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Modern Optimization Techniques 1. Optimization Problems

Optimization Problems

An optimization problem has the form:

minimize f0(x)

Where:

I f0 : Rn → R
I An optimal x∗ exists and f0(x∗) = p∗

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Overview 1 / 31



Modern Optimization Techniques 1. Optimization Problems

Optimization Problems - A simple example

Say we have f0(x) = x2 :

minimize x2

df0(x)

dx
= 0

2x = 0

x = 0

So:

x∗ = 0

p∗ = f0(x∗) = 02 = 0

x

f (x)
f0(x) = x2

0
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Modern Optimization Techniques 1. Optimization Problems

Optimization Problems
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Modern Optimization Techniques 1. Optimization Problems

Optimization Problems - Constraints

A constrained optimization problem has the form:

minimize f0(x)

subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b

Where:

I f0, . . . , fm : Rn → R
I A ∈ Rl×n, with rank A = l < n

I An optimal x∗ exists and f0(x∗) = p∗
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Modern Optimization Techniques 1. Optimization Problems

Optimization Problems - Vocabulary

minimize f0(x)

subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b

Where:

I f0 : Rn → R is the objective function

I x ∈ Rn is the optimization variable

I (fi )i=1,...,m : Rn → R are the constraint functions
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Modern Optimization Techniques 2. Application Areas

What is optimization good for?

The optimization problem is an abstraction of the problem of making the
best possible choice of a vector in Rn from a set of candidate choices

I Machine Learning

I Logistics

I Computer Vision

I Decision Making

I Device Sizing

I Scheduling

I ...
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Modern Optimization Techniques 2. Application Areas

Application Areas - Machine Learning
Task: Classification
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Modern Optimization Techniques 2. Application Areas

Application Areas - Logistics

c1

c2

c3

c4
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c10

Suppose we have:

I Factories

I Warehouses

I Roads with costs associated to them

Determine how many products to ship from
each factory to each warehouse to
minimize shipping cost while meeting
warehouse demands and not exceeding
factory supplies
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Application Areas - Computer Vision
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Modern Optimization Techniques 3. Classification of optimization problems

Classification

There are many different ways to group mathematical optimization
problems.

The most common are:

I Convex vs. Non-convex

I Linear vs. Non-linear

I Constrained vs. Unconstrained
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Modern Optimization Techniques 3. Classification of optimization problems

Convex Functions

A function f : Rn → R is convex if it satisfies

f (αx + βy) ≤ αf (x) + βf (y)

Where:

I x , y ∈ Rn

I α, β ∈ R
I α + β = 1, α ≥ 0, β ≥ 0
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Modern Optimization Techniques 3. Classification of optimization problems

A convex function

x

f (x)
f0(x) = x2
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Modern Optimization Techniques 3. Classification of optimization problems

A non-convex function

x

f (x)

f0(x) = 0.1x2 + sin x
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Modern Optimization Techniques 3. Classification of optimization problems

Convex Optimization Problem

An optimization problem

minimize f0(x)

subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b

is said to be convex if f0, . . . fm are convex
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Modern Optimization Techniques 3. Classification of optimization problems

Linear and Non-Linear Problems

A function f : Rn → R is linear if it satistfies

f (αx + βy) = αf (x) + βf (y)

An optimization problem is said to be linear if the objective function f0
and the constraints f1, . . . fm are also linear
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Modern Optimization Techniques 3. Classification of optimization problems

Constrained and Unconstrained Problems

An unconstrained optimization problem has only the objective function
f0

A constrained optimization problem has besides objective function f0
the constraint functions f1, . . . fm

The constraints can be formulated as

I equalities

I inequalities
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Overview of the Lecture

0. Overview

1. Theory

2. Unconstrained Optimization

3. Equality Constrained Problems

4. Inequality Constrained Problems

5. Distributed Optimization
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Modern Optimization Techniques 4. Overview of the Lecture

Overview of the Lecture

0. Overview

1. Theory

I 1.1 Convex Sets

I 1.2 Convex Functions

I 1.3 Convex Optimization Problems

2. Unconstrained Optimization

I 2.1 Line search and Gradient Descent

I 2.2 Stochastic Gradient Descent

I 2.3 Newton Method

I 2.4 Quasi-Newton Methods

I 2.5 Sub-Gradient Methods

I 2.6 Coordinate Descent
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Modern Optimization Techniques 4. Overview of the Lecture

Overview of the Lecture

3. Equality Constrained Methods

I 3.1 Duality

I 3.2 Newton Methods for Equality Constrained Optimization

4. Inequality Constrained Methods

I 4.1 Interior Point Methods

I 4.2 Barrier Methods

I 4.3 Penalty Methods

I 4.4 Cutting Plane Methods

5. Distributed Optimization

I 5.1 Alternating Direction Method of Multipliers
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Modern Optimization Techniques 4. Overview of the Lecture

Unconstrained Optimization Problems

An unconstrained optimization problem has the form:

minimize f0(x)

Where:

I f0 : Rn → R
I An optimal x∗ exists and f0(x∗) = p∗
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Modern Optimization Techniques 4. Overview of the Lecture

Gradient Descent

1: procedure
GradientDescent
input: λ

2: Initialize x
3: repeat
4: x := x− λ∇f0(x)
5: until convergence
6: return x
7: end procedure
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Modern Optimization Techniques 4. Overview of the Lecture

Newton Method

1: procedure Newton Method
input: λ

2: Initialize x
3: repeat
4: ∆x := −∇2f0(x)−1∇f0(x)
5: Choose step-size λ through line search
6: x := x + λ∆x

7: until convergence
8: return x
9: end procedure
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Modern Optimization Techniques 4. Overview of the Lecture

Equality Constrained Minimization Problems

A problem of the form:

minimize f0(x)

subject to Ax = b

Where:

I f0 : Rn → R is convex and twice differentiable

I A ∈ Rl×n, with rank A = l < n

I An optimal x∗ exists and f0(x∗) = p∗

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Overview 23 / 31



Modern Optimization Techniques 4. Overview of the Lecture

Methods for Equality Constrained Problems

Karush-Kuhn-Tucker (KKT) Conditions:

I Conditions to assure the optimality of a solution

Goal:

I Find a solution that satisfies the KKT conditions

Methods:

I Newton Method for Equality Constrained Problems

I Infeasible Start Newton
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Modern Optimization Techniques 4. Overview of the Lecture

Inequality Constrained Minimization (ICM) Problems

A problem of the form:

minimize f0(x)

subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b

Where:

I f0, . . . , fm : Rn → R are convex and twice differentiable

I A ∈ Rl×n, with rank A = l < n

I An optimal x∗ exists and f0(x∗) = p∗
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Modern Optimization Techniques 4. Overview of the Lecture

Interior-point Methods

Interior Point Methods solve inequality constrained minimization problems
by

1. Reducing them to a sequence of linear equality constrained problems

2. Applying Newton’s method to the approximation
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Modern Optimization Techniques 4. Overview of the Lecture

The Barrier Method - Algorithm

1: procedure Barrier Method
input: strictly feasible x (0), t0 > 0, step size µ > 1, tolerance ε > 0

2: t := t0

3: x := x0

4: while m/t < ε do
/* Centering Step */

5: x∗(t) := arg minx(t)tf0(x(t)) + φ(x(t)),
subject to Ax(t) = b,
starting at x(t) = x

6: x := x∗(t)A problem of the form:

minimize f0(x)

subject to fi (x) = 0, i = 1, . . . ,m

Where:
I f0, . . . , fm : Rn → R are convex and twice differentiable
I An optimal x∗ exists and f0(x∗) = p∗

7: t := µt
8: end while
9: return x

10: end procedure

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Overview 27 / 31



Modern Optimization Techniques 4. Overview of the Lecture

Cutting Plane Methods

B
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Modern Optimization Techniques 5. Organizational Stuff

Exercises and tutorials

I There wil be a weekly sheet with two exercises handed out each
Tuesday.

1st sheet will be handed out Tue. 27.10

I Solutions to the exercises can be submitted until next Tuesday
before the Lecture.

1st sheet is due Tue. 03.11.

I Exercises will be corrected

I Tutorials each Friday 10-12,

I Successful participation in the tutorial gives up to 10% bonus points
for the exam.
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Modern Optimization Techniques 5. Organizational Stuff

Exams and credit points

I There will be a written exam at the end of the term (2h, 4 problems).

I The course gives 6 ECTS

I The course can be used in

I IMIT MSc. / Informatik / Gebiet KI & ML

I Wirtschaftsinformatik MSc / Informatik / Gebiet KI & ML
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Modern Optimization Techniques 5. Organizational Stuff

Some books

I Stephen Boyd and Lieven Vandenberghe. Convex Optimization.
Cambridge Univ Press, 2004.

I Suvrit Sra, Sebastian Nowozin and Stephen J. Wright. Optimization
for Machine Learning. MIT Press, 2011.

I Igor Griva. Linear and nonlinear optimization. Society for Industrial
and Applied Mathematics, 2009.
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