Modern Optimization Techniques - Exercise Sheet 3

Lydia Voß
voss@ismll.de

November 3, 2015
Solutions need to be handed in until Tuesday, November 10th, 2015 at 10:00

Exercise 1: Linear Regression with Gradient Descent (13P)

We want to learn a non-regularized linear regression model using gradient descent on the data given by the design matrix A and labels y :

$$
A=\left(\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 1 \\
1 & 1 & 1
\end{array}\right) \quad y=\left(\begin{array}{c}
11 \\
10 \\
8
\end{array}\right)
$$

Therefore, we need to find the parameter vector $\beta=\left(\beta_{0}, \beta_{1}, \beta_{2}\right)$ that minimizes the loss over all instances a_{i} :

$$
\mathcal{L}(A, \beta, y)=\sum_{i=1}^{3}\left(\beta^{\top} a_{i}-y_{i}\right)^{2}
$$

a) Explain in your own words, why we apply an approximate learning algorithm to a problem where an analytical solution exists?
b) Compute the closed form solution for a non-regularized linear regression optimized for least squares!
c) Assume your model is initialized by $\beta=(1,1,1)$, compute the errors

$$
e_{i}=\beta^{\top} a_{i}-y_{i}
$$

and the overall loss of the model.
d) Using the error terms, compute the updates of β with a step size of $\mu=0.1$. What are the errors and the overall loss after updating once?

Exercise 2: Backtracking Line Search (7P)

Let us define a function $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ through:

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}
$$

a) Suppose you want to do a backtracking line search using the negative gradient $\Delta x=-\nabla f(x)$ as descent direction. Suppose you are in a current point $x^{\prime}=$ $\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$, write down the backtracking condition

$$
f(x+\mu \Delta x)>f(x)+a \mu \nabla f(x) \Delta x
$$

for these special settings.
b) We pick $a=0.5, b=0.1$ and start with a rather high initial step size $\mu=10$. How small does μ have to become for the backtracking condition to be false? How many backtracking iterations will be done until this happens?

