Modern Optimization Techniques - Exercise Sheet 8

Lydia Voß
voss@ismll.de

December 15, 2015
Solutions need to be handed in until Tuesday, January 5th, 2016 at 10:15

Exercise 1: Linear Regression with Coordinate Descent (12P)

Let us revisit our toy linear regression example from last time with data given by design matrix X and labels y :

$$
X=\left(\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 1 \\
1 & 1 & 1
\end{array}\right) \quad y=\left(\begin{array}{c}
11 \\
10 \\
8
\end{array}\right)
$$

We want to find the parameter vector $\beta=\left(\beta_{0}, \beta_{1}, \beta_{2}\right)$ that minimizes the loss over all instances x_{i} :

$$
\mathcal{L}(X, \beta, y)=\sum_{i=1}^{3}\left(\beta^{\top} x_{i}-y_{i}\right)^{2}
$$

a) Explain in your own words, what is the difference of Coordinate Descent compared to a normal Gradient Descent!
b) Do two epochs using Coordinate Descent! Report the errors and the overall Loss after each epoch and start with an initial $\beta=(1,1,1)^{\top}$.

Exercise 2: Coordinate Descent (8P)

a) Show that coordinate descent fails for the function

$$
g(x)=\left|x_{1}-x_{2}\right|+0.1\left(x_{1}+x_{2}\right)
$$

Hint: Verify that the algorithm temrinates after one step while $\inf _{x} g(x)=-\infty$
b) Let

$$
\mathcal{L}(x)=f(x)+\lambda\|x\|_{1}
$$

be l_{1}-regularized minimization with $f(x)$ convex and differential and $\lambda \geq 0$. Assume we converge in a fixed point x^{*}. Show that x^{*} is optimal, i.e. it minimizes \mathcal{L}.
Hint: Use the subdifferential you have seen in the previous lecture and exercise sheet. $\|x\|_{1}=|x|$

