Modern Optimization Techniques - Exercise Sheet 9

Lydia Voß

voss@ismll.de

January 12, 2016

Solutions need to be handed in until ${\bf Tuesday},\,{\bf January}\;19th,\,2016\;{\bf at}\;10{:}15$

Exercise 1: Constrained Minimization (12P)

For the two following constrained problems, plot the level sets of f_0 and the given constraints to then graphically find x^* . a)

minimize	$f_0(x_1, x_2) = x_1^2 + x_2^2$
subject to	$h(x_1, x_2) = x_1 + 2x_2 = 3$

Write down the KKT conditions for this optimization problem and analytically compute $x^\star!$

b)

minimize
$$f_0(x_1, x_2) = x_1 + x_2$$

subject to $h(x_1, x_2) = x_1 - x_2 = 2$
 $f_1(x_1, x_2) = x_1 \ge 0$
 $f_2(x_1, x_2) = x_2 \ge 0$

Reason why you cannot compute the dual problem for a linear program as this one!

Exercise 2: Newton Algorithm for Equality Constrained Problems (8P)

Let us again consider the following equality constrained optimization problem

$$\begin{array}{ll} \text{minimize} & f_0(x_1, x_2) = x_1^2 + x_2^2 \\ \text{subject to} & h(x_1, x_2) = x_1 + 2x_2 = 3 \end{array}$$

Optimize this problem using the Newton Algorithm for Equality Constrained Problems with a step size of $\mu = 1$. Start it once in the feasible point x = (0, 1.5) and once in the non-feasible point x = (0, -5). How many iterations does the algorithm need to converge? Explain your findings!