l
t′ ≥ ε

(19) return (β̂, β̂0)Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

6 / 16

Advanced Topics in Machine Learning 9. Subgradient Descent in the Primal

Subgradient Descent (subsample approximation)
Shalev-Shwartz, Singer, and Srebro 2007 experimented with
approximations by samples of fixed size k, i.e.,

|D(t)| = k , ∀t

Pegasos: Primal Estimated sub-GrAdient SOlver for SVM

10
0

10
1

10
2

10
3

0.1

0.15

0.2

0.25

0.3

0.35

0.4

k

T=1250
T=31250

10
0

10
1

10
2

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

k

kT=104

kT=105

kT=106

Figure 3.The effect ofk on the objective value of Pegasos on the
Astro-Physics dataset. Left:T is fixed. Right:kT is fixed.

approach is that finding an adequate value forη is a diffi-
cult task on its own. Based on the analysis given in (Zhang,
2004) we started by settingη to be10−5. Surprisingly, this
turned out to be a poor choice and the optimal choice ofη
was substantially larger. In Fig. 5 (right) we illustrate the
convergence of stochastic gradient descent withηt set to be
a fixed value from the set{0.001, 0.01, 0.1, 1, 10}. It is ap-
parent that for some choices ofη the method converges at
about the same rate of Pegasos while for other choices ofη
the method fails to converge. We would like to emphasize
that for large datasets, the time required for evaluating the
objective is much longer than the time required for training
a model. Therefore, searching forη is significantly more
expensive than running the algorithm a single time. The
apparent advantage of Pegasos is due to the fact that we do
not need to search for a good value forη but rather have a
predefined schedule ofηt.

In our last experiment, we examined the effect of the pa-
rameterk on the convergence of the algorithm. Our analy-
sis implies that the convergence of Pegasos does not depend
onk. Based on this fact, the optimal choice ofk in terms of
run time should bek = 1. In Fig. 3 (left) we depict the ob-
jective value obtained by Pegasos as a function ofk when
T is fixed. It is clear from the figure that, in contrast to
our bounds, the convergence of Pegasos improves ask gets
larger. This fact may be important in a distributed comput-
ing environment. As long ask is smaller than the number
of CPUs, the complexity of Pegasos still depends solely on
T (and onlog(k)), while the throughput greatly improves.
An interesting question is how to setk for a single CPU. In
this case, the runtime of Pegasos is of the order ofkT . In
Fig. 3 (right) we show that the convergence rate of Pega-
sos as a function ofk is approximately constant, for a wide
range of values ofk, so long askT is kept fixed. We leave
further research of both of the theoretical and practical as-
pects of the choice ofk to future work.

6. Conclusions

We described and analyzed a simple and effective algo-
rithm for approximately minimizing the objective func-

tion of SVM. The algorithm, called Pegasos, is a modified
stochastic gradient method in which every gradient descent
step is accompanied with a projection step. We derived fast
rate of convergence results and experimented with the algo-
rithm. Our empirical results indicate that for linear kernels,
Pegasos achieves state-of-the-art results, despite or because
of its simplicity. We plan to investigate all the questions we
surfaced in this paper as well as to conduct thorough exper-
iments with non-linear kernels. In addition, we have started
investigating the usage of similar paradigms in other learn-
ing problems such asL1-SVM and other loss functions.

Acknowledgements Part of this work was done while SS and
NS were visiting IBM research labs, Haifa, Israel. This work
was supported by grant I-773-8.6/2003 from the German Israeli
Foundation (GIF).

References
Boyd, S., & Vandenberghe, L. (2004).Convex optimization. Cam-

bridge University Press.
Censor, Y., & Zenios, S. (1997).Parallel optimization: Theory,

algorithms, and applications. Oxford University Press, NY.
Cesa-Bianchi, N., Conconi, A., & Gentile, C. (2004). On the gen-

eralization ability of on-line learning algorithms.IEEE Trans-
actions on Information Theory, 50, 2050–2057.

Cesa-Bianchi, N., & Gentile, C. (2006). Improved risk tail bounds
for on-line algorithms.NIPS.

Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., & Singer,
Y. (2006). Online passive aggressive algorithms.JMLR, 7.

Cristianini, N., & Shawe-Taylor, J. (2000).An introduction to
support vector machines. Cambridge University Press.

Duda, R. O., & Hart, P. E. (1973).Pattern classification and scene
analysis. Wiley.

Fine, S., & Scheinberg, K. (2001). Efficient svm training using
low-rank kernel representations.JMLR, 2, 242–264.

Freund, Y., & Schapire, R. E. (1999). Large margin classification
using the perceptron algorithm.Mach. Learning, 37, 277–296.

Hazan, E., Kalai, A., Kale, S., & Agarwal, A. (2006). Logarithmic
regret algorithms for online convex optimization.COLT.

Hush, D., Kelly, P., Scovel, C., & Steinwart, I. (2006). Qp al-
gorithms with guaranteed accuracy and run time for support
vector machines.JMLR.

Joachims, T. (1998). Making large-scale support vector machine
learning practical. In B. Scḧolkopf, C. Burges and A. Smola
(Eds.),Advances in kernel methods - support vector learning.
MIT Press.

Joachims, T. (2006). Training linear svms in linear time.KDD.
Kimeldorf, G., & Wahba, G. (1971). Some results on tchebychef-

fian spline functions.J. Math. Anal. Applic., 33, 82–95.
Kivinen, J., Smola, A. J., & Williamson, R. C. (2002). Online

learning with kernels.IEEE’ TSP, 52, 2165–2176.
Platt, J. C. (1998). Fast training of Support Vector Machines using

sequential minimal optimization. In B. Schölkopf, C. Burges
and A. Smola (Eds.),Advances in kernel methods - support
vector learning. MIT Press.

Shalev-Shwartz, S., & Singer, Y. (2007).Logarithmic regret algo-
rithms for strongly convex repeated games(Technical Report).
The Hebrew University.

Vapnik, V. N. (1998).Statistical learning theory. Wiley.
Zhang, T. (2004). Solving large scale linear prediction problems

using stochastic gradient descent algorithms.ICML.

[Shalev-Shwartz, Singer, and Srebro 2007]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

7 / 16

Advanced Topics in Machine Learning 9. Subgradient Descent in the Primal

Subgradient Descent (subsample approximation)
Shalev-Shwartz, Singer, and Srebro 2007 experimented with
approximations by samples of fixed size k, i.e.,

|D(t)| = k , ∀t

Pegasos: Primal Estimated sub-GrAdient SOlver for SVM

10
0

10
1

10
2

10
3

0.1

0.15

0.2

0.25

0.3

0.35

0.4

k

T=1250
T=31250

10
0

10
1

10
2

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

k

kT=104

kT=105

kT=106

Figure 3.The effect ofk on the objective value of Pegasos on the
Astro-Physics dataset. Left:T is fixed. Right:kT is fixed.

approach is that finding an adequate value forη is a diffi-
cult task on its own. Based on the analysis given in (Zhang,
2004) we started by settingη to be10−5. Surprisingly, this
turned out to be a poor choice and the optimal choice ofη
was substantially larger. In Fig. 5 (right) we illustrate the
convergence of stochastic gradient descent withηt set to be
a fixed value from the set{0.001, 0.01, 0.1, 1, 10}. It is ap-
parent that for some choices ofη the method converges at
about the same rate of Pegasos while for other choices ofη
the method fails to converge. We would like to emphasize
that for large datasets, the time required for evaluating the
objective is much longer than the time required for training
a model. Therefore, searching forη is significantly more
expensive than running the algorithm a single time. The
apparent advantage of Pegasos is due to the fact that we do
not need to search for a good value forη but rather have a
predefined schedule ofηt.

In our last experiment, we examined the effect of the pa-
rameterk on the convergence of the algorithm. Our analy-
sis implies that the convergence of Pegasos does not depend
onk. Based on this fact, the optimal choice ofk in terms of
run time should bek = 1. In Fig. 3 (left) we depict the ob-
jective value obtained by Pegasos as a function ofk when
T is fixed. It is clear from the figure that, in contrast to
our bounds, the convergence of Pegasos improves ask gets
larger. This fact may be important in a distributed comput-
ing environment. As long ask is smaller than the number
of CPUs, the complexity of Pegasos still depends solely on
T (and onlog(k)), while the throughput greatly improves.
An interesting question is how to setk for a single CPU. In
this case, the runtime of Pegasos is of the order ofkT . In
Fig. 3 (right) we show that the convergence rate of Pega-
sos as a function ofk is approximately constant, for a wide
range of values ofk, so long askT is kept fixed. We leave
further research of both of the theoretical and practical as-
pects of the choice ofk to future work.

6. Conclusions

We described and analyzed a simple and effective algo-
rithm for approximately minimizing the objective func-

tion of SVM. The algorithm, called Pegasos, is a modified
stochastic gradient method in which every gradient descent
step is accompanied with a projection step. We derived fast
rate of convergence results and experimented with the algo-
rithm. Our empirical results indicate that for linear kernels,
Pegasos achieves state-of-the-art results, despite or because
of its simplicity. We plan to investigate all the questions we
surfaced in this paper as well as to conduct thorough exper-
iments with non-linear kernels. In addition, we have started
investigating the usage of similar paradigms in other learn-
ing problems such asL1-SVM and other loss functions.

Acknowledgements Part of this work was done while SS and
NS were visiting IBM research labs, Haifa, Israel. This work
was supported by grant I-773-8.6/2003 from the German Israeli
Foundation (GIF).

References
Boyd, S., & Vandenberghe, L. (2004).Convex optimization. Cam-

bridge University Press.
Censor, Y., & Zenios, S. (1997).Parallel optimization: Theory,

algorithms, and applications. Oxford University Press, NY.
Cesa-Bianchi, N., Conconi, A., & Gentile, C. (2004). On the gen-

eralization ability of on-line learning algorithms.IEEE Trans-
actions on Information Theory, 50, 2050–2057.

Cesa-Bianchi, N., & Gentile, C. (2006). Improved risk tail bounds
for on-line algorithms.NIPS.

Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., & Singer,
Y. (2006). Online passive aggressive algorithms.JMLR, 7.

Cristianini, N., & Shawe-Taylor, J. (2000).An introduction to
support vector machines. Cambridge University Press.

Duda, R. O., & Hart, P. E. (1973).Pattern classification and scene
analysis. Wiley.

Fine, S., & Scheinberg, K. (2001). Efficient svm training using
low-rank kernel representations.JMLR, 2, 242–264.

Freund, Y., & Schapire, R. E. (1999). Large margin classification
using the perceptron algorithm.Mach. Learning, 37, 277–296.

Hazan, E., Kalai, A., Kale, S., & Agarwal, A. (2006). Logarithmic
regret algorithms for online convex optimization.COLT.

Hush, D., Kelly, P., Scovel, C., & Steinwart, I. (2006). Qp al-
gorithms with guaranteed accuracy and run time for support
vector machines.JMLR.

Joachims, T. (1998). Making large-scale support vector machine
learning practical. In B. Scḧolkopf, C. Burges and A. Smola
(Eds.),Advances in kernel methods - support vector learning.
MIT Press.

Joachims, T. (2006). Training linear svms in linear time.KDD.
Kimeldorf, G., & Wahba, G. (1971). Some results on tchebychef-

fian spline functions.J. Math. Anal. Applic., 33, 82–95.
Kivinen, J., Smola, A. J., & Williamson, R. C. (2002). Online

learning with kernels.IEEE’ TSP, 52, 2165–2176.
Platt, J. C. (1998). Fast training of Support Vector Machines using

sequential minimal optimization. In B. Schölkopf, C. Burges
and A. Smola (Eds.),Advances in kernel methods - support
vector learning. MIT Press.

Shalev-Shwartz, S., & Singer, Y. (2007).Logarithmic regret algo-
rithms for strongly convex repeated games(Technical Report).
The Hebrew University.

Vapnik, V. N. (1998).Statistical learning theory. Wiley.
Zhang, T. (2004). Solving large scale linear prediction problems

using stochastic gradient descent algorithms.ICML.

[Shalev-Shwartz, Singer, and Srebro 2007]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

7 / 16

Advanced Topics in Machine Learning 9. Subgradient Descent in the Primal

Maintaining Small Parameters

Lemma (Shalev-Shwartz, Singer, and Srebro 2007)

The optimal β∗ satisfies

||β∗|| ≤ 1√
λ

Proof.
Due to strong duality for the optimal β∗, β∗0 :

f (β∗) =
1

|D|
∑

(x ,y)∈D

[1− y(β∗T x + β∗0)]+ +
1

2
λ||β∗||2

!
= f̄ (α∗) =− 1

2λ
α∗T (XXT � yyT)α∗ +

1

|D| ||α
∗||1

and with β∗ =
1

λ
XT (y � α∗)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

8 / 16

Advanced Topics in Machine Learning 9. Subgradient Descent in the Primal

Maintaining Small Parameters

Proof (ctd.).

1

2
λ||β∗||2+

1

|D|
∑

(x ,y)∈D

[1− y(β∗T x + β∗0)]+ = −1

2
λ||β∗||2 +

1

|D| ||α
∗||1

λ||β∗||2 =
1

|D| ||α
∗||1 −

1

|D|
∑

(x ,y)∈D

[1− y(β∗T x + β∗0)]+

≤ 1

|D| ||α
∗||1 and with 0 ≤ α∗ ≤ 1 :

≤1

 ||β∗|| ≤ 1√
λ

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

9 / 16

Advanced Topics in Machine Learning 9. Subgradient Descent in the Primal

Primal Estimated subgradient solver for SVM (PEGASOS)

Basic ideas:

I use subsample approximation with fixed k
(but k = 1, stochastic gradient descent, turns out to be optimal)

I retain β ≤ 1/
√
λ by rescaling in each step:

β :=
β

max(1,
√
λ||β||)

I Decrease step size over time:

ηt :=
1

λt

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

10 / 16

Advanced Topics in Machine Learning 9. Subgradient Descent in the Primal

Decrease Step Size Over Time

Pegasos: Primal Estimated sub-GrAdient SOlver for SVM

deed a practical tool for solving large scale problems. In
particular, we compare its runtime to a new state-of-the-
art solver (Joachims, 2006) on three large datasets. Next,
we compare Pegasos to two previously proposed methods
that are based on stochastic gradient descent, namely to
Norma (Kivinen et al., 2002) and to the method given in
(Zhang, 2004). Finally, we explore the empirical behavior
of the algorithm with respect to the parameterk. In all of
the experiments we did not incoprorate a bias term since
(Joachims, 2006; Kivinen et al., 2002; Zhang, 2004) do
not incorporate that term either. Additionally, we used the
algorithm as in Fig. 1, omitting the stage of boosting the
confidence, as we found empirically that in practice it was
not necessary.

In our first experiment we compared Pegasos to the SVM-
Perf algorithm (Joachims, 2006). We used the following
datasets, which were provided to us by T. Joachims.
(1) The binary text classification task CCAT from the
Reuters RCV1 collection. There are 804,414 examples
and there are 47,236 features with sparsity 0.16% in this
dataset.
(2) Classification of abstracts of scientific papers from the
Physics ArXiv according to whether they are in the Astro-
physics section. There are 99,757 features of high sparsity
(0.08%). There are 62,369 examples in this dataset.
(3) Class 1 in the Covertype dataset of Blackard, Jock &
Dean, which is comparably low-dimensional with 54 fea-
tures and a sparsity of 22.22%. There are 581,012 examples
in this dataset.

Table 4 lists the cpu-time of Pegasos and SVM-Perf on the
datasets described above. SVM-Perf (Joachims, 2006) is
a cutting plane algorithm for solving SVM that is based
on a reformulation of the SVM problem. It was shown
in (Joachims, 2006) that SVM-Perf is substantially faster
than SVM-Light, achieving a speedup of several orders
of magnitude on most datasets. We run both Pegasos
and SVM-Perf on the three datasets with values ofλ as
given in (Joachims, 2006), namely,λ = 10−4 for CCAT,
λ = 2 · 10−4 for Astro-physics, andλ = 10−6 for Cover-
type. We used the latest version of SVM-perf, implemented
in C, as provided by T. Joachims. We implemented Pegasos
in C++ and run all the experiments on a 2.8GHz Intel Xeon
processor with 4GB of main memory under Linux. For
completeness, we added to the table the runtime of SVM-
Light as reported in (Joachims, 2006). As can be seen in
the table, although SVM-Perf is by itself very fast, Pegasos
still achieves a significant improvement in run-time. We
calculated the objective value of the solutions obtained by
Pegasos and SVM-Perf. For all three datasets, the objec-
tive value of Pegasos never exceeded that of SVM-Perf by
more than 0.001. In addition, the generalization error of
both methods was virtually identical. It is interesting to
note that the performance of Pegasos does not depend on

10
2

10
3

10
4

10
5

10
6

10
−1

10
0

10
1

10
2

T

Pegasos
Norma

10
2

10
3

10
4

10
5

10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T

Pegasos
Zhang

Figure 2.Comparisons of Pegasos to Norma (left) and Pegasos to
stochastic gradient descent with a fixed learning rate (right) on the
Astro-Physics datset. In the left plot, the solid lines designate the
objective value and the dashed lines depict the loss on the test set.

the number of examples but rather on the value ofλ. In-
deed, the runtime of Pegasos for the Covertype dataset is
larger than its runtime for CCAT, although the latter dataset
is larger.

In our next experiment, we compared Pegasos to
Norma (Kivinen et al., 2002) and to a variant of stochastic
gradient descent described in (Zhang, 2004). Both meth-
ods are similar to Pegasos when settingk = 1 with two
differences. First, there is no projection step. Second,
the scheduling of the learning rate,ηt, is different. In
Norma (Thm. 4), it is suggested to setηt = p/(λ

√
t),

where p ∈ (0, 1). Based on the bound given in Thm.
4 of (Kivinen et al., 2002), the optimal choice ofp is
0.5(2 + 0.5T−1/2)1/2, which for t ≥ 100 is in the range
[0.7, 0.716]. Plugging the optimal value ofp into Thm. 4 in
(Kivinen et al., 2002) yields the boundO(1/(λ

√
T)). We

therefore hypothesized that Pegasos would converge much
faster than Norma. In Fig. 5 (left) we compare Pegasos to
Norma on the Astro-Physics dataset. We split the dataset
into a training set with 29,882 examples and a test set with
32,487 examples and report the final objective value and
the average hinge-loss over the test set. As in (Joachims,
2006), we setλ = 2 ·10−4. As can be seen, Pegasos clearly
outperforms Norma. In fact, Norma fails to converge even
after106 iterations. This can be attributed to the fact that
the value ofλ here is rather small. As mentioned before,
the differences between Pegasos and Norma are both the
different learning rate and the projection step which is ab-
sent in Norma. We also experimented with a version of
Pegasos without the projection step and with a version of
Norma that includes a projection step. We found that the
projection step is important for the convergence of Pegasos,
especially whenT is small, and that a projection step also
improves the performance of Norma. However, Pegasos
still outperforms the version of Norma that includes an ad-
ditional projection step. We omit the graphs due to the lack
of space. We now turn to comparing Pegasos to the algo-
rithm from (Zhang, 2004) which simply setsηt = η, where
η is a (fixed) small number. A major disadvantage of this

[Shalev-Shwartz, Singer, and Srebro 2007]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

11 / 16

Advanced Topics in Machine Learning 9. Subgradient Descent in the Primal

Pegasos
(1) learn-linear-svm-pegasos(training predictors x, training targets y,
(2) regularization λ, accuracy ε,
(3) stop count t0, subsample size k) :
(4) n := |x|
(5) β̂ := 0

(6) β̂0 := 0
(7) t := 0
(8) lt

′
:= 0, t′ = 0, . . . t0 − 1

(9) do
(10) draw subset I randomly from {1, . . . , n} with |I| = k

(11) ∆β̂ := −1

k

n∑
i∈I

yi(β
T xi+β0)<1

yixi

(12) ∆β̂0 := −1

k

n∑
i∈I

yi(β
T xi+β0)<1

yi

(13) ηt := 1/(λt)

(14) β̂ := (1− ηtλ)β̂ − ηt∆β̂
(15) β̂0 := β̂0 − ηt∆β̂0
(16) β̂ := β̂/max(1,

√
λ||β||)

(17) lt mod t0 := ηt||∆β̂||
(18) t := t+ 1

(19) while
∑t0−1

t′=0 l
t′ ≥ ε

(20) return (β̂, β̂0)
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

12 / 16

Advanced Topics in Machine Learning 9. Subgradient Descent in the Primal

Comparison Dual Coordinate Descent vs. PegasosA Dual Coordinate Descent Method for Large-scale Linear SVM

(a) L1-SVM: astro-physic (b) L2-SVM: astro-physic

(c) L1-SVM: news20 (d) L2-SVM: news20

(e) L1-SVM: rcv1 (f) L2-SVM: rcv1

Figure 1. Time versus the relative error (20). DCDL1-S,
DCDL2-S are DCDL1, DCDL2 with shrinking. The dotted
line indicates the relative error 0.01. Time is in seconds.

objective value and the optimum to within 0.01:

|fP (w)− fP (w∗)|/|fP (w∗)| ≤ 0.01, (20)

where fP is the objective function of (1), and fP (w∗)
is the optimal value. Note that for consistency, we use
primal objective values even for dual solvers. The ref-
erence solutions of L1- and L2-SVM are respectively
obtained by solving DCDL1 and DCDL2 until the du-
ality gaps are less than 10−6. Table 2 lists the re-
sults. Clearly, our dual coordinate descent method
for both L1- and L2-SVM is significantly faster than
other solvers. To check details, we choose astro-physic,
news20, rcv1, and show the relative error along time
in Figure 1. In Section 3.2, we pointed out that the
shrinking technique is very suitable for DCD. In Fig-
ure 1, we also include them (DCDL1-S and DCDL2-S)
for comparison. Like in Table 2, our solvers are effi-
cient for both L1- and L2-SVM. With shrinking, its
performance is even better.

Another evaluation is to consider how fast a solver ob-
tains a model with reasonable testing accuracy. Using
the optimal solutions from the above experiment, we
generate the reference models for L1- and L2-SVM. We
evaluate the testing accuracy difference between the
current model and the reference model along the train-
ing time. Figure 2 shows the results. Overall, DCDL1
and DCDL2 are more efficient than other solvers. Note

(a) L1-SVM: astro-physic (b) L2-SVM: astro-physic

(c) L1-SVM: news20 (d) L2-SVM: news20

(e) L1-SVM: rcv1 (f) L2-SVM: rcv1

Figure 2. Time versus the difference of testing accuracy be-
tween the current model and the reference model (obtained
using strict stopping conditions). Time is in seconds.

that we omit DCDL1-S and DCDL2-S in Figure 2, as
the performances with/without shrinking are similar.

Among L1-SVM solvers, SVMperf is competitive with
Pegasos for small data. But in the case of a huge num-
ber of instances, Pegasos outperforms SVMperf . How-
ever, Pegasos has slower convergence than DCDL1. As
discussed in Section 4.2, the learning rate of stochas-
tic gradient descent may be the cause, but for DCDL1
we exactly solve sub-problems to obtain the step size
in updating w. Also, Pegasos has a jumpy test set
performance while DCDL1 gives a stable behavior.

In the comparison of L2-SVM solvers, DCDL2 and
PCD are both coordinate descent methods. The for-
mer one is applied to the dual, but the latter one to
the primal. DCDL2 has a closed form solution for each
sub-problem, but PCD has not. The cost per PCD
outer iteration is thus higher than DCDL2. There-
fore, while PCD is very competitive (only second to
DCDL1/DCDL2 in Table 2), DCDL2 is even better.
Regarding TRON, as a Newton method, it possesses
fast final convergence. However, since it costs more
time at each iteration, it hardly generates a reasonable
model quickly. From the experiment results, DCDL2
converges as fast as TRON, but also performs well in
early iterations.

Due to the space limitation, we give the following ob-

[C. J. Hsieh et al. 2008]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

13 / 16

Advanced Topics in Machine Learning 9. Subgradient Descent in the Primal

Comparison Dual Coordinate Descent vs. PegasosA Dual Coordinate Descent Method for Large-scale Linear SVM

(a) L1-SVM: astro-physic (b) L2-SVM: astro-physic

(c) L1-SVM: news20 (d) L2-SVM: news20

(e) L1-SVM: rcv1 (f) L2-SVM: rcv1

Figure 1. Time versus the relative error (20). DCDL1-S,
DCDL2-S are DCDL1, DCDL2 with shrinking. The dotted
line indicates the relative error 0.01. Time is in seconds.

objective value and the optimum to within 0.01:

|fP (w)− fP (w∗)|/|fP (w∗)| ≤ 0.01, (20)

where fP is the objective function of (1), and fP (w∗)
is the optimal value. Note that for consistency, we use
primal objective values even for dual solvers. The ref-
erence solutions of L1- and L2-SVM are respectively
obtained by solving DCDL1 and DCDL2 until the du-
ality gaps are less than 10−6. Table 2 lists the re-
sults. Clearly, our dual coordinate descent method
for both L1- and L2-SVM is significantly faster than
other solvers. To check details, we choose astro-physic,
news20, rcv1, and show the relative error along time
in Figure 1. In Section 3.2, we pointed out that the
shrinking technique is very suitable for DCD. In Fig-
ure 1, we also include them (DCDL1-S and DCDL2-S)
for comparison. Like in Table 2, our solvers are effi-
cient for both L1- and L2-SVM. With shrinking, its
performance is even better.

Another evaluation is to consider how fast a solver ob-
tains a model with reasonable testing accuracy. Using
the optimal solutions from the above experiment, we
generate the reference models for L1- and L2-SVM. We
evaluate the testing accuracy difference between the
current model and the reference model along the train-
ing time. Figure 2 shows the results. Overall, DCDL1
and DCDL2 are more efficient than other solvers. Note

(a) L1-SVM: astro-physic (b) L2-SVM: astro-physic

(c) L1-SVM: news20 (d) L2-SVM: news20

(e) L1-SVM: rcv1 (f) L2-SVM: rcv1

Figure 2. Time versus the difference of testing accuracy be-
tween the current model and the reference model (obtained
using strict stopping conditions). Time is in seconds.

that we omit DCDL1-S and DCDL2-S in Figure 2, as
the performances with/without shrinking are similar.

Among L1-SVM solvers, SVMperf is competitive with
Pegasos for small data. But in the case of a huge num-
ber of instances, Pegasos outperforms SVMperf . How-
ever, Pegasos has slower convergence than DCDL1. As
discussed in Section 4.2, the learning rate of stochas-
tic gradient descent may be the cause, but for DCDL1
we exactly solve sub-problems to obtain the step size
in updating w. Also, Pegasos has a jumpy test set
performance while DCDL1 gives a stable behavior.

In the comparison of L2-SVM solvers, DCDL2 and
PCD are both coordinate descent methods. The for-
mer one is applied to the dual, but the latter one to
the primal. DCDL2 has a closed form solution for each
sub-problem, but PCD has not. The cost per PCD
outer iteration is thus higher than DCDL2. There-
fore, while PCD is very competitive (only second to
DCDL1/DCDL2 in Table 2), DCDL2 is even better.
Regarding TRON, as a Newton method, it possesses
fast final convergence. However, since it costs more
time at each iteration, it hardly generates a reasonable
model quickly. From the experiment results, DCDL2
converges as fast as TRON, but also performs well in
early iterations.

Due to the space limitation, we give the following ob-

[C. J. Hsieh et al. 2008]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

14 / 16

Advanced Topics in Machine Learning 10. Linearization of Nonlinear Kernels

Outline

9. Subgradient Descent in the Primal

10. Linearization of Nonlinear Kernels

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

15 / 16

Advanced Topics in Machine Learning 10. Linearization of Nonlinear Kernels

Basic Idea

Instead of using a nonlinear kernel, e.g., the polynomial kernel of degree d

K (x , z) := (γxT z + r)d

with hyperparameters d , γ and r for data x , z ∈ Rn,
use the explicit embedding, e.g., for d = 1 and r = 1:

φ(x) :=(1,
√

2γx1, . . . ,
√

2γxn, γx2
1 , . . . , γx2

n ,
√

2γx1x2, . . . ,
√

2γxn−1xn)

or more simple

φ(x) :=(1, x1, . . . , xn, x
2
1 , . . . , x

2
n , x1x2, . . . , xn−1xn)

of dimension (n+d)!
n!d! .

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

15 / 16

Advanced Topics in Machine Learning 10. Linearization of Nonlinear Kernels

Comparison Linearized Nonlinear vs. Nonlinear KernelCHANG, HSIEH, CHANG, RINGGAARD AND L IN

Linear (LIBLINEAR) RBF (LIBSVM)
Data set C Time (s) Accuracy C γ Time (s) Accuracy
a9a 32 5.4 84.98 8 0.03125 98.9 85.03
real-sim 1 0.3 97.51 8 0.5 973.7 97.90
ijcnn1 32 1.6 92.21 32 2 26.9 98.69
MNIST38 0.03125 0.1 96.82 2 0.03125 37.6 99.70
covtype 0.0625 1.4 76.35 32 32 54,968.1 96.08
webspam 32 25.5 93.15 8 32 15,571.1 99.20

Table 4: Comparison of linear SVM and nonlinear SVM with RBF kernel. Time is inseconds.

Data set
Degree-2 Polynomial Accuracy diff.

C γ Training time (s)
Accuracy Linear RBF

LIBLINEAR LIBSVM
a9a 8 0.03125 1.6 89.8 85.06 0.07 0.02
real-sim 0.03125 8 59.8 1,220.5 98.00 0.49 0.10
ijcnn1 0.125 32 10.7 64.2 97.84 5.63 −0.85
MNIST38 2 0.3125 8.6 18.4 99.29 2.47 −0.40
covtype 2 8 5,211.9 NA 80.09 3.74 −15.98
webspam 8 8 3,228.1 NA 98.44 5.29 −0.76

Table 5: Training time (in seconds) and testing accuracy of using the degree-2 polynomial mapping.
The last two columns show the accuracy difference to results using linear and RBF. NA
indicates that programs do not terminate after 300,000 seconds.

4.4 Accuracy and Time of Using Linear, Degree-2 Polynomial, and RBF

We compare training time, testing time, and testing accuracy of using three mappings: linear,
degree-2 polynomial, and RBF. We useLIBLINEAR for linear,LIBSVM for RBF, and both for degree-
2 polynomial. For each data set, we choose parametersC andγ by a five-fold cross validation on
a grid of points. The best(C,γ) are then used to train the whole training set and obtain the testing
accuracy. To reduce the training time,LIBSVM allocates some memory space, called kernel cache,
to store recently used kernel elements. In contrast,LIBLINEAR does not require this space. All it
needs is to storew. In this work, we runLIBSVM using 1 GBytes of kernel cache.

Using linear and RBF mappings, Table 4 presents the training time, testing accuracy, and the
correspondent parameters. Linear and RBF have similar testing accuracy on data setsa9a andreal-
sim. The setreal-sim contains document data with many features. Linear classifiers have been
observed to perform well on such data with much less training time. For other data sets, the testing
accuracy of using linear is clearly inferior to that of using RBF. Degree-2 polynomial mappings may
be useful for these data. We can possibly improve the accuracy over linear while achieving faster
training time than RBF.

We then explore the performance of the degree-2 polynomial mapping. Thefirst part of Table
5 shows the training time, testing accuracy, and optimal parameters usingLIBLINEAR. As a com-

1480

[Y. Chang et al. 2010]
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

16 / 16

Advanced Topics in Machine Learning

References

Chang, Yin-Wen et al. (Aug. 2010): Training and Testing Low-degree Polynomial Data
Mappings via Linear SVM. In: J. Mach. Learn. Res. 11, 1471–1490.

Hsieh, C. J et al. (2008): A dual coordinate descent method for large-scale linear SVM. In:
Proceedings of the 25th international conference on Machine learning, 408–415.

Shalev-Shwartz, S., Y. Singer, and N. Srebro (2007): Pegasos: Primal estimated sub-gradient
solver for svm. In: Proceedings of the 24th international conference on Machine learning,
807–814.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

17 / 16

	9. Subgradient Descent in the Primal
	10. Linearization of Nonlinear Kernels
	Appendix

